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ABSTRACT

As data generation increasingly takes place on devices without
a wired connection, Machine Learning (ML) related traffic will
be ubiquitous in wireless networks. Many studies have shown
that traditional wireless protocols are highly inefficient or unsus-
tainable to support ML, which creates the need for new wireless
communication methods. In this monograph, we give a compre-
hensive review of the state-of-the-art wireless methods that are
specifically designed to support ML services over distributed
datasets. Currently, there are two clear themes within the litera-
ture, analog over-the-air computation and digital radio resource
management optimized for ML. This survey gives an introduction
to these methods, reviews the most important works, highlights
open problems, and discusses application scenarios.
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1
Introduction

With the increasing popularity of mobile devices and the continuous growth
of Internet of Things (IoT), we are having increasing access to vast amounts
of distributed data. According to a recent report from Ericsson, the global
number of connected IoT devices will rise to 4.1 billion by 2024 [49], which
is four times the 1 billion observed in 2019. Simultaneously, breakthroughs in
Machine Learning (ML) are allowing us to analyze the data of edge devices so
as to solve a wide range of complex problems, such as image recognition [66],
language processing [39], and predictive modeling [23]. However, since ML
was originally conceived in centralized settings where all data must be ag-
gregated at a common location, the application of ML on distributed datasets
over wireless networks is generating new challenges for the wireless networks,
namely:

• Privacy: Many ML applications require the use of privacy-sensitive
data. In these cases, it is either desirable or necessary that the training
dataset cannot be inferred by eavesdropping upon the ML updates being
transferred wirelessly [150];

• Security: When an ML model is trained distributively, a bad actor can
corrupt the final model by transmitting malicious model updates [159].
Wireless protocol design should inhibit an attacker’s ability to do so;

2
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3

• Communication and Energy Efficiency: Distributed ML (DML) re-
quires the communication of high-dimensional model updates for hun-
dreds or thousands of iterations before the model has converged. This
communication of updates generally forms the performance bottleneck
of the training process, imposing the risk of excessively draining the bat-
teries of training devices and overwhelming the capacity of the wireless
network [144].

To address these challenges, a new approach toward communication protocol
design has emerged [198]. This new approach considers the design of new
wireless methods for carrying data needed for the ML tasks. Unlike traditional
wireless protocol design, the objective of Wireless for ML is not to deliver
bits as efficiently as possible, but to distill the intelligence carried within the
data. The traditional communication protocols that are designed to maximize
data rate and minimize bit errors have been shown to be greatly inefficient
for carrying ML related data [9], [35], [100], [118], [200]. Instead, Wireless
for ML offers new methods that are better aligned with the ML objective
and invites us to rethink how wireless communication protocols are designed.
Among the novel methods that have been proposed, two major themes arise,
namely analog over-the-air computation (AirComp) and radio resource man-
agement (RRM) optimized for ML. In AirComp, the long-standing doctrine of
interference avoidance is questioned and novel interference-promoting proto-
cols are proposed while in RRM for ML, the new objectives lead to solutions
that are fundamentally different from what is used today.

The idea of wireless protocols customized for ML, although not yet avail-
able in the current cellular wireless standards, is compatible with the current
standard specifications. The new cellular standard 5G has introduced the con-
cept of network slicing to improve flexibility and scalability [130]. Network
slicing allows independent sets of network protocols to run on common phys-
ical infrastructure, to support services with conflicting requirements. As an
example, video streaming requires high data rates and accepts high latency,
while critical IoT usually requires low latency and high reliability while ac-
cepting low data rates. Prior to the emergence of 5G, these services could not
be supported using the same protocols, but with network slicing, they can be
implemented on the same physical infrastructure [15]. Going beyond 5G, the
demand for ML services is projected to grow significantly and discussions

Full text available at: http://dx.doi.org/10.1561/2000000114



4 Introduction

have begun on a dedicated network slice for ML in future-generation cellular
networks such as beyond-5G and 6G [60], [131], [151], [191]. Given this
possibility, the investigation of Wireless for ML becomes relevant not only for
local-area networks but also for large-scale cellular networks.

1.1 Related Work

Although the general intersection of ML and wireless communications is
currently a prolific field of research that has already generated multiple sur-
veys, there are fewer works reviewing Wireless for ML. The current surveys
can roughly be classified into three categories: ML for Wireless Communi-
cations, Wireless for ML, and Communication-Efficient DML. We list a set
of representative surveys in Table 1.1. A brief description of the three areas
follows.

1. Wireless for ML uses wireless communication protocols as a method to
enable or significantly improve ML training over wireless networks. Un-
like in traditional wireless communication, the communication system
is not oblivious to the meaning that the bits convey. Instead, Wireless
for ML is a task-oriented communication philosophy, where the goal
of the communication system is to distill the intelligence carried within
the data.

2. Communication-efficient DML has the same goal as Wireless for ML
but uses different methods. Instead of customizing the wireless protocols,
advancements are made by modifying or redesigning the ML algorithm.
The results of these works are agnostic to the communication protocol
so that they can be applied regardless of the specific technologies used
to transmit data.

3. ML for wireless uses ML as a method to design wireless communica-
tion protocols or other elements for general communication services.
Therefore, its goal is the same as in traditional wireless communications,
i.e., efficient and reliable transfer of arbitrary data. The communica-
tion system should support a wide variety of services and is therefore
deliberately oblivious to the semantics of transmitted bits.
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1.1. Related Work 5

Table 1.1: Surveys written within the intersection of ML and communications. The topics of ML
for Communications and Communication-efficient DML have been covered in many surveys,
unlike Wireless for ML. At most, Wireless for ML has been covered briefly in conjunction with
Communication-efficient DML.

Year Journal Ref. Research Area from
Figure 1.1

2017 IEEE Communication Sur-
veys and Tutorials

[109] 3

2018 Proceedings of the IEEE [120] 2
2019 Proceedings of the IEEE [194] 2
2020 IEEE Communication Sur-

veys and Tutorials
[73] 3

2020 IEEE Communication Sur-
veys and Tutorials

[162] 3

2020 IEEE Internet of Things
Journal

[40] Mostly 2 with some 1

2020 IEEE Communication Sur-
veys and Tutorials

[164] 2

2020 IEEE Internet of Things
Journal

[3] 2

2020 IEEE Communication Sur-
veys and Tutorials

[178] Mostly 2 with some 1

2021 IEEE Internet of Things
Journal

[74] 2

2021 Elsevier High-Confidence
Computing

[170] 2

2021 arXiv [54] Mostly 1 with some 2
This survey 1
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6 Introduction

In addition to the three categories above, their intersections can be con-
sidered as areas of their own, illustrated in Figure 1.1. The intersection of
Wireless for ML and Communication-efficient DML considers the co-design
of the ML algorithm and the wireless protocol. With such an approach, re-
searchers attempt to reach some global optimality, which is lost when the two
problems are treated in isolation. Additionally, one can consider the intersec-
tion between Wireless for ML and ML for Wireless, where ML would be used
as a tool to design a wireless protocol with the goal of supporting distributed
ML services. However, as far as we are aware, no works have been published
in this direction. In this survey, we consider all works within Wireless for ML,
including its intersections, symbolized by the green crescent in Figure 1.1.

2. Comm-effi
cie

nt DML 3. ML for Wireless

1. Wireless for ML

Figure 1.1: Illustration of the relationship between Wireless for ML and related fields. The
first circle correponds to Communication-efficient DML, the second to Wireless for ML, and
the third to ML for Wireless. The blue area corresponds to pure ML for Wireless, which is
a very prolific field of research that has already generated a large number of review articles.
Likewise, the yellow area corresponds to pure Communication-efficient DML which is also
a well-covered area. In this survey, we focus on the green moon, i.e., pure Wireless for ML
and its intersection with Communication-efficient DML. As far as we are aware, there are no
published works in the red area.

Some of the papers in Table 1.1 discuss Wireless for ML, but the treatments
there are not extensive since that is not the main purpose of these papers. The
closest match to our survey is [54]. However, despite describing some works
within Wireless for ML, the paper is not a comprehensive survey of the field,
instead its purpose is to introduce a new framework to describe Federated
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1.2. Notation and Organization 7

Learning. We believe that due to this gap, there is currently no one-stop survey
that offers an overview of the Wireless for ML literature, which motivates us
to write this survey with the following contributions:

• We provide an introduction to important concepts necessary to under-
stand the field as a whole, such as DML, over-the-air computation, and
the distinction between generic wireless communication protocols and
Wireless for ML;

• We describe the most important works of the field in a concise way
to offer a thorough overview of the state-of-the-art, both for analog
over-the-air computation and digital communications;

• We discuss several important open problems and future research direc-
tions within Wireless for ML;

• We describe a number of application areas where Wireless for ML
can provide a benefit to society, such as vehicular communications
and virtual reality, and describe the challenges associated with those
applications.

1.2 Notation and Organization

All the contributions that we survey are essentially concerned with the solution
to a basic problem, namely the training of a classifier over a wireless com-
munication network constrained by the natural characteristics of the wireless
channel. Throughout this survey, we assume a centralized architecture where
there is a central controller or parameter server (PS) able to make decisions
such as user selection, bandwidth allocation, and aggregation frequency con-
trol. Such an architecture is representative of most of the wireless networks
used today, from large scale mobile to personal area networks. The commu-
nication channel is wireless and is thus subject to fading, additive noise, and
bandwidth restrictions. The training dataset is always carried by user devices
and the training algorithms will always be chosen to minimize a loss based on
the global dataset. Unless specified otherwise, the network consists of one PS,
i.e., the base station (BS) or the access point (AP), and K user devices, e.g.,
IoT devices, user equipments (UEs), or other wireless devices. Each device
(say the kth) carries a subsetDk of the global datasetD and the PS carries no
data. The global dataset consists of N training samples and corresponds to the
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8 Introduction

union of data available at all the user devices. For communication, the uplink
hk and downlink gk channel coefficients corresponding to the kth UE are of
particular importance. Figure 1.2 illustrates the setup, a full list of notation is
given in Table 1.2, and relevant abbreviations are given in Table 1.3.

Parameter Server

gk hk

D1 D2 D3 Dk DK

Figure 1.2: Illustration of the PS and wireless network setup used throughout this survey.
Current wireless communication protocols substantially hinder or completely block distributed
training over this setup. The Wireless for ML paradigm is an approach to tackle such hindrances
and blockages.

The rest of this survey is organized as follows: Section 2 provides a primer
on DML and in particular Federated Learning (FL). In Sections 3 and 4, we
survey the Wireless for ML literature for over-the-air computation and digital
communication, respectively. In Section 5, we discuss the open problems
in Wireless for ML within both analog over-the-air computation and digital
communications. Then, in Section 6, we discuss applications supported by
Wireless for ML. Finally, we give some concluding remarks in Section 7.
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1.2. Notation and Organization 9

Table 1.2: Reference list of commonly used variables in this survey. Ordered alphabetically
and by case.

Variable Interpretation
B Bandwidth available to the learning system
Dk Dataset carried by device k
E Number of epochs
K Number of user devices
M Number of antennas at the parameter server
N Number of data samples in the global dataset
Nk Number of data samples stored at device k
St Set of selected devices at iteration t

Tround Time for federated learning communication round
β Learning rate
η Post-transmission scalar

∇ f (w) Gradient of function f evaluated at w
bk Ratio of total bandwidth allocated to device k
d Number of model parameters in w

f (w) Empirical risk function of the global model w
gk CSI in downlink direction from server to device k
hk CSI in uplink direction from device k to server

l(w) Loss function for parameter w
pk Uplink power allocated to device k
v Additive white Gaussian noise

wt Global model parameters at iteration t
wt

k Local model parameters for device k at iteration t
x Input or feature of data sample
y Output or label of data sample

Full text available at: http://dx.doi.org/10.1561/2000000114



10 Introduction

Table 1.3: Reference list of most abbreviations used in this survey.

Acronym Phrase
ADMM Alternating Direction Method of Multipliers

AirComp Over-the-air Computation
BAA Broadband Analog Aggregation
BPSK Binary Phase-Shift Keying

BS Base Station
CML Centralized Machine Learning

CoCoA Comm-efficient distributed dual Coordinate Ascent
CoMAC Computation over Multiple-Access Channels

CSI Channel State Information
DML Distributed Machine Learning
DP Differential Privacy

DSGD Distributed Stochastic Gradient Descent
ESN Echo State Network
FD Federated Distillation

FedAvg Federated Averaging
FL Federated Learning
IID Independent and Identically Distributed
IRS Intelligent Reflective Surface
IoT Internet of Things
LTE Long Term Evolution

MIMO Multiple Input Multiple Output
ML Machine Learning

MSE Mean Square Error
OFDMA Orthogonal Frequency Division Multiple Access

PS Parameter Server
RRM Radio Resource Management
SGD Stochastic Gradient Descent
SISO Single Input Single Output
SNR Signal to Noise Ratio
QoE Quality of Experience
UAV Unmanned Aerial Vehicle
VR Virtual Reality
ZF Zero-Forcing
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