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ABSTRACT
Deep learning has achieved remarkable success in many ma-
chine learning tasks such as image classification, speech
recognition, and game playing. However, these break-
throughs are often difficult to translate into real-world en-
gineering systems because deep learning models require a
massive number of training samples, which are costly to
obtain in practice. To address labeled data scarcity, few-shot
meta-learning optimizes learning algorithms that can effi-
ciently adapt to new tasks quickly. While meta-learning is
gaining significant interest in the machine learning literature,
its working principles and theoretic fundamentals are not
as well understood in the engineering community.
This review monograph provides an introduction to meta-
learning by covering principles, algorithms, theory, and en-
gineering applications. After introducing meta-learning in
comparison with conventional and joint learning, we de-
scribe the main meta-learning algorithms, as well as a gen-
eral bilevel optimization framework for the definition of
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meta-learning techniques. Then, we summarize known re-
sults on the generalization capabilities of meta-learning from
a statistical learning viewpoint. Applications to communi-
cation systems, including decoding and power allocation,
are discussed next, followed by an introduction to aspects
related to the integration of meta-learning with emerging
computing technologies, namely neuromorphic and quantum
computing. The monograph is concluded with an overview
of open research challenges.
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1
Introduction and Background

1.1 Introduction

One of the main principles underlying the design of data-efficient ma-
chine learning is knowledge sharing across learning tasks. As an
example, consider the problem of few-shot classification. In it, one is
interested in designing a classifier based on few examples for each class.
The limited availability of data is typically an insurmountable problem
for conventional machine learning solutions, unless one has detailed
information about the structure of the problem that can be used to
handcraft a well-performing classifier. When such domain knowledge
is not available, it may be, however, possible to collect data sets from
distinct classification tasks that are deemed to be related to the task
of interest. Transferring knowledge from such auxiliary tasks to the
target task may compensate for the lack of sufficient data or domain
knowledge.

The specific way in which knowledge sharing can be realized depends
on the setting of interest and on the availability of data. Central to these
distinctions is the notion of a learning task. A learning task generally
refers to a specific supervised, unsupervised, or reinforcement learning
instance characterized by an underlying data-generation distribution

3
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4 Introduction and Background

and loss or reward function. For instance, a learning task may amount
to the problem of classifying images in a number of categories based
on labelled examples. With this definition, at a high level, we can
distinguish the following methodologies (see, e.g., [160]).

• Transfer learning: In transfer learning, one is concerned with
two learning tasks – a source task and a target task. Data are
typically available for both tasks, although data for the target
task may be limited. The goal is to address the target task by
utilizing also data from the source task with the aim of reducing
data requirements for the target task. In the image classification
example, transfer learning would facilitate the optimization of a
classifier for a target classification task, e.g., distinguishing images
of cats and dogs, using data for another classification task, e.g.,
distinguishing images of teapots and mugs.

• Multi-task learning and joint learning: In multi-task learning,
there are K > 1 learning tasks, and one is interested in learning
a machine learning model that is able to address all the tasks
based on data pooled from all the tasks. Generally, the machine
learning model has some shared components, e.g., layers of a
neural network, and also separate parts pertaining each task, e.g.,
“heads” of a classifier. When the model is fully shared across
tasks, multi-task learning is also known as joint learning. In the
image classification example, multi-task learning would optimize
a classifier producing decisions for a set of classification tasks.

• Meta-learning: In meta-learning, we have access to data for a
number of tasks, but we are not interested in training a machine
learning model for them as in multi-task learning. Rather, we
would like to use data from multiple tasks in order to design a
training procedure, and not to produce a single machine learn-
ing model. Specifically, the goal is to ensure that the meta-learned
training procedure can efficiently optimize a machine learning
model for any, a priori unknown, learning task. Accordingly, in
a meta-learning setting, one does not know a priori what the
target task will be, although one expects it to be similar to those

Full text available at: http://dx.doi.org/10.1561/2000000115



1.2. Meta-Learning 5

for which data are available. By optimizing the learning process,
meta-learning implements a form of learning to learn. In the
image classification example, meta-learning would produce a pro-
cedure able to optimize a classifier for any new classification task
by using data from a pool of other similar classification tasks.

