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Bilevel Methods for Image
Reconstruction
Caroline Crockett and Jeffrey A. Fessler
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ABSTRACT
This review discusses methods for learning parameters for
image reconstruction problems using bilevel formulations.
Image reconstruction typically involves optimizing a cost
function to recover a vector of unknown variables that agrees
with collected measurements and prior assumptions. State-
of-the-art image reconstruction methods learn these prior
assumptions from training data using various machine learn-
ing techniques, such as bilevel methods.
One can view the bilevel problem as formalizing hyperpa-
rameter optimization, as bridging machine learning and cost
function based optimization methods, or as a method to
learn variables best suited to a specific task. More formally,
bilevel problems attempt to minimize an upper-level loss
function, where variables in the upper-level loss function are
themselves minimizers of a lower-level cost function.
This review contains a running example problem of learning
tuning parameters and the coefficients for sparsifying filters
used in a regularizer. Such filters generalize the popular
total variation regularization method, and learned filters are
closely related to convolutional neural networks approaches
that are rapidly gaining in popularity. Here, the lower-level

Caroline Crockett and Jeffrey A. Fessler (2022), “Bilevel Methods for Image Re-
construction”, Foundations and Trends® in Signal Processing: Vol. 15, No. 2-3, pp
121–289. DOI: 10.1561/2000000111.
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2

problem is to reconstruct an image using a regularizer with
learned sparsifying filters; the corresponding upper-level
optimization problem involves a measure of reconstructed
image quality based on training data.
This review discusses multiple perspectives to motivate the
use of bilevel methods and to make them more easily ac-
cessible to different audiences. We then turn to ways to
optimize the bilevel problem, providing pros and cons of the
variety of proposed approaches. Finally we overview bilevel
applications in image reconstruction.
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1
Introduction

Methods for image recovery aim to estimate a good-quality image from
noisy, incomplete, or indirect measurements. Such methods are also
known as computational imaging. For example, image denoising and
image deconvolution attempt to recover a clean image from a noisy
and/or blurry input image, and image inpainting tries to complete miss-
ing measurements from an image. Medical image reconstruction aims
to recover images that humans can interpret from the indirect measure-
ments recorded by a system like a Magnetic Resonance Imaging (MRI)
or Computed Tomography (CT) scanner. Such image reconstruction
applications are a type of inverse problem [52].

New methods for image reconstruction attempt to lower complexity,
decrease data requirements, or improve image quality for a given input
data quality. For example, in CT, one goal is to provide doctors with
information to help their patients while reducing radiation exposure
[127]. To achieve these lower radiation doses, the CT system must
collect data with lower beam intensity or fewer views. Similarly, in
MRI, collecting fewer k-space samples can reduce scan times. Such
“undersampling” leads to an under-determined problem, with fewer
knowns (measurements from a scanner) than unknowns (pixels in the
reconstructed image), requiring advanced image reconstruction methods.

3
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4 Introduction

Existing reconstruction methods make different assumptions about
the characteristics of the images being recovered. Historically, the as-
sumptions are based on easily observed (or assumed) characteristics of
the desired output image, such as a tendency to have smooth regions
with few edges or to have some form of sparsity [49]. More recent machine
learning approaches use training data to discover image characteristics.
These learning-based methods often outperform traditional methods,
and are gaining popularity in part because of increased availability of
training data and computational resources [84], [184].

There are many design decisions in learning-based reconstruction
methods. How many parameters should be learned? What makes a set
of parameters “good?” How can one learn these good parameters? Using
a bilevel methodology is one systematic way to address these questions.

Bilevel methods are so named because they involve two “levels” of
optimization: an upper-level loss function that defines a goal or measure
of goodness (equivalently, badness) for the learnable parameters and a
lower-level cost function that uses the learnable parameters, typically as
part of a regularizer. The main benefits of bilevel methods are learning
task-based hyperparameters in a principled approach and connecting
machine learning techniques with image reconstruction methods that
are defined in terms of optimizing a cost function, often called model-
based image reconstruction methods. Conversely, the main challenge
with bilevel methods is the computational complexity. However, like
with neural networks, that complexity is highest during the training
process, whereas deployment has lower complexity because it uses only
the lower-level problem.

The methods in this review are broadly applicable to bilevel prob-
lems, but we focus on formulations and applications where the lower-level
problem is an image reconstruction cost function that uses regulariza-
tion based on analysis sparsity. The application of bilevel methods to
image reconstruction problems is relatively new, but there are a growing
number of promising research efforts in this direction. We hope this
review serves as a primer and unifying treatment for readers who may
already be familiar with image reconstruction problems and traditional
regularization approaches but who have not yet delved into bilevel
methods.
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1.1. Notation 5

This review lies at the intersection of a specific machine learning
method, bilevel, and a specific application, filter learning for image
reconstruction. For overviews of machine learning in image reconstruc-
tion, see [84], [151]. For an overview of image reconstruction methods,
including classical, variational, and learning-based methods, see [125].
Finally, for historical overviews of bilevel optimization and perspectives
on its use in a wide variety of fields, see [41], [42]. Within the image
recovery field, bilevel methods have also been used, e.g., in learning
synthesis dictionaries [122].

The structure of this review is as follows. The remainder of the in-
troduction defines our notation and presents a running example bilevel
problem. Section 2 provides background information on the lower-level
image reconstruction cost function and analysis regularizers. Section 3
provides background information on the upper-level loss function, specif-
ically loss function design and hyperparameter optimization strategies.
These background sections provide motivation and context for the rest
of the review; they are not exhaustive overviews of these broad topics.
Section 4 presents building blocks for optimizing a bilevel problem.
Section 5 uses these building blocks to discuss optimization methods
for the upper-level loss function. Section 6 discusses previous appli-
cations of the bilevel method in image recovery problems, including
signal denoising, image inpainting, and medical image reconstruction.
It also overviews bilevel formulations for blind learning and learning
space-varying tuning parameters. Finally, Section 7 offers summarizing
commentary on the benefits and drawbacks of bilevel methods for com-
putational imaging, connects and compares bilevel methods to other
machine learning approaches, and proposes future directions for the
field.

1.1 Notation

This review focuses on continuous-valued, discrete space signals. Some
papers, e.g., [14], [38], analyze signals in function space, arguing that
the goal of high resolution imagery is to approximate a continuous space
reality and that analysis in the continuous domain can yield insights
and optimization algorithms that are resolution independent. However,
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6 Introduction

the majority of bilevel methods are motivated and described in discrete
space. The review does not include discrete-valued settings, such as
image segmentation; those problems often require different techniques
to optimize the lower-level cost function, although some recent work
uses dual formulations to bridge this gap [109], [137].

The literature is inconsistent in how it refers to variables in machine
learning problems. For consistency within this document, we define the
following terms:

• Hyperparameters: Any adjustable parameters that are part
of a model. Tuning parameters and model parameters are both
sub-types of hyperparameters. This document uses γ to denote a
vector of hyperparameters.

• Tuning parameters: Scalar parameters that weight terms in a
cost function to determine the relative importance of each term.
This review uses β to denote individual tuning parameters.

• Model parameters: Parameters, generally in vector or matrix
form, that are used in the structure of a cost or loss function,
typically as part of the regularization term. In the running example
in the next section, the model parameters are typically filter
coefficients, denoted c.

