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ABSTRACT
This monograph deals with principal component analysis
(PCA), kernel component analysis (KPCA), and independent
component analysis (ICA), highlighting their applications
to streaming-data implementations. The basic concepts re-
lated to PCA, KPCA, and ICA are widely available in the
literature; however, very few texts deal with their practi-
cal implementation in computationally limited resources.
The presentation tries to emphasize the current solutions
considering possible constraints in power consumption and
desirable computational complexity. For instance, there are
good examples in biomedical engineering applications where
tools like PCA and ICA can sort out the human body’s
activities. For example, it is possible to remove noise and
undesirable artifacts from a target signal such as EEG and
ECG, among others. In turn, KPCA may be a valuable
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resource for non-linear image denoising. Nonetheless, many
current solutions rely on batch processing implemented in
general-purpose computing resources.
In general terms, PCA consists of a sequence of uncorrelated
data projections ordered according to their variances and
employing mutually orthogonal directions. PCA is mighty
in extracting hidden linear structures in high-dimension
datasets. The standard PCA implementation computes the
eigenvectors of the data-covariance matrix, retaining those
directions to which the data exhibit the highest projection
variances. This concept can be extended to the so-called Ker-
nel PCA, wherein the data instances are implicitly mapped
into a high-dimensional feature space via some non-linear
transform, typically unknown. Conversely, ICA strengthens
the PCA maximization variance approach by imposing the
strict premise of mutual independence on the resulting pro-
jections. In fact, ICA comes to rescue the traditional tools
when one aims at assessing non-Gaussian sources from data,
often not available for direct measurement. Frequently, ICA
and KPCA are more powerful tools for solving challenging
tasks than PCA since they exploit high-order statistics from
data.
All these methods require some simplifications to allow a
simple online implementation when coping with streaming
data. This monograph describes some state-of-the-art solu-
tions for PCA, KPCA, and ICA, emphasizing their online
deployments. Many online PCA and, more recently, KPCA
techniques were proposed based on Hebbian learning rules
and fixed-point iterative equations. Notably, online KPCA
solutions also include data selection strategies to define a
compact dictionary over which the kernel components are
expanded. The complexity of these dictionaries is controlled
by simply setting a single hyperparameter. In both cases,
the online extensions proposed rely on simple equations,
can track nonstationary environments, and require reduced
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storage, enabling its use in real-time applications operating
in low-cost embedded hardware.
This monograph discusses the state-of-the-art online PCA
and KPCA techniques in a unified and principled manner,
presenting solutions that achieve a higher convergence speed
and accuracy in many applications, particularly image pro-
cessing. Besides, this work also explains how to remove
various artifacts from data records based on blind source
separation (BSS) by ICA, splitting feature identification
from feature separation. Herein, three FastICA online hard-
ware architectures and implementation for biomedical signal
processing are addressed. The main features are summarized
as follows: 1) energy-efficient FastICA using the early deter-
mination scheme; 2) cost-effective variable-channel FastICA
using the Gram-Schmidt-based whitening algorithm; and
3) moving-window-based online FastICA algorithm with
limited memory. The post-layout simulation results with
artificial and EEG data validate the design concepts.
In summary, this monograph presents the leading algorith-
mic solutions for PCA, KPCA, ICA, Iterative PCA, Online
KPCA, and Online ICA, focusing on approaches amenable
to process streaming signals. Furthermore, it provides some
insights into how to choose the right solution for practical
systems. Along the way, some implementation examples are
provided in a variety of areas.
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1
Introduction

This section provides a brief introduction to the concepts of Principal
Component Analysis (PCA), Kernel Component Analysis and Indepen-
dent Component Analysis (ICA), setting the stage for the presentation
of their variants targeting streaming-data applications. It is fair to say
that many textbooks and papers have covered these algorithms in the
last three decades [25], [16], [66], [53], [48], [8], [47], [46], [60], [61], [91],
[82]. Nevertheless, only very few works address their potential online
deployments under a single cover; this work aims at filling this gap.

Component analysis algorithms fall into the realm of algorithms that
learn from data, taking part in many textbooks addressing Statistical
Inference [33], [41] and Machine Learning [104], [94], [37], [67], [11], [42],
[27]. Since belonging to the category of unsupervised learning, such
techniques entail extracting information from non-annotated data gener-
ated by some unknown distribution. Thus, the central idea is to extract
most data information to allow their representation in a much simpler
or compact form. An attentive reader may conclude that unsupervised
learning directly relates to sparse coding, dimensionality reduction,
and independent representations for datasets, topics broadly applied in
several fields, from biomedical signal analysis, image processing, and
communications to entertainment devices.

