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ABSTRACT

Clock synchronization is a mechanism for providing a
standard time to various devices across a network. This
monograph provides a comprehensive overview of recent
developments for clock synchronization protocols built on
two-way message exchanges. Several clock synchronization
protocols are available in the literature for distributing time
from high-cost, high-stability clocks (termed masters) to
low-cost, low-stability clocks (termed slaves) via an inter-
connecting network. A number of clock synchronization
protocols are built on two-way message exchanges. These
include the timing protocol for sensor networks (TPSN),
lightweight time synchronization (LTS) protocol, tiny-sync
and mini-sync, network time protocol (NTP) and the IEEE
1588 precision time protocol (PTP). The messages traveling
between the master and slave nodes can encounter several
intermediate switches and routers, accumulating delays at
each node. The main factors contributing to the overall
delay are the fixed propagation and processing delays at
the intermediate nodes along the network path between the
master and slave, as well as the stochastic queuing delays at
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each such node. Popular probability density function (pdf)
models for modeling the stochastic delays include Gaussian,
exponential, gamma, Weibull, and log-normal. Although
these pdf models for the stochastic queuing delays apply
to several scenarios, they might not be suitable in specific
scenarios such as cellular base station synchronization using
mobile backhaul networks and IEEE 1588 in 4G Long Term
Evolution (LTE) networks. Further, there could be possibly
unknown asymmetries between the fixed path delays in the
forward master-to-slave path and the reverse slave-to-master
path. These unknown asymmetries could arise from various
sources, including delay attacks or incorrect modeling. In
this monograph, we present recent developments for clock
synchronization protocols built on the two-way message
exchange. After an introduction to the basic concepts and
mathematical models, the optimum estimators are presented
for estimating the clock skew and offset that are applicable
for any pdf model of the stochastic delays. Robust algo-
rithms that can also handle unknown path asymmetries
are presented next. The focus is on techniques that con-
sider practical, relevant measurement models in order to
guide the reader from physical observations to the actual
synchronization of the clocks at the slave and master.
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1
Introduction

The proper functioning of a distributed network is critically dependent
on the availability of a standard reference time for the various devices
in the network. These devices, typically at different geospatial locations,
usually perform timekeeping locally using clock hardware that exploits
the periodicity of certain physical phenomena, such as the mechanical
resonance of vibrating crystals (in low-cost quartz crystal oscillators), or
electromagnetic transitions within cesium or rubidium atoms (available
in expensive atomic clocks). However, such timekeeping techniques are
subject to errors that can accumulate over large time scales. Further,
the cost, size, and complexity of timekeeping hardware are typically
proportional to clock stability. As a result, there are often scenarios
where it is impractical to locally maintain the clock hardware required to
achieve the desired level of stability due to space or budget constraints.

Clock synchronization is a mechanism for providing a standard
reference time to various devices across a distributed network. It is
critical in modern computer networks because every aspect of managing,
securing, planning, and debugging a network involves determining when
particular events happen. Time provides the standard frame of reference

3
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4 Introduction

for the various devices on the network. A few key areas where time-
synchronized information can directly affect network operations are:

1. Network Fault Diagnosis and Recovery: Information regarding key
network events are usually stored in switches, routers, and other
dedicated devices. In case of a network fault or crash, the proper
sequence of events can be established, and the root cause can
be quickly identified, only if the timestamps associated with the
recorded events are synchronized.

2. File Timestamps: In a distributed file-sharing system, a master
file is maintained by a Network File Sharing (NFS) server for use
by remote clients. NFS is network time-dependent. Thus, when
presented with duplicate versions of the file, it saves the latest
copy. However, if a client is not synchronized to the network and
produces a timestamp for a remotely accessed file with a time
earlier than the file maintained on the server, the client file, along
with any changes, are discarded [65].

3. Services: Several user services, including billing and financial
services, require highly accurate timestamps.

4. Miscellaneous: Many localization, security, and tracking protocols
in distributed networks also demand the devices to timestamp
their messages and events [74].

One of the most popular mechanisms for achieving standard time
across a network is to use the Global Positioning System (GPS) [51, 63].
Each GPS satellite contains multiple atomic clocks that contribute ac-
curate time data to the GPS signals. GPS receivers decode these signals,
effectively synchronizing each receiver to the atomic clocks. Although
GPS-based timing is very accurate, it may not be feasible to equip every
device in a network with a GPS receiver. Further, GPS-based time syn-
chronization requires line-of-sight between the network device and the
GPS satellite, a condition that might not be possible for some devices
in the network. GPS spoofing is also a serious concern [36, 45, 60, 61].

A popular alternative to GPS-based timing is network time distribu-
tion. Here the time from a high-cost, high-stability clock (termed master)

Full text available at: http://dx.doi.org/10.1561/2000000108



5

is distributed to low-cost, low-stability clocks (termed slaves) via an
interconnecting network. Several clock synchronization protocols based
on network time distribution are available in the literature. For instance,
the network time protocol (NTP) [52] and the IEEE 1588 precision time
protocol (PTP) [32] are widely used in IP networks, while protocols
such as the timing protocol for sensor networks (TPSN) [20], lightweight
time synchronization protocol (LTS) [70], tiny-sync and mini-sync [62],
and reference broadcast time synchronization (RBS) protocol [10] are
used in wireless sensor networks. Network time distribution is often
more cost-effective than GPS-based timing, as it does not require any
dedicated hardware and can often make use of the existing network
resources for synchronizing devices across the network.

Though the time synchronization protocols for network time distri-
bution differ from each other in many aspects, a fundamental mecha-
nism common to a number of clock synchronization protocols including
TPSN [20], LTS [70], tiny-sync and mini-sync [62], and PTP [32], is
the two-way message exchange. This refers to the exchange of messages
between a pair of nodes to achieve clock synchronization. During a
two-way message exchange, a slave node exchanges a series of synchro-
nization packets with a master node over an interconnecting network and
collects timestamps corresponding to the departure and arrival times
of these packets. The slave then attempts to utilize these timestamps
to correct its clock. However, as with any packet-switched network,
the exchanged packets experience difficult to predict (stochastic) de-
lays as they traverse the network. These stochastic delays experienced
by packets can significantly degrade the performance of various clock
synchronization protocols. In this monograph, we present some recent
developments to combat the degrading effects of stochastic delays for
clock synchronization protocols based on two-way message exchange.

While the techniques presented in the monograph apply to many
applications and any clock synchronization protocol based on two-way
message exchanges, we mainly discuss the applications of our results in
the context of IEEE 1588 PTP applied to telecommunication networks.
IEEE 1588 PTP [32] is a popular time synchronization protocol used in
a number of scenarios, including electrical grid networks [18], cellular
base station synchronization in 4G Long Term Evolution (LTE) [24, 25],

Full text available at: http://dx.doi.org/10.1561/2000000108



6 Introduction

substation communication networks [33] and industrial control [29]. It
is cost-effective and offers accuracy comparable to GPS-based timing.
Emerging technologies such as fog computing and industrial Internet of
Things (IIoT) networks have identified the IEEE 802.1Q amendment for
Time-Sensitive Networking (TSN) as the standard for time-predictable
networking [46]. TSN employs PTP to provide a global notion of time
over the local area network.

Packet-based time synchronization techniques based on PTP [32]
are being increasingly considered as a viable alternative to GPS-based
time synchronization as a means to provide sub microsecond-level
synchronization between the cellular base stations in 4G LTE mobile
networks [24, 25, 28, 55, 56, 73]. Further, PTP has been explored as
a possible cost effective solution for synchronizing base stations in
5G new radio (NR) cellular networks [26, 27]. Such a high degree of
synchronization accuracy between the cellular base stations (<1.5 µs)
is necessary for 4G LTE/5G NR cellular networks to enable seamless
handovers between cell towers, reduce inter-cell interference, and enable
the use of MIMO techniques to improve capacity [2, 26, 27].

Packet-based synchronization based on PTP is often more cost-
effective than GPS-based time synchronization as it can utilize the
existing mobile backhaul network infrastructure that is used to intercon-
nect cell towers. However, since backhaul networks are typically leased
from commercial internet service providers (ISPs), mobile network op-
erators must share their use with other commercial and residential
users. Background traffic generated by these users often results in size-
able random network delays that hinder packet-based synchronization.
Overcoming this problem is key to the adoption of packet-based syn-
chronization schemes in mobile backhaul networks, especially given that
the synchronization accuracy requirements are only expected to grow
more stringent in the future.
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