This review monograph provides an introduction to meta-learning
by covering principles, algorithms, theory, and engineering applications.
In this section, we start by providing a first exposition to meta-learning
by contrasting it with conventional machine learning and multi-task
learning. The section concludes with a description of the organization
of the rest of the monograph.

1.2 Meta-Learning

In meta-learning, we target an entire class of tasks, also known as
the task environment, and we wish to “prepare” for any new task
that may be encountered from this class. As we will review in this
subsection, conventional learning aims at optimizing model parameters,
such as the weights of a neural network, by applying a given training
algorithm, which is defined by a set of hyperparameters. Training
algorithms typically involve local search procedures, e.g., based on
gradient information, and hyperparameters include the learning rate –
i.e., the size of the updates at each iteration – and the initialization. In
contrast, the goal of meta-learning is to optimize hyperparameters
with the goal of identifying a training algorithm that may perform well
on new tasks.

1.2.1 Meta-Training and Meta-Testing

The working assumption underlying meta-learning is that, prior to
observing the – typically small – training data set for a new task, one
has access to a larger data set of examples from related tasks. This is
known as the meta-training data set. Meta-learning consists of two
distinct phases:

• Meta-training: Given the meta-training data set, a set of hyper-
parameters is optimized;

Full text available at: http://dx.doi.org/10.1561/2000000115



6 Introduction and Background

• Meta-testing: After the meta-learning phase is completed, data
for a target task, known as meta-test task, is revealed, and model
parameters are optimized using the meta-trained hyperparameters.

As such, the meta-training phase aims at optimizing hyperparame-
ters that enable efficient training on a new, a priori unknown, target
task in the meta-testing phase.

1.2.2 Reviewing Conventional Learning

In order to introduce the notation necessary to describe meta-learning,
let us briefly review the operation of conventional machine learning.
Training and testing. In conventional machine learning, the starting
point is the selection of a model class H and of a training algorithm. The
choice of model class and training algorithm determines the inductive
bias applied by the learning procedure to generalize from training to
test data. The model class H contains models parameterized by a vector
ϕ, such as neural networks. Model class and training algorithm are
ideally tailored to information available about the problem of interest.

Furthermore, both model class and training algorithm generally
depend on a fixed vector of hyperparameters, denoted as θ. Thereafter,
hyperparameters may specify, for instance, a mapping defining the
vector of features to be used in a linear model, or the initialization and
learning rate of an iterative optimizer.

The training algorithm is applied to a training set Dtr, which may
include also a separate validation set. The training algorithm produces
a model parameter vector ϕ by minimizing the training loss

LDtr(ϕ), (1.1)

which is obtained by evaluating an empirical average of the loss accrued
over the data points in the training set Dtr. Note that regularized
versions of the training loss can also be used. Finally, the trained model
is tested on a separate test data set Dva by evaluating the validation
loss LDva(ϕ), in which the loss is averaged over the test data in data
set Dva. The overall process is summarized in Figure 1.1.
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is limited, i.e., when N is small. Second, training only once for K tasks
amortizes the iteration complexity across the tasks, yielding a potential
reduction of the number of iterations by a factor equal to K.
Drawbacks of joint learning. Joint learning has two potentially
critical shortcomings.

• Bias: The jointly trained model may improve the performance of
conventional learning only if there is a single model parameter „

that “works well” for all tasks. This may not be the case if the
tasks are su�ciently distinct.

• Lack of adaptation: Even if there is a single model parameter
„ that yields desirable test results on all K tasks, this does not
guarantee that the same is true for a new task. In fact, by focusing
on training a common model for all tasks, joint learning is not
designed to enable adaptation to a new task.

As a remedy for the second shortcoming just highlighted, one could
use the jointly trained model parameter „ to initialize the training
process on a new task – a process known as fine-tuning. However,
there is generally no guarantee that this would yield a desirable outcome,
since the training process used by joint learning does not account for the
subsequent step of adaptation on a new task. This is a key distinction
between joint learning and meta-learning, which will be introduced
next.

Dtr
1 Dtr

K Dva
1 Dva

K 1 K Dtr Dva

1.2.4 Introducing Meta-Learning

As for joint learning, in meta-learning one assumes the availability of
data from K related tasks from the same task environment, which are
referred to as meta-training tasks. However, unlike joint learning, data
from these tasks are kept separate, and a distinct model parameter „k
is trained for each k task. As illustrated in Fig. 1.3, meta-learning tasks
only share a common hyperparameter vector ◊ that is optimized
based on meta-training data. As a result, meta-training data is not used
to optimize a common model, but only a shared inductive bias. In
other words, the optimization carried out by meta-learning operates
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Figure 1.1: Illustration of conventional machine learning.