We write vectors as column vectors and use bold to denote matrices
(uppercase letters) and vectors (lowercase letters). Subscripts index
vector elements, so xi is the ith element in x. For functions that are
applied element-wise to vectors, we use notation following the Julia
programming language [8], where f.(x) denotes the function f applied
element wise to its argument:

x ∈ FN =⇒ f.(x) =




f(x1)
...

f(xN )


 ∈ FN .

We will often use this notation in combination with a transposed vector
of ones to sum the result of a function applied element-wise to a vector,
i.e.,

1′f.(x) =
N∑

i=1
f(xi). (1.1)
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1.2. Defining a Bilevel Problem 7

For example, the standard Euclidean norm is equivalent to 1′f.(x)
when f(x) = |x|2 and and the vector 1-norm can be similarly written
when f(x) = |x|. This notation is helpful for regularizers that do not
correspond to norms. The field F can be either R or C, depending on
the application.

Convolution between a vector, x, and a filter, c, is denoted as c⊛x.
This review assumes all convolutions use circular boundary conditions.
Thus, convolution is equivalent to multiplication with a square, circulant
matrix:

c ⊛ x = Cx.

The conjugate mirror reversal of c is denoted as c̃ and its application is
equivalent to multiplying with the adjoint of C:

c̃ ⊛ x = C ′x,

where the prime indicates the Hermitian transpose operation.
Finally, for partial derivatives, we use the notation that:

∇xf(x,y) = ∂f(x,y)
∂x

∈ FN ,

∇xyf(x,y) =
[
∂2f(x,y)
∂xi∂yj

]
∈ FN×M , and (1.2)

∇xyf(x̂, ŷ) = ∇xyf(x,y)
∣∣∣∣
x=x̂,y=ŷ

∈ F,

where f : FN × FM → F.
Tables 1.1 and 1.2 summarize our frequently used notation for

variables and functions.

1.2 Defining a Bilevel Problem

This section introduces a generic bilevel problem; the next presents a
specific bilevel problem that serves as a running example throughout
the review. Later sections discuss many of the ideas presented here
more thoroughly. Our hope is that an early introduction to the formal
problem motivates readers and that this section acts as a quick-reference
guide to our notation.
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8 Introduction

Table 1.1: Overview of frequently used symbols in the review.

Variable Dim Description
xtrue

j N One of J clean, noiseless training signals. Often
used in a supervised training set-up.

A M ×N Forward operator for the system of interest.
yj M During the bilevel learning process, yj refers to

simulated measurements, where yj = Axtrue
j +nj .

Once γ is learned, y refers to collected measure-
ments.

nj N A noise realization.
x̂j N A reconstructed image.
γ R The vector of parameters to learn using bilevel

methods. This often includes ck and/or βk.
ck S One of K convolutional filters. A 2D filter might

be
√
S ×

√
S.

c̃k S Conjugate mirror reversal of filter ck.
Ck N ×N The convolution matrix such that Ckx = ck ⊛ x

and C ′kx = c̃k ⊛ x.
βk R The tuning parameter associated with ck.
β0 R An overall regularization (tuning) parameter, ap-

pearing as eβ0 in (Ex).
Ω F ×N A matrix with filters in each row. For the stacked

convolution matrices in (2.7) F = KN .
z Varies A sparse vector, often from Ckx.
ϵ R+ Parameter used to define ϕ. Typically determines

the amount of corner-rounding.
t 0, . . . , T Iteration counter for the lower-level optimization

iterates, e.g., x(t) is the estimate of the lower-
level optimization variable x at the tth iteration.

u 0, . . . , U Iteration counter for the upper-level optimization
iterates, e.g., γ(u).
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1.2. Defining a Bilevel Problem 9

Table 1.2: Overview of frequently used functions in the review.

Function Description
ℓ(γ) 7→ R or
ℓ(γ,x) 7→ R

Upper-level loss function used as a fitness measure
of γ. Although ℓ is a function of γ, it is often helpful
to write it with two inputs, where typically x = x̂.

Φ(x ;γ) 7→ R Lower-level cost function used for reconstructing an
image.

R(x) 7→ R Regularization function. Incorporates prior infor-
mation about likely image characteristics.

d(x,y) 7→ R Data-fit term.
ϕ(z) 7→ R Sparsity promoting function, e.g., 0-norm, 1-norm,

or corner-rounded 1-norm. Typically used in R.

This review considers the image reconstruction problem where the
goal is to form an estimate x̂ ∈ FN of a (vectorized) latent image,
given a set of measurements y ∈ FM . For denoising problems, N = M ,
but the two dimensions may differ significantly in more general image
reconstruction problems. The forward operator, A ∈ FM×N models the
physics of the system such that one would expect y = Ax in an ideal
(noiseless) system. We focus on linear imaging systems here, but the
concepts generalize readily to nonlinear forward models. When known
(in a supervised training setting), we denote the true, underlying signal
as xtrue ∈ FN . Most bilevel methods are supervised, but Section 6.2
presents a few examples of unsupervised bilevel methods.

We focus on model-based image reconstruction methods where the
goal is to estimate x from y by solving an optimization problem of the
form:

x̂ = x̂(γ) = argmin
x∈FN

Φ(x ;γ,y). (1.3)

To simplify notation, we drop y from the list of Φ arguments except
where needed for clarity. The quality of the estimate x̂ can depend
greatly on the choice of the hyperparameters γ. Historically there have
been numerous approaches pursued for choosing γ, such as cross valida-
tion [176], generalized cross validation [75], the discrepancy principle
[145] and Bayesian methods [160], among others.

Full text available at: http://dx.doi.org/10.1561/2000000111



10 Introduction

Bilevel methods provide a framework for choosing hyperparameters.
A bilevel problem for learning hyperparameters γ has the following
“double minimization” form:

γ̂ = argmin
γ∈FR

ℓ(γ ; x̂(γ))︸ ︷︷ ︸
ℓ(γ)

where (UL)

x̂(γ) = argmin
x∈FN

Φ(x ;γ). (LL)

Fig. 1.1 depicts a generic bilevel problem for image reconstruction. The
upper-level (UL) loss function, ℓ : RR × FN 7→ R, quantifies how (not)
good is a vector γ of learnable parameters. The upper-level depends
on the solution to the lower-level (LL) cost function, Φ, which depends
on γ. The upper-level can also be called the outer optimization, with
the lower-level being the inner optimization. Another terminology is
leader-follower, as the minimizer of the lower-level follows where the
upper-level loss leads. We will also write the upper-level loss function
with a single parameter as ℓ(γ) ··= ℓ(γ ; x̂(γ)).

Loss
Function

Model-based
Reconstruction

γ

Model-based
Reconstruction

γ̂

Test data:

{x̂j}J
j=1

x̂(γ̂)y

{yj}J
j=1

Forward Model

{
xtrue

j

}J

j=1

yj = Axj + nj

Figure 1.1: Depiction of a typical bilevel problem for image reconstruction,
illustrated using XCAT phantom from [162]. The upper box represents the
training process, with the upper-level loss and lower-level cost function. Dur-
ing training, one minimizes the upper-level loss with respect to a vector of
parameters, γ, that are used in the image reconstruction task. Once learned,
γ̂ is typically deployed in the same image reconstruction task, shown in the
lower box.

Full text available at: http://dx.doi.org/10.1561/2000000111



1.2. Defining a Bilevel Problem 11

We write the lower-level cost as an optimization problem with
“argmin” and thus implicitly assume that Φ has unique minimizer, x̂.
The lower-level is guaranteed to have a unique minimizer when Φ is a
strictly convex function of x. (See Section 4 for more discussion of this
point). More generally, there may be a set of lower-level minimizers,
each having some possibly distinct upper-level loss function value. For
more discussion, [41] defines optimistic and pessimistic versions of the
bilevel problem for the case of multiple lower-level solutions.

Bilevel methods typically use training data. Specifically, one often
assumes that a given set of J good quality images xtrue

1 , . . . ,xtrue
J ∈ FN

are representative of the images of interest in a given application. (For
simplicity of notation we assume the training images have the same size,
but they can have different sizes in practice.) We typically generate
corresponding simulated measurements for each training image using
the imaging system model:

yj = Axtrue
j + nj , j = 1, . . . , J, (1.4)

where nj ∈ FM denotes an appropriate random noise realization1. In
(1.4), we add one noise realization to each of the J images; in practice
one could add multiple noise realizations to each xtrue

j to augment
the training data. We then use the training pairs (xtrue

j ,yj) to learn
a good value of γ. After those parameters are learned, we reconstruct
subsequent test images using (1.3) with the learned hyperparameters γ̂.

An alternative to the upper-level formulation (UL) is the following
stochastic formulation of bilevel learning:

γ̂ = argmin
γ∈FR

E [ℓ(γ)]︸ ︷︷ ︸
≈ 1

J

∑J

j=1 ℓ(γ ; x̂j(γ))

(1.5)

where x̂j(γ) = argmin
x∈FN

Φ(x ;γ,yj). (1.6)

The expectation, taken with respect to the training data and noise
distributions, is typically approximated as a sample mean over J training
examples.

1A more general system model allows the noise to depend on the data and system
model, i.e., nj(A, xj). This generality is needed for applications with certain noise
distributions such as Poisson noise.
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12 Introduction

The definition of bilevel methods used in (UL) is not universal in the
literature. In some works, bilevel methods refer to nested optimization
problems with two levels, even when the two levels result from reformu-
lating a single-level problem, e.g., [146]. That definition is much more
encompassing, and includes primal-dual reformulations, Lagrangian
reformulations of constrained optimization problems, and alternating
methods that introduce then minimize over an auxiliary variable.

Another term in the literature, sometimes used interchangeably
with a bilevel problem, is a mathematical program with equilibrium
constraints (MPEC). As shown in Section 4, many bilevel optimization
methods start by transforming the two-level problem into an equivalent
single-level problem by replacing the lower-level optimization with a
set of constraints based on optimally conditions. Bilevel problems are
thus a subset of MPECs. MPECs are generally challenging due to their
non-convex nature; even when the lower-level cost function is convex,
the upper-level loss function is rarely convex. Importantly, ℓ(·, ·) is often
convex with respect to both arguments. However, ℓ(γ) = ℓ(γ ; x̂(γ)) is
generally non-convex in γ due to how the lower-level minimizer depends
on γ. There is a large literature on MPEC problems, e.g., [30], [41], [61],
and on non-convex optimization more generally [97]. Bilevel methods
are one sub-field in this large literature.

1.3 Running Example

To offer a concrete example, this review will frequently refer to the
following running example (Ex), a filter learning bilevel problem:

γ̂ = argmin
γ∈FR

1
2∥x̂(γ) − xtrue∥2

2, where

x̂(γ) = argmin
x∈FN

1
2 ∥Ax − y∥2

2 + eβ0
K∑

k=1
eβk1′ϕ.(ck ⊛ x; ϵ), (Ex)

where γ ∈ FR contains all variables that we wish to learn: the filter
coefficients ck ∈ FS and tuning parameters βk ∈ R for all k ∈ [1,K]. We
include an auxiliary tuning parameter, β0 ∈ R, for easier comparison to
other models. Fig. 1.2 depicts the running example and Fig. 1.3 shows
example learned filters for a toy training image. Ref. [45] demonstrates
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1.3. Running Example 13

how a spectral analysis of learned filters and penalty functions can be
interpreted to provide insight into real-world problems.

The learnable hyperparameters can also include the sparsifying
function ϕ, its corner rounding parameter ϵ, the forward model A,
or some aspect of the data-fit term. For example, [45], [82] learn the
regularization functional and [46], [167] learn part of the forward model.
Such examples are relatively rare in the bilevel methods literature to
date.

Unlike many learning problems (see examples in Section 7.4), the
running example (Ex) does not include any constraints on γ. Learned
filters should be those that are best at the given task, where “best”
is defined by the upper-level loss function. Therefore, a zero mean
or norm constraint is not generally required, though some authors
have found such constraints helpful, e.g., [25], [111]. Following previous
literature, e.g., [159], the tuning parameters in (Ex) are written in
terms of an exponential function to ensure positivity. One could re-write
(Ex) without this exponentiation “trick” and then add a non-negativity

x̂y

xtrue

argmin
γ

J∑

j=1

∥∥∥xtrue
j − x̂j

∥∥∥
2

2

Forward Model
y = Ax + n

argmin
x

1
2‖Ax − y‖2

2 + eβ0





eβ1 1′φ.(x⊛ )+
eβ2 1′φ.(x⊛ )+

...
eβK 1′φ.(x⊛ )

γ

Figure 1.2: Bilevel problem in (Ex). The vector of learnable hyperparameters,
γ, includes the tuning parameters, βk, and the filter coefficients, ck, shown as
example filters. Although this review will generally consider learning filters of
a single size, the figure depicts how the framework easily extends to 2d filters
of different sizes.
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x̂(γ̂) (28.62 dB)y (12.69 dB)

-.25

.75

.75

-.25

(a) (b)

(c) h(0)

(d) ĥ

Column index Column index

0.5

-0.5

0

0.5

-0.5

016 321 1 3216

Normalized filters

Figure 1.3: Example learned filters for a simple training image, normalized
for easier visualization. The true image is zero-mean and repeats three columns
of signal value -0.25 and one column of signal value 0.75. (a) Noisy image.
The lower plot shows a profile of one row of the image (marked by a dotted
line). The signal-to-noise ratio, as defined in (3.2), is given in parenthesis. (b)
The denoised image using learned filters as in (Ex). (c) Randomly initialized
filters for the bilevel method (K = 4 and S = 4 · 2). (d) Corresponding learned
filters. As expected based on the training image, the learned filters primarily
involve vertical differences. Appendix D.1 provides further details including
the regularization strength of each learned filter.

constraint to the upper-level problem; most of the methods discussed in
this review generalize to this common variation by substituting gradient
methods for projected gradient methods.

In (Ex), we drop the sum over J training images for simplicity; the
methods easily extend to multiple training signals. For ease of notation,
we further simplify by considering ck to be of length S for all k, e.g., a
2D filter might be

√
S ×

√
S. In practice, the filters may be of different

lengths with minimal impact on the methods presented in this review.
The function ϕ in (Ex) is a sparsity-promoting function. If we were

to choose ϕ(z) = |z|, then the regularizer would involve 1-norm terms
of the type common in compressed sensing formulations:

1′ϕ.(ck ⊛ x) = ∥ck ⊛ x∥1 .

However, to satisfy differentiability assumptions (see Section 4), this
review will often consider ϕ to denote the following “corner rounded”
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1.4. Conclusion 15

1-norm having the shape of a hyperbola with the corresponding first
and second derivative:

ϕ(z) =
√
z2 + ϵ2 (CR1N)

ϕ̇(z) = z√
z2 + ϵ2

∈ [0, 1)

ϕ̈(z) = ϵ2

(z2 + ϵ2)3/2 ∈ (0, 1
ϵ

],

where ϵ is a small, relative to the expected range of z, parameter that
controls the amount of corner rounding. (Here, we use a dot over the
function rather than ∇ to indicate a derivative because ϕ has a scalar
argument.)

1.4 Conclusion

Bilevel methods for selecting hyperparameters offer many benefits. Pre-
vious papers motivate them as a principled way to approach hyperpa-
rameter optimization [42], [94], as a task-based approach to learning [38],
[82], [143], and/or as a way to combine the data-driven improvements
from learning methods with the theoretical guarantees and explain-
ability provided by cost function-based approaches [14], [26], [111]. A
corresponding drawback of bilevel methods are their computational
cost; see Sections 4 and 5 for further discussion.

The task-based nature of bilevel methods is a particularly important
advantage; Section 7.4 exemplifies why by comparing the bilevel problem
to single-level, non-task-based approaches for learning sparsifying filters.
Task-based refers to the hyperparameters being learned based on how
well they work in the lower-level cost function–the image reconstruction
task in our running example. The learned hyperparameters can also
adapt to the training dataset and noise characteristics. The task-based
nature yields other benefits, such as making constraints or regularizers
on the hyperparameters generally unnecessary; Section 6.2 presents some
exceptions and [42] further discusses bilevel methods for applications
with constraints.

There are three main elements to a bilevel approach. First, the lower-
level cost function in a bilevel problem defines a goal, such as image
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reconstruction, including what hyperparameters can be learned, such
as filters for a sparsifying regularizer. Section 2 provides background
on this element specifically for image reconstruction tasks, such as the
one in (Ex). Section 6.1 reviews example cost functions used in bilevel
methods.

Second, the upper-level loss function determines how the hyperpa-
rameters should be learned. While the squared error loss function in
the running example is a common choice, Section 3 discusses other loss
functions based on supervised and unsupervised image quality metrics.
Section 6.2 then reviews example loss functions used in bilevel methods.

While less apparent in the written optimization problem, the third
main element for a bilevel problem is the optimization approach, espe-
cially for the upper-level problem. Section 3.2 briefly discusses various
hyperparameter optimization strategies, then Sections 4 and 5 present
multiple gradient-based bilevel optimization strategies. Throughout
the review, we refer to the running example to show how the bilevel
optimization strategies apply.
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A
Background: Primal-Dual Formulations

This appendix briefly reviews primal-dual analysis as it applies to (Ex).
Section 3.3 in [19] provides a more general but brief introduction to the
notion of conjugate functions and duality and [10] goes into more depth
on duality.

The conjugate of a function f : RN → R ∪ {-∞,∞} is denoted
f∗ : RN → R ∪ {-∞,∞}, and is defined as

f∗(d) = sup
x∈ domain(f)

d′x − f(x), (A.1)

where d ∈ RN is a dual variable. The derivations below use the following
two conjugate function relations.

1. When f(x) = 1
2∥x − y∥2 for y ∈ RN , the conjugate function is

f∗(d) = sup
x∈RN

d′x − 1
2∥x − y∥2.

The maximizer of the quadratic cost function f∗ is
x̂ = y + d (A.2)

and the maximum value simplifies to

f∗(d) = 1
2 ∥d + y∥2 − 1

2∥y∥2. (A.3)

124
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2. When ϕ(z) = |z| is defined on R, the conjugate function is

ϕ∗(d) = sup
z ∈R

dz − |z|.

One can verify that the conjugate is

ϕ∗(d) =





0 if |d| ≤ 1
∞ else

(A.4)

and the corresponding sets of suprema are

argmax
z ∈R

dz − |z| =





sign(d) · ∞ if |d| > 1
0 if |d| < 1
[0,∞) if d = 1
(-∞, 0] if d = -1.

(A.5)

Generalizing (A.4) to a vector, the conjugate function of the 1-
norm is a characteristic function that is infinity if any element of
the input vector is larger than 1 in absolute value.

Ref. [10, p. 50] provides a table with many more conjugate functions.
The biconjugate, denoted f∗∗, is the conjugate of f∗, i.e.,

f∗∗(x) = sup
d∈ domain(f∗)

x′d − f∗(d), (A.6)

and is the largest convex, lower semi-continuous function below f .
When f is convex and lower semi-continuous, the biconjugate is equal
to the original function, i.e., f∗∗ = f . One can use the equality of the
original function and the biconjugate to derive the saddle point and
dual problems when f is convex.

Consider the specific lower-level problem with an analysis-based
regularizer

argmin
x∈RN

1
2∥Ax − y∥2 + 1′ϕ.(Ωx), (A.7)

where Ω ∈ RF×N . When ϕ is convex, the corresponding saddle-point
problem is

argmin
x∈RN

1
2∥Ax − y∥2 + sup

d∈RF

⟨d,Ωx⟩ − 1′ϕ∗.(d)
︸ ︷︷ ︸

1′ϕ∗∗
. (Ωx)

,
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where ⟨·, ·, ⟩ is the standard inner product. Under very mild conditions
(satisfied for the absolute value function) [19], one can swap the minimum
and supremum operations and write the saddle-point problem as

sup
d∈RF

min
x∈RN

1
2∥Ax − y∥2 + ⟨d,Ωx⟩ − 1′ϕ∗.(d).

Substituting the conjugate of the 1-norm (A.4), the saddle-point problem
is thus

min
x∈RN

min
d∈RF

1
2∥Ax − y∥2 − ⟨d,Ωx⟩ s.t. |di| ≤ 1 ∀i. (A.8)

We hereafter assume A = I to derive the dual problem from the
saddle-point problem. By grouping terms and re-arranging negative
signs, the dual problem can be derived from the saddle point problem.
For a general ϕ, the saddle-point problem is equivalent to

max
d∈RF

-1′ϕ∗.(d) +
(

min
x∈RN

⟨d,Ωx⟩ + 1
2∥x − y∥2

)

= max
d∈RF

-1′ϕ∗.(d) −
(

max
x∈RN

⟨-Ω′d,x⟩ − 1
2∥x − y∥2

)

︸ ︷︷ ︸
f∗(-Ω′d)

,

where the last line follows from properties of inner products. The
expression in parenthesis is the conjugate function for the data-fit term,
given in (A.3). Therefore, the dual problem for a general, convex ϕ is

max
d∈RF

-1′ϕ∗.(d) − f∗(-Ω′d) = - min
d∈RF

1′ϕ∗.(d) + f∗(-Ω′d).

Substituting the conjugates for the data-fit term (A.3) and the
conjugate for the 1-norm regularizer (A.4), the dual problem for (A.7)
with ϕ(z) = |z| becomes

min
d∈RF

1
2
∥∥-Ω′d + y

∥∥2 − 1
2 ∥y∥2 s.t. |di| ≤ 1 ∀i. (A.9)

When we require only the minimizer (not the minimum), an equivalent
dual problem is

d̂ = argmin
d∈RF

1
2
∥∥-Ω′d + y

∥∥2 s.t. |di| ≤ 1 ∀i. (A.10)
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This dual problem is a constrained least squares problem and can
be solved with a projected gradient descent method, optionally with
momentum [104]. From (A.2), the primal minimizer can be recovered
from the dual minimizer by

x̂ = y − Ω′d̂. (A.11)

Finally, from (A.5), the dual variable is related to the filtered signal by

di ∈





1 if [Ωx̂]i > 0
-1 if [Ωx̂]i < 0
[0,∞) if [Ωx̂]i = 1
(-∞, 0] if [Ωx̂]i = -1.

(A.12)

Ref. [181] provides a more general version of the dual function for
non-identity system matrices.

Above, we derived the saddle-point and dual problems using the
equality of the biconjugate and the original function for a convex
regularizer. The dual problem can also be derived using Lagrangian
theory, as shown in [181]. Define an auxiliary (split) variable that is
constrained to equal the filtered signal, i.e., z = Ωx. Considering the
specific case of the 1-norm regularizer, the Lagrangian of the constrained
version of (A.7) is

1
2 ∥x − y∥2 + ∥z∥1 + d′(Ωx − z),

where d ∈ RF is a vector of Lagrange multipliers and we have omitted
the KKT conditions. Minimizing the Lagrangian with respect to x and
z yields the conjugate functions for the data-fit term and 1-norm and
thus the dual problem.

Using the Lagrangian perspective to derive the dual problem yields
a useful relation between the filtered signal and the dual variable [181].
Because the split variable z is constrained to equal Ωx, [Ωx]i > 0
implies zi > 0. From (A.5), zi is only positive and finite when di = 1. A
similar argument holds for [Ωx]i < 0. Therefore, the dual variable and
x̂ are related by

di ∈




sign([Ωx]i) if [Ωx̂]i ̸= 0
[-1, 1] if [Ωx̂]i = 0.

(A.13)
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The second case follows from observing that di can take any value in
its constrained range when zi = 0 as the minimum in (A.9) will be 0
regardless of di.

The primal-dual results reviewed in this appendix are referenced in
Section 2.2.3 to relate analysis and synthesis regularizers, Section 4.3 to
re-write the lower-level minimizer as a differentiable function of itself
and γ, and in Section 4.4.2 to unroll a differentiable algorithm for a
non-smooth cost function.
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Forward and Reverse Approaches to Unrolling

This appendix provides background on the forward and backward ap-
proaches to the unrolled gradient computation introduced in Section 4.4.
From (4.18), the gradient of interest is:

∇ℓ(γ) =∇γℓ(γ ; x(T )) +
(

T∑

t=1
(HT · · · Ht+1) Jt

)′
∇xℓ(γ ; x(T )) ∈ FR.

(B.1)

If one uses a gradient descent based algorithm to optimize the lower-level
cost function Φ, then Ht = ∇xΨ(x(t−1) ;γ) ∈ FN×N is closely related
to the Hessian of Φ and Jt = ∇γΨ(x(t−1) ;γ) ∈ FN×R is proportional
to the Jacobian of the gradient.

To compare the forward and reverse approaches to gradient com-
putation for unrolled methods, we introduce notation for an ordered
product of matrices. We indicate the arrangement of the multiplications
by the set endpoints, s ∈ [s1 ↔ s2] with the left endpoint, s1, corre-
sponding to the index for the left-most matrix in the product and the
right endpoint, s2, corresponding to the right-most matrix. Thus, for
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any sequence of square matrices {A}i:

∏

s∈[t↔T ]
As ··= AtAt+1 · · · AT =

(
A′T A′T−1 · · · A′t

)′ =


 ∏

s∈[T↔t]
A′s



′

.

The above double arrow notation does not indicate order of operations.
In the following notation the arrow direction does not affect the product
result (ignoring finite precision effects), but rather signifies the direction
(order) of calculation:

∏

s∈[T←t]
As ··= AT (AT−1 · · · (At+1 (At)))

∏

s∈[T→t]
As ··= (((AT AT−1) · · · ) At+1) At.

We use a similar arrow notation to denote the order that terms are com-
puted for sums; as above, the order is only important for computational
considerations and does not affect the final result.

Using this notation, the reverse gradient calculation of (B.1) is

∇γℓ(γ ; x(T )) +
∑

t∈[T→1]
Jt
′


 ∏

s∈[(t+1)←T ]
H ′

s


∇xℓ(γ ; x(T )). (B.2)

This expression requires ∏s∈[(T +1)←T ] H ′
s = I, because HT +1 is not

defined. For example, for T = 3, we have

∇γℓ(γ ; x(3)) + J ′3(I)g︸ ︷︷ ︸
t=3

+ J ′2
(
H ′

3
)

g
︸ ︷︷ ︸

t=2

+ J ′1
(
H ′

2H ′
3
)

g
︸ ︷︷ ︸

t=1

,

where g is shorthand for ∇xℓ(γ ; x(T )) here. This version is called reverse
as all computations (arrows) begin at the end, T .

The primary benefit of the reverse mode comes from the ability to
group ∇xℓ(γ ; x(T )) with the right-most HT , such that all products
are matrix-vector products, as seen in Fig. B.1 Further, one can save
the matrix-vector products for use during the next iteration and avoid
duplicating the computation. Continuing the example for T = 3, we
have

∇γℓ(γ ; x(3)) + J ′3(I)g︸ ︷︷ ︸
t=1

+ J ′2(
∆︷ ︸︸ ︷

H ′
3g)︸ ︷︷ ︸

t=2

+ J ′1(H ′
2

∆︷ ︸︸ ︷(
H ′

3g
)
)

︸ ︷︷ ︸
t=3

,
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x(0) x(1) x(2) x(T )

Ψ Ψ
. . .
Ψ

Store iterates {xt}T
t=0

∆ = ∇xℓ
(
γ ; x(T )

)

r = 0
For t = T − 1 . . . 0




Use x(t) to compute Jt+1 and Ht+1

r = r + J ′
t+1∆

∆ = H ′
t+1∆

Figure B.1: Reverse mode computation of the unrolled gradient from (B.1).
The first gradient computation requires x(T ), so all computations occur af-
ter the lower-level optimization algorithm is complete. The final gradient is
∇ℓ(γ) = ∇γℓ(γ ; x(T )) + r.

where one only needs to compute ∆ once. This ability to rearrange
the parenthesis to compute matrix-vector products greatly decreases
the computational requirement compared to matrix-matrix products.
Excluding the costs of the optimization algorithm steps and forming
the Hs and Jt matrices (these costs will be the same in the forward
mode computation), reverse mode requires O(T ) Hessian-vector multi-
plies and O(TNR) additional multiplies. The trade-off is that reverse
mode requires storing all T iterates, x(t), so that one can compute the
corresponding Hessians and Jacobians from them as needed, and thus
has a memory complexity O(TN).

The forward mode calculation of (B.1), depicted in Fig. B.2, has all
computations (arrows) starting at the earlier iterate:

∇γℓ(γ ; x(T )) +


 ∑

t∈[1→T ]


 ∏

s∈[T←(t+1)]
Hs


Jt



′

∇xℓ(γ ; x(T )). (B.3)
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x(0) x(1)

Z1 = H1Z0 + J1

x(2)

Z2 = H2Z1 + J2

x(T )

ZT = HT ZT −1 + JT

Ψ Ψ
. . .
Ψ

Figure B.2: Forward mode computation of the unrolled gradient from (B.3).
The intermediate computation matrix, Z, is initialized to zero (Z0 = 0)
then updated every iteration. The final gradient is ∇ℓ(γ) = ∇γℓ(γ ; x(T )) +
Z ′

T ∇xℓ(γ ; x(T )).

As before, HT +1 is not defined, so we take ∏s∈[T←(T +1)] Hs = I. For
example, for T = 3 we have

∇γℓ(γ ; x(T )) +


((H3H2)J1)′︸ ︷︷ ︸

t=1

+ ((H3)J2)′︸ ︷︷ ︸
t=2

+ ((I)J3)′︸ ︷︷ ︸
t=3


 g.

How the forward mode avoids storing x iterates is evident after rear-
ranging the parenthesis to avoid duplicate calculations, as illustrated in
Fig. B.2. Continuing the example for T = 3, we have

∇γℓ(γ ; x(T )) +




H3




Z2︷ ︸︸ ︷
H2 (H1 · 0 + J1)︸ ︷︷ ︸

Z1

+J2


+ J3

︸ ︷︷ ︸
Z3




′

g,

where Zs = HsZs−1 + Js ∈ FN×R stores the intermediate calculations.
The above formula also illustrates why H1 is not needed in (4.17);
∇γx(0) = 0 is the last element from applying the chain rule.

There is no way to rearrange the terms in the forward mode formula
to achieve matrix-vector products (while preserving the computation
order). Therefore, the computation requirement is much higher at O(TR)
Hessian-vector multiplications. The corresponding benefit of the forward
mode method is that it does not require storing iterates, thus decreasing
(in the common case when T > R) the memory requirement to O(NR)
for storing the intermediate matrix Zs during calculation.
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As with the minimizer approach in Section 4.2, the computational
complexity of the unrolled approach is lower than the generic bound
when we consider the specific example of learning convolutional filters
according to (Ex). Nevertheless, the general comparison that reverse
mode takes more memory but less computation holds true. See Tab. 4.1
for a comparison of the computational and memory complexities.
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C
Additional Running Example Results

This appendix derives some results that are relevant to the running
example used throughout the survey.

C.1 Derivatives for Convolutional Filters

This section proves the result
∂

∂cs
(c̃k ⊛ f.(ck ⊛ x)) = f.(ck ⊛ z⟨s⟩) + c̃k ⊛

(
ḟ .(ck ⊛ x) ⊙ x⟨−s⟩

)
,

(C.1)

when considering F = R. This equation is key to finding derivatives of
the lower-level cost function in (Ex) with respect to the filter coefficients.

To simplify notation, we drop the indexing over k, so c is a single
filter and cs denotes the sth element in the filter for s ∈ ZD. Here, s

indexes every dimension of c, e.g., for a two-dimensional filter, we could
equivalently write s as ⟨s1, s2⟩. Recall that the notation c̃ signifies a
reversed version of c, as needed for the adjoint of convolution.

Define the notation x⟨i⟩ as the vector x circularly shifted according
to the index i. Thus, if x is 0-indexed and we use circular indexing,

(x⟨s⟩)i = xi−s.

134
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As two examples,

x =




x1
x2
...

xN−1
xN




→ x⟨-1⟩ =




x2
x3
...
xN

x1



,

and, in two dimensions, if X ∈ FM×N

X⟨1,2⟩ =




xM,N−1 xM,N xM,1 . . . xM,3
x1,N−1 x1,N x1,1 . . . x1,3
x2,N−1 x2,N x2,1 . . . x2,3

... . . . ...
xM−1,N−1 xM−1,N xM−1,1 . . . xM−1,3



.

This circular shift notation is useful in the derivation and statement of
the desired gradient.

Define z = c ⊛ x, where c and x are both N -dimensional. By the
definition of convolution, z is given by

z =
∑

i1

· · ·
∑

iN

ci1,...,iN x⟨-i1,...,-iN ⟩ ··=
∑

i1,...,iN

ci1,...,iN x⟨-i⟩,

where, for each sum, the indexing variable in iterates over the size
of c in the ith dimension and we simplify the index for circularly
shifting vectors, i1, . . . , iN , as simply ⟨i⟩. This expression shows that
the derivative of c ⊛ x with respect to the sth filter coefficient is the
-sth coefficient in x, i.e.,

∂

∂cs
(c ⊛ x) = x⟨−s⟩. (C.2)
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We can now find the partial derivative of interest:

c̃ ⊛ f.(z) =
∑

i1,...,iN

[c̃]i1,...,iN f.(z)⟨-i⟩ by the convolution formula

=
∑

i1,...,iN

[c̃]i1,...,iN f.
(
z⟨-i⟩

)
since f operates point-wise

=
∑

i1,...,iN

c-i1,...,-iN f.
(
z⟨-i⟩

)
by definition of c̃

=
∑

i1,...,iN

ci1,...,iN f.
(
z⟨i⟩

)
reverse summation order.

Recall that z is a function of cs. Therefore, using the chain rule to take
the derivative,

∂

∂cs
(c̃ ⊛ f.(z))

= f.(z⟨s⟩) +
∑

i1

· · ·
∑

iN

ci1,...,iN ḟ .(z⟨i1,...,iN ⟩) ⊙ ∇cs

(
z⟨i⟩

)

= f.(z⟨s⟩) +
∑

i1

· · ·
∑

iN

[c̃]-i1,...,-iN ḟ .(z⟨i1,...,iN ⟩) ⊙ x⟨i−s⟩,

where the second equality follows from (C.2) and the definition of
c̃. Recognizing the convolution formula in the second summand, the
expression can be simplified to

f.(z⟨s⟩) + c̃ ⊛
(
ḟ .(z) ⊙ x⟨−s⟩

)
.

This proves the claim. Note that the provided formula is for a single
element in c. One can concatenate the partial derivative result for each
value of s to get the full Jacobian.

C.2 Evaluating Assumptions for the Running Example

To better understand the upper-level assumptions Aℓ 1-Aℓ 3 and lower-
level assumptions AΦ1-AΦ6 in Section 5.3.1, this section examines
whether the filter learning example (Ex) meets each assumption.
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C.2.1 Upper-level Loss Assumptions

Recall the upper-level loss function in (Ex) is squared error:

ℓ(γ ; x) = 1
2∥x − xtrue∥2

2, (C.3)

where ℓ is typically evaluated at x = x̂(γ).
The loss function (C.3) satisfies Aℓ1. Because there is no dependence

on γ in the upper-level, Lx,∇γℓ = 0. The gradient with respect to x is
∇xℓ(γ ; x) = x − xtrue, so Lx,∇xℓ = 1.

The norm of the upper-level gradient with respect to x,

∥∇xℓ(γ ; x)∥ =
∥∥∥x − xtrue

∥∥∥ ,

can grow arbitrarily large, so condition Aℓ 2 is not met in general.
However, in most applications, one can assume an upper bound (possibly
quite large) on the elements of xtrue and impose that bound as a box
constraint when computing x̂. Then the triangle inequality provides a
bound on

∥∥x − xtrue∥∥ for all x within the constraint box.
Finally, Aℓ 3 is met by any loss function, including (C.3), that lacks

cross terms between x and γ. We are unaware of any bilevel method
papers using such cross terms.

C.2.2 Lower-level Cost Assumptions

One property used below in many of the bounds for the lower-level cost
function is that

σ1(Ck) = ∥ck∥1 , (C.4)
where σ1(·) is a function that returns the first singular value of its
matrix argument. This property follows from Young’s inequality and is
related to bounded-input bounded-output stability of linear and time
invariant systems [182].

As with the upper-level assumptions considered above, (Ex) meets
the lower-level assumptions AΦ1-AΦ6 if we impose additional con-
straints on the maximum norm of variables. In addition to bounding
the elements in x, as we did to ensure Aℓ 2, imposing bounds on ∥ck∥
and |βk| is sufficient to meet all the lower-level assumptions. We now
examine each condition individually.
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Recall from (Ex) that the example lower-level cost function is

x̂(γ) = argmin
x∈FN

1
2 ∥Ax − y∥2

2 + eβ0
K∑

k=1
eβk1′ϕ.(ck ⊛ x; ϵ),

where ϕ is a corner-rounded 1-norm (CR1N).
As described in Section 4.2, the minimizer approach requires Φ to

be twice differentiable. Thus, Φ satisfies AΦ1. This condition limits the
choices of ϕ to twice differentiable functions.

Considering AΦ2, the gradient of Φ with respect to x is Lipschitz
continuous in x if the norm of the Hessian, ∥∇xxΦ(x ;γ)∥2, is bounded.
Using (4.9) and assuming the Lipschitz constant of the derivative of ϕ
is Lϕ̇ (for (CR1N), Lϕ̇ = 1

ϵ ), a Lipschitz constant for ∇xΦ is

Lx,∇xΦ = σ2
1(A) + Lϕ̇e

β0
∑

k

eβkσ1(C ′kCk)

= σ2
1(A) + Lϕ̇e

β0
∑

k

eβk ∥ck∥2
1 by (C.4). (C.5)

The Lipschitz constant Lx,∇xΦ depends on the values in γ and therefore
does not strictly satisfy AΦ2. Here if β0, βk, and ck have upper bounds,
then one can upper bound Lx,∇xΦ. All of the bounds below have similar
considerations.

To consider the strong convexity condition in AΦ3, we consider the
Hessian,

∇xxΦ(x ;γ) = A′A︸ ︷︷ ︸
From data-fit term

+ eβ0
∑

k

eβkC ′kdiag(ϕ̈.(ck ⊛ x))Ck

︸ ︷︷ ︸
From regularizer

.

(C.6)
We assume that ϕ̈(z) ≥ 0 ∀z, as is the case for the corner rounded
1-norm. If A′A is positive-definite with σN (A′A) > 0 (this is equivalent
to A having full column rank), then the Hessian is positive-definite and
µx,Φ = σ2

N (A) suffices as a strong convexity parameter. In applications
like compressed sensing, A does not have full column rank. In such
cases, σN (A′A) = 0 and as eβ0 → 0 the regularizer term vanishes, so
there does not exist any universal µx,Φ > 0 for all γ ∈ FR, so the
strong convexity condition AΦ3 is not satisfied. However, as discussed
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in Section 4.2.3, the condition may hold in practice for many values
of γ. How to adapt the complexity theory to rigorously address these
subtleties is an open question.

The fourth condition, AΦ4, is that ∇xxΦ(x ;γ) and ∇γxΦ(x ;γ)
are Lipschitz continuous with respect to x for all γ. For the first part
part, a Lipschitz constant results from bounding the difference in the
Hessian evaluated at two points, x(1) and x(2):

∥∥∥∇xxΦ(x(1) ;γ) − ∇xxΦ(x(2) ;γ)
∥∥∥

2

=
∥∥∥∥∥e

β0
∑

k

eβkC ′kdiag(ϕ̈.(ck ⊛ x(1)) − ϕ̈(ck ⊛ x(2)))Ck

∥∥∥∥∥
2
.

Since every element of ϕ̈ is bounded in (0, Lϕ̇), the difference between
any two evaluations of ϕ̈ is at most Lϕ̇. Thus

∥∥∥∇xxΦ(x(1) ;γ) − ∇xxΦ(x(2) ;γ)
∥∥∥

2
≤ eβ0Lϕ̇

∑

k

eβk
∥∥C ′kCk

∥∥
2

≤ eβ0Lϕ̇

∑

k

eβk ∥ck∥2
1 .

The final simplification again uses (C.4). Thus,

Lx,∇xxΦ = eβ0Lϕ̇

∑

k

eβk ∥ck∥2
1 .

For the second part of AΦ4, we must look at the tuning parameters
and filter coefficients separately. When considering learning a tuning
parameter, βk,

∇βkxΦ(x ;γ) = eβ0+βkC ′kϕ̇.(Ckx).

To find a Lipschitz constant, consider the Jacobian:

∇x (∇βkxΦ(x ;γ)) = eβ0+βkC ′kdiag(ϕ̈.(Ckx))Ck.

A Lipschitz constant of ∇βkxΦ(x ;γ) is given by the bound on the
norm of this matrix (we chose to use the matrix 2-norm, also called the
spectral norm). Using similar steps as above to simplify the expression,
Lx,∇βkxΦ = eβ0+βkLϕ̇ ∥ck∥2

1.
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When considering learning the sth element of the kth filter,

∇ck,sxΦ(x ;γ) = eβ0+βk

(
ϕ̇.((Ckx)⟨s⟩) + C ′k

(
ϕ̈.(Ckx) ⊙ x⟨-s⟩

))

= eβ0+βk


ϕ̇.(R1Ckx)︸ ︷︷ ︸

Expression 1

+ C ′k
(
ϕ̈.(Ckx) ⊙ R2x

)

︸ ︷︷ ︸
Expressions 2-3


 ∈ FN ,

where R1 and R2 are rotation matrices that depends on s such that
R1x = x⟨s⟩ and R2x = x⟨-s⟩. For taking the gradient, it is convenient
to note that the last term can be expressed in multiple ways:

ϕ̈.(Ckx) ⊙ x⟨-s⟩ = diag(ϕ̈.(Ckx))R2x︸ ︷︷ ︸
Expression 2

= diag(R2x)ϕ̈.(Ckx)︸ ︷︷ ︸
Expression 3

.

Using the alternate expressions to perform the chain rule with respect
to the x term that is not in the diag(·) statement, the gradient with
respect to x is:

∇x

(
∇ck,sxΦ(x ;γ)

)
= eβ0+βk( C ′kR′1diag(ϕ̈.(R1Ckx))︸ ︷︷ ︸

Expression 1

+ C ′kdiag(ϕ̈.(Ckx))R2︸ ︷︷ ︸
Expression 2

+ C ′kdiag(
...
ϕ (Ckx))diag(R2x)′Ck︸ ︷︷ ︸

Expression 3

).

The bound on the spectral norm of the first and second expressions are
both σ1(Ck)Lϕ̇ because, for any z ∈ FN ,

∥diag(ϕ̈.(z))∥2 ≤ max
z

|ϕ̈(z)| = Lϕ̇.

The third expression is bounded by σ2
1(Ck) ∥x∥2 Lϕ̈, which requires a

bound on the norm of x, similar to Aℓ2. Summing the three expressions
and including the tuning parameters gives the final Lipschitz constant

Lx,∇ck,sxΦ = eβ0+βkσ1(Ck)(2Lϕ̇ + σ1(Ck)Lϕ̈ ∥x∥2). (C.7)

The fifth assumption, AΦ5 states that the mixed second gradient
of Φ is bounded. For the tuning parameters, the mixed second gradient
is given in (4.9) as

∇βkxΦ(x̂ ;γ) = eβ0eβk c̃k ⊛ ϕ̇.(ck ⊛ x̂).
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The bound given in AΦ5 follows easily by considering that

∥diag(ϕ̇.(ck ⊛ x̂))∥2 ≤ max
z

|ϕ̇(z)| = Lϕ.

For a filter coefficient, the mixed second gradient is more complicated:

∇ck,sxΦ(x̂ ;γ) = eβ0+βk

(
ϕ̇.((ck ⊛ x̂)⟨s⟩)︸ ︷︷ ︸

Bounded by Lϕ

+c̃k ⊛
(
ϕ̈.(ck ⊛ x̂)︸ ︷︷ ︸

Bounded by Lϕ̇

⊙x̂⟨-s⟩
))
.

Assuming that the bounds Lϕ and Lϕ̇ exist (they are 1 and 1
ϵ respectively

for (CR1N)), a bound on the norm of the mixed gradient is

∥∇ck,sxΦ(x̂ ;γ)∥2 ≤ eβ0+βk

(
Lϕ + Lϕ̇ ∥ck∥1 ∥x∥2

)
.

The sixth assumption, AΦ6, is that Lγ,∇γxΦ and Lγ,∇xxΦ exist.
Lipschitz constants for the tuning parameters are

Lβk,∇βkxΦ = eβ0+βk ∥ck∥1 Lϕ and Lβk,∇xxΦ = eβ0+βk ∥ck∥2
1 Lϕ̇.

Using similar derivations as shown above, corresponding Lipschitz con-
stants for the filter coefficients are

Lck,s,∇ck,sxΦ = eβ0+βk

(
Lϕ + ∥x∥2

(
Lϕ̇ + Lϕ̈ ∥ck∥1 ∥x∥2

))

Lck,s,∇xxΦ = eβ0+βk

(
2Lϕ̇ ∥ck∥1 + Lϕ̈ ∥ck∥2

1 ∥x∥2

)
.

This is the last lower-level condition in Section 5.3.1 for the single-loop
and double-loop bilevel optimization method analysis.
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D
Implementation Details

This appendix describes the experimental settings used throughout this
review. We first present the common settings; the following sub-sections
detail any differences specifically for the results in Fig. 1.3 and for the
series of figures using the cameraman image (Fig. 5.2, Fig. 6.1, and
Fig. 6.2). The code for all experiments is available on github [32].

The experiments consider the denoising problem (A = I) and use
(CR1N) as the sparsifying function ϕ with ϵ = 0.01. The training data
is typically on the scale [0, 1] and noisy samples are generated from the
clean training data using (1.4) with zero-mean Gaussian noise with a
standard deviation of σ = 25/255, following [25].

The lower-level optimizer is the optimized gradient method (OGM)
with gradient-based restart [104]. We calculate the step-size based on the
Lipschitz constant of the lower-level gradient using (C.5) every upper-
level iteration. Each experiment sets a maximum number of lower-level
iterations, but the lower-level optimization will terminate early if it
converges, defined as if ∥∇xΦ(x ;γ)∥ < 10-5.

The upper-level optimizer follows the general structure of the double-
loop procedure outlined in Alg. 3. To compute ∇ℓ(γ), we use the
minimizer formulation (4.8), with the conjugate gradient (CG) method

142
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to compute the Hessian-inverse-vector product (4.10). As suggested in
[98], the initialization for the lower-level optimization is the estimated
minimizer from the previous outer loop iteration, x(T )(γ(u-1)) and the
initialization for the CG method is the solution from the previous CG
iteration. Following [26] and other bilevel works, the experiments use
Adam with the default parameters [107] to determine the size of the
upper-level gradient descent; this choice avoids introducing the tuning
parameter αℓ.

The learnable parameters include the filter coefficients and the
tuning parameters βk for k ∈ [1,K]. The experiments either use random
or DCT filters to initialize h. An initial grid search determines the
tuning parameter β0; βk for k ∈ [1,K] are initialized as 0 such that
eβk = 1.

D.1 Vertical Bar Training Image

This section describes additional details for Fig. 1.3. This simple proof
of concept used 50 lower-level iterations (T = 50) and 4,000 upper-level
iterations (U = 4, 000). The initial grid search for β0 yielded -4.6.

When ϕ(z) = |z|, one can absorb the kth filter’s magnitude into the
tuning parameter βk because ∥ck ⊛ x∥1 = ∥ck∥2

∥∥∥ 1
∥ck∥2

ck ⊛ x
∥∥∥

1
. When

using (CR1N), this equality no longer holds, but

eβ0+βk ∥ck∥2 (D.1)

still provides a reasonable approximation for the overall regularization
strength for the kth filter. From left to right, the approximate regu-
larization strengths of the filters in Fig. 1.3 are 0.77, 0.49, 0.17, and
0.05.

The learned filters reflect that the training data is constant along
the columns. Visually, the filters resemble vertical (extended) finite
differences. This matches our expectations as a filter that takes vertical
finite differences will exactly sparsify the noiseless signal. Further, the
maximum sum of the columns of the learned filters is 10-5. In contrast,
the sum of the rows of the learned filters varies from -2.6 to 3.0.
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D.2 Cameraman Training Image

This section describes the experimental settings for Fig. 5.2, Fig. 6.2,
and Fig. 6.1.

To reduce computation, we selected three 50 × 50 patches from the
“cameraman” image in Fig. 6.2 to use as the training data. We hand
selected the training patches to contain structure. Fig. D.1 shows the
training image patches.

We set the lower-level initialization x̂(γ(0)) by optimizing the lower-
level cost function until the norm of the gradient fell below a threshold
for each training patch, i.e., until 1√

N

∥∥∥∇xΦ
(
x̂j(γ(0)) ; γ(0)

)∥∥∥
2
< 10-7

for j ∈ [1, J ]. The lower-level optimizer consisted of 10 iterations of
OGM [104].

As shown in Fig. 6.1, the initial filters are the 48 non-constant
DCT filters of size 7 × 7. The initial grid search for β0 yielded -4. In
summary, the settings are J = 3, N = 50 · 50, S = 7 · 7, K = 48,
R = 48(49 + 1) = 2400, β0 = -4, T = 10, and U = 10, 000.

Fig. 6.1 shows the learned filters. To visualize the filters when γ

includes h, Fig. 6.1c scales each learned filter ĉk to have unit norm.
Fig. D.2 shows the learned filters with the effective regularization
strength printed above each filter.

1.0

0

0.5

Figure D.1: Patches from the cameraman test images used as the training
dataset.
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Figure D.2: Learned filers for (Ex) when γ includes h and β, ordered by
their effective regularization strength eβk ∥ck∥2, which is printed above each
filter. This effective regularization does not include the influence of eβ0 , which
is uniform across all filters.
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