4
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1.1. General Formulation 5

This work focuses on describing PCA, KPCA, and ICA related solu-
tions under storage, computational resources, power, and complexity con-
straints. The continuing integrated circuit technological developments,
especially in the microprocessors and field-programmable-gate-arrays
(FPGAs) industry opened up room for integrating these algorithms in
a wide range of embedded systems.

1.1 General Formulation

A common assumption behind most component analysis methods is
that the observed data instances originate from variables not directly
observed, named latent variables in the Statistics area. In many practical
problems, latent variables are typically low, meaning that data have a
reduced intrinsic dimensionality or lie on some low-dimensional subspace
[101]. In such cases, one may assume that some latent vector z ∈ RM

(M ≪ N) may represent an arbitrary vector data x ∈ RN as follows

z = Txx, (1.1)

where Tx ∈ RM×N is an orthonormal (TTxTx = I) data-dependent
feature extraction transformation when considering PCA and ICA
techniques. Similarly, KPCA exploits an extension of (1.1) given by

z = Tϕϕ(x), (1.2)

where ϕ(x) represents a function responsible for intrinsically mapping
the vector x into some high-dimensional feature space, and Tϕ is an
orthonormal transform in this space [82], aspects further discussed in
Section 6.3.

1.2 A Brief Introduction to PCA

By performing a sequence of data projections in a set of orthonormal
directions defined such that their variances are maximized, PCA is a
popular tool for accessing the low intrinsic dimensions of high-dimension
datasets. The standard PCA implementation is based on the eigendecom-
position of a defined data-covariance matrix and retains those directions
with the highest data-projection variances. As such, PCA does not
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6 Introduction

require any assumption over the data distribution and relies only on the
second-order statistics of data. The related statistics can be easily mea-
sured or estimated, see [31]. PCA can also be extended to take benefit
of high-order statistics from data through nonlinear data transforms
into high dimensional space, giving rise to the so-called KPCA [83].

This means that for a set of data xi ∈ RN for i = 1, 2, . . . , N , or
observations from a random process vector, PCA aims at extracting
the main components representing this set. The idea is simple: project
the data into l mutually orthonormal directions that maximize the
variance of the resulting projections for l < N , i.e., directions that
better explain the data. This process results in an optimum projection
matrix Tx in (1.1), in the sense that the main latent variables are taken
into consideration in the vector z.

PCA is also strongly related to the Karhunen-Loève (KLT) transform.
In the discrete-time domain, one can think of a linear transform that
maximizes energy concentration for a given ensemble of signals generated
by some statistical distribution, i.e., KLT is optimum regarding energy
compaction. The KLT of a discrete random process is defined by the
vectors that diagonalize the autocovariance matrix. Therefore, for each
distinct signal statistic, there is a corresponding KLT.

In summary, PCA features are defined by a sequence of mutually
uncorrelated data projections ordered in decreasing order of their vari-
ance. In this sense, PCA is often a mighty tool for extracting hidden
structures in high-dimension datasets. This concept can be extended
to the so-called Kernel PCA, where the data samples are implicitly
mapped to a higher dimension spaces via nonlinear transformations.
The standard PCA implementation computes the eigenvectors of the
data-correlation matrix, retaining those associated with the highest
eigenvalues since they represent directions to which the data presents
the highest projection variances.

To derive PCA, we start by assuming that we have available L ran-
dom data vectors of dimension N assembled in a matrix as follows [37]:

X =


x11 x12 · · · x1(N−1) x1N

x21 x22 · · · x2(N−1) x2N
...

... . . . ...
...

xL1 xL2 · · · xL(N−1) xLN

 =


xT

1
xT

2
...

xT
L

 .

Full text available at: http://dx.doi.org/10.1561/2000000112



1.2. A Brief Introduction to PCA 7

Here, the data vectors are assumed to have zero mean, i.e., E[xi] = 0,
for l = 1, 2, . . . , L, and the symbol E[·] represents the expected value
operation.

Singular-Value Decomposition (SVD)1 can be applied in this case.
Let us start by proceeding the SVD of X as follows

X = UΣVT , (1.3)

where, since X ∈ RL×N , assuming L ≥ N , the rank of X will be lower
or equal to N , and the dimensions of the matrices U and V will be
L × L and N × N , respectively. These matrices are orthogonal, that is

UT U = IL, (1.4)

VT V = IN , (1.5)

and the rectangular diagonal matrix Σ ∈ RL×N with non-negative
singular values σi (1 ≤ i ≤ L) is given by

Σ =



σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0
0 0 σ3 · · · 0 · · · 0
...

... . . . 0 · · · 0
0 0 0 · · · σL 0 · · · 0


, (1.6)

under the premise of data being real and and σ1 ≥ σ1 ≥ · · · σL ≥ 0.
The deterministic and unbiased estimate of the covariance matrix

related to the sample matrix X is defined as

cov[X] = 1
L − 1XT X. (1.7)

1It is also possible to consider the ordinary eigenvalue decomposition of XT X to
solve PCA, simply considering the dominant eigenvectors of this matrix for defining
the columns of the matrix Tx in Equation (1.1).
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8 Introduction

Expressing this covariance with the aid of the SVD it follows that

cov[X] = 1
L − 1XT X

= 1
L − 1

[
UΣVT

]T
UΣVT

= 1
L − 1VΣT UT UΣVT

= 1
L − 1VΣ2VT , (1.8)

given that (1.4) is true. If the observation matrix X is transformed
through the orthogonal matrix V, representing a rotation applied to
the signal space, as

Z = VX, (1.9)

the covariance of the transformed matrix becomes

cov[Z] = 1
L − 1ZT Z

= 1
L − 1 [VX]T [VX]

= 1
L − 1XT VT VX

= 1
L − 1XT X = cov[X]. (1.10)

As observed, data expansion using all PCA components maintains
the same covariance structure as the original data. However, it may
constitute a powerful tool for reducing the data dimensionality if one
selects only the principal components, i.e., those related with the highest
eigenvalues of the covariance matrix. From another point of view, PCA
provides a compact representation of the data in z, constituted of
component representations that are linearly uncorrelated.

A simple illustration of how principal component analysis finds
applications in numerous fields, let us consider a communication system
where the received block y ∈ RN×1 will suffer from entanglement of the
transmitted data vector s according to the channel model described as

y = Hs + n, (1.11)
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1.3. A Brief Introduction to KPCA 9

where n ∈ RN×1 represents the environment noise. Here, we are assum-
ing that all remaining vectors and matrices have proper dimensions.

If the vector to be transmitted is multiplied by V before transmission
(precoder) and by UT at the receiver, we obtain as the received signal
r ∈ RN×1:

r = UT X
= UT HV s + UT n
= Σ s + UT n. (1.12)

In practice, we need some estimation of the channel matrix to design the
transceiver. The second equality of (1.12) shows the decoupling effect
of the SVD, allowing an independent detection of the transmitted data.
After this decomposition, the overall system consists of independent
subsystems so that the detection of each entry of the transmitted
data vector can be performed individually. Depending on the actual
communication system deployment, the signal-to-noise ratio perceived in
each subchannel might allow maximizing the channel capacity through
information-theoretic tools.

PCA solely relies on the covariance function to represent the de-
pendency among the data entries. However, there are more complex
relations that the learning algorithms might exploit. Moreover, the
family of solutions for dealing with complex problems requires more
powerful transformations than simple linear ones.

1.3 A Brief Introduction to KPCA

KPCA [83] represents an elegant extension of PCA. The central idea
resides in assuming the existence of a typically unknown function
ϕ(·) responsible for mapping any input data vector x into some high
dimensional feature space H. If H represents a reproducing Kernel
Hilbert space (RKHS) [82], there is a kernel function κ such that
κ(xk, xl) =< ϕ(xk), ϕ(xl) >H= ϕT (xk)ϕ(xl). This means that using
such a function, the dot data products in H can be computed by simple
kernel function evaluations in the data space, a procedure popularly
known as the kernel trick [82].

Full text available at: http://dx.doi.org/10.1561/2000000112



10 Introduction

Since a range of machine learning algorithms can be expressed as
a linear combination of dot products between input data and dataset
elements, the kernel trick is useful for producing powerful nonlinear
generalizations of such techniques. This can be achieved by replacing
products as xT xl by kernel function evaluations like κ(x, xl). This is
the case of KPCA, allowing it to inherit many interesting geometrical
properties of PCA.

KPCA extracts nonlinear features from data in z by using (please
refer to Section 6.3 for a detailed coverage)

z = ĀT
[
κ(x, x1); κ(x, x2); · · · κ(x, xL)

]
, (1.13)

with

Ā =
[
ᾱ1 ᾱ2 · · · ᾱN

]
, (1.14)

where the vectors ᾱi, 1 ≤ i ≤ N , are computed by

KN αi = λiαi, (1.15)

ᾱi = αi√
λi

. (1.16)

Naturally, the solution of (1.15) is given by αi = ei, where ei is the
eigenvector associated with the ith eigenvalue of KN , considering that
such eigenvectors sorted according to λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0, while
KN corresponds to the Gram matrix [82] defined as

KL =


κ(x1, x1) · · · κ(x1, xL)

. . .
κ(xL, x1) · · · κ(xL, xL)

 . (1.17)

1.4 A Brief Introduction to ICA

ICA adopts a much stronger premise behind the data generation process
than PCA. Both methods assume that the observed data consists of
a linear combination of a set of basis vectors weighted by some latent
variables. However, ICA assumes these weighting factors as indepen-
dent, not simply as mutually decorrelated variables. The independence
between two random variables is a more stringent assumption than
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1.4. A Brief Introduction to ICA 11

zero correlation. Any two independent random variables are uncorre-
lated, i.e., have zero correlation. Besides, for random variables having
zero mean, zero correlation corresponds to zero covariance. Otherwise,
such variables can be centered. However, decorrelation does not imply
independence, except for Gaussian distributed variables.

Therefore, according to ICA, any dataset instance results from
statistically independent sources or data representations. Thus, this
technique aims to disentangle such representations to provide more
explicit information about the data structures, which may eventually
be even more compact. In synthesis, two basic ICA assumptions refer
to the independence of the sources and that the mixture must include
non-Gaussian distributed sources.

Let us assume that the observed data originate from the following
linear and noiseless mixing model as

X = AS, (1.18)

where the observed information is assembled in X ∈ RN×L, the unknown
mixing matrix is A ∈ RN×N , and the source matrix is S ∈ RN×L. The
primary objective of the ICA algorithm is finding S with no knowledge
about A. Another point is that no more than one Gaussian-distributed
source must integrate S.

The most straightforward solution to unmix X would be estimating
the mixing matrix A by some Â and then untangle the independent
sources by premultiplying X by the inverse of Â. Another way is to
indirectly estimate the inverse of A using some matrix W such as

Ŝ = WT X
= WT AS,

≈ S,

(1.19)

utilizing some preprocessing and some proper ICA algorithm to ensure
that WT A ≈ I. The matrix W ∈ RN×N is the weight matrix that
provides the source separation over X, also known as unmixing matrix.

A general model encompassing many ICA problems is depicted in
Figure 1.1. In this figure, an estimate of S, denoted as Ŝ, is produced over
the noisy observed mixture Y, modeled as Y = X+N = AS+N, where
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N represents the additive noise. The weight matrix W is computed in
a blind form, taking into consideration a nonlinearly modified version
of Ŝ, named as S̃, obtained by applying it to an entry-wise nonlinear
transformation provided by G.

+A W G
S S̃ Ŝ

N

X Y

Figure 1.1: General model for ICA data processing.

Figure 1.2 illustrates the detailed structural description of the build-
ing blocks of the description in Figure 1.1 in the vector case.

s1

s2

sN

a11
a12

a1N

a21a22

aMN

a2M

aM1
aM2

n1

n2

nM

w11

w12

w1N

w21w22

wNM

w2M

wM1
wM2

g1(·)

g2(·)

gN(·)

s̃1

s̃2

s̃N

ŝ1

ŝ2

ŝN

Figure 1.2: Inner structure of ICA building blocks.

ICA enhances the variance-maximization cost function, unlike PCA,
by imposing a much stronger mutual independence assumption among
the representations. In many practical cases, the data representations
contributing to the observed data are not available for direct measure-
ment, turning the strategy exploited in Equation (1.19) the only feasible.
If the source representations are non-Gaussian, the ICA becomes a viable
solution in such cases. Several cost functions enable independent com-
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ponent analysis, such as high-order statistics, particularly the kurtosis,
defined as

kurt[zi] = E
[
z4

i

]
− 3

(
E
[
z2

i

])2
, (1.20)

for 1 ≤ i ≤ N , wherein one may verify the use of fourth-order statistics.
The motivation to employ the kurtosis is that its value is zero for vari-
ables with Gaussian distributions and non-zero for most non-Gaussian
cases.

1.5 PCA × ICA

ICA does not distinguish independent Gaussian sources since, for any
mixing matrix, the resulting mixture will be Gaussian distributed. Thus,
using PCA, a simple decorrelation over such mixture signals will lead
to independent variables. In fact, ICA relies on the assumption of
independence among the latent representations, while the reduction in
the number of representations is less critical, unlike PCA. Any nonlinear
correlations linking variables must be removed to achieve independent
representation, leading to inherently specialized learning algorithms.
However, PCA is an essential preprocessing tool for ICA.

1.6 General Picture

As expected, PCA, KPCA, and ICA methods must undergo adaptations
to process streaming data inherent to real-time implementations. This
monograph introduces some state-of-the-art solutions for PCA, KPCA,
and ICA, enabling their implementation on low-complex embedded
hardware platforms. Some application examples are included to illustrate
the exposed tools.
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