Drawbacks of conventional learning. As anticipated, conventional
machine learning suffers from two main potential shortcomings that
meta-learning can help address, namely:

• Large sample complexity: By training a model “from scratch”,
conventional learning generally requires a large number of training
samples, N , to obtain a suitable test performance. The number
of samples needed to obtain some level of accuracy is known as
sample complexity.

• Large iteration complexity: By relying on a generic optimization
procedure, conventional learning may require a large number of
iterations to converge to a well-performing model.

Both issues can be potentially mitigated if the inductive bias – i.e.,
the selection of model class and training algorithm – is tailored to
the problem under study based on domain knowledge. For instance,
as part of the inductive bias, we may choose an architecture for a
neural network model that satisfies known symmetries in the data;
or select an initialization point for the model parameters that ϕ is
suitably adapted to the learning task at hand. With such informed
inductive biases, one we can generally reduce both sample and iteration
complexities.
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critical shortcomings.

• Bias: The jointly trained model may improve the performance of
conventional learning only if there is a single model parameter „

that “works well” for all tasks. This may not be the case if the
tasks are su�ciently distinct.

• Lack of adaptation: Even if there is a single model parameter
„ that yields desirable test results on all K tasks, this does not
guarantee that the same is true for a new task. In fact, by focusing
on training a common model for all tasks, joint learning is not
designed to enable adaptation to a new task.

As a remedy for the second shortcoming just highlighted, one could
use the jointly trained model parameter „ to initialize the training
process on a new task – a process known as fine-tuning. However,
there is generally no guarantee that this would yield a desirable outcome,
since the training process used by joint learning does not account for the
subsequent step of adaptation on a new task. This is a key distinction
between joint learning and meta-learning, which will be introduced
next.
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1.2.4 Introducing Meta-Learning

As for joint learning, in meta-learning one assumes the availability of
data from K related tasks from the same task environment, which are
referred to as meta-training tasks. However, unlike joint learning, data
from these tasks are kept separate, and a distinct model parameter „k
is trained for each k task. As illustrated in Fig. 1.3, meta-learning tasks
only share a common hyperparameter vector ◊ that is optimized
based on meta-training data. As a result, meta-training data is not used
to optimize a common model, but only a shared inductive bias. In
other words, the optimization carried out by meta-learning operates
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Figure 1.2: Illustration of joint learning.

When one does not have access to sufficient information about the
problem to identify a tailored inductive bias, it may become useful to
transfer knowledge from data pertaining related tasks.

1.2.3 Joint Learning

Suppose that we have access to training data sets Dtr
k for a number of

distinct learning tasks in the same task environment that are indexed
by the integer k = 1, ..., K. Each data set Dtr

k contains N training
examples. We now review the idea of joint learning, which is a special
case of multi-task learning in which a common model is trained for all
K learning tasks.
Training and testing. Joint learning pools together all the training
sets {Dtr

k }Kk=1, and uses the resulting aggregate training loss

L{Dtr
k

}K
k=1

(ϕ) = 1
K

K∑
k=1

LDtr
k

(ϕ) (1.2)

as the learning criterion to train a shared model parameter ϕ.
As illustrated in Figure 1.2, joint learning inherently caters only

to the K tasks in the original pool, and is hence generally unable to
provide desirable performance for new, as of yet unknown, tasks.

Joint learning is a natural first attempt to transfer knowledge across
tasks with the aim of improving sample and iteration complexities. First,
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by pooling together data from K tasks, the overall size of the training
set is K ·N, which may be large even when the available data per task
is limited, i.e., when N is small. Second, training only once for K tasks
amortizes the iteration complexity across the tasks, yielding a potential
reduction of the number of iterations by a factor equal to K.
Drawbacks of joint learning. Joint learning has two potentially
critical shortcomings.

• Bias: The jointly trained model may improve the performance of
conventional learning only if there is a single model parameter ϕ

that “works well” for all tasks. This may not be the case if the
tasks are sufficiently distinct.

• Lack of adaptation: Even if there is a single model parameter
ϕ that yields desirable test results on all K tasks, this does not
guarantee that the same is true for a new task. In fact, by focusing
on training a common model for all tasks, joint learning is not
designed to enable adaptation to a new task.

As a remedy for the second shortcoming just highlighted, one could
use the jointly trained model parameter ϕ to initialize the training
process on a new task – a process known as fine-tuning. However,
there is generally no guarantee that this would yield a desirable outcome,
since the training process used by joint learning does not account for the
subsequent step of adaptation on a new task. This is a key distinction
between joint learning and meta-learning, which will be introduced
next.

1.2.4 Introducing Meta-Learning

As for joint learning, in meta-learning one assumes the availability of
data from K related tasks from the same task environment, which are
referred to as meta-training tasks. However, unlike joint learning, data
from these tasks are kept separate, and a distinct model parameter ϕk is
trained for each k task. As illustrated in Figure 1.3, meta-learning tasks
only share a common hyperparameter vector θ that is optimized
based on meta-training data. As a result, meta-training data is not used
to optimize a common model, but only a shared inductive bias. In

Full text available at: http://dx.doi.org/10.1561/2000000115
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Figure 1.3: Illustration of meta-learning.

other words, the optimization carried out by meta-learning operates
at a higher level of abstraction, leaving the model parameters free to
adapt to each individual task.

We now introduce meta-learning by emphasizing the differences
with respect to joint learning and by detailing the meta-training and
meta-testing phases.
Inductive bias and hyperparameters. As discussed, the goal of
meta-learning is optimizing the hyperparameter vector θ and, through
it, the inductive bias that is applied for the training of each task. To
simplify the discussion and focus on the most common setting, let us
assume that the model class H is fixed, while the training algorithm is
a mapping ϕtr(D|θ) between a training set D and a model parameter
vector ϕ that depends on the hyperparameter vector θ, i.e.,

ϕ = ϕtr(D|θ). (1.3)

As an example, the training algorithm ϕtr(D|θ) could output the last
iterate of an optimizer.

The hyperparameter θ can affect the output ϕtr(D|θ) of the train-
ing procedure in different ways. For instance, it can determine the
regularization constant; the learning rate and/or the initialization of
an iterative training procedure; the mini-batch size; a subset of the
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parameters in vector ϕ, e.g., used to define a shared feature extractor;
the parameters of a prior distribution; and so on.

The output ϕtr(D|θ) of a training algorithm is generally random.
This is the case, for instance, if the algorithm relies on stochastic
gradient descent (SGD). In the following discussion, we will assume for
simplicity a deterministic training algorithm, but the approach carries
over directly to the more general case of a random training procedure by
adding an average over the randomized of the trained model ϕtr(D|θ).
Meta-training. To formulate meta-training, a natural idea is to use
as the optimization criterion the aggregate training loss

L{Dtr
k

}K
k=1

(θ) = 1
K

K∑
k=1

LDtr
k

(ϕtr(Dtr
k |θ)), (1.4)

which is a function of the hyperparameter θ. This quantity is known as
the meta-training loss. The resulting problem

min
θ
L{Dtr

k
}K

k=1
(θ) (1.5)

of minimizing the meta-training loss over the hyperparameter θ is
different from the ERM problem minϕ L{Dtr

k
}K

k=1
(ϕ) tackled in joint

learning for the following reasons:
• First, optimization is over the hyperparameter vector θ and not

over a shared model parameter ϕ.

• Second, the model parameter ϕ is trained separately for each
task k through the parallel applications of the training function
ϕtr(·|θ) to the training set Dtr

k of each task k = 1, ..., K.
As a result of these two key differences with respect to joint training,

the minimization of the meta-training loss (1.4) inherently caters for
adaptation: The hyperparameter vector θ is optimized in such a way
that the trained model parameter vectors ϕk = ϕtr(Dtr

k |θ), adapted
separately to the data of each task k, minimize the aggregate loss across
all meta-training tasks k = 1, ..., K.
Advantages of meta-training over joint training. While retaining
the advantages of joint learning in terms of sample and iteration com-
plexity, meta-learning addresses the two shortcomings of joint learning:
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12 Introduction and Background

• Knowledge sharing via hyperparameters: Meta-learning does
not assume that there is a single model parameter ϕ that “works
well” for all tasks. It only assumes that there exists a common
model class and a common training algorithm, as specified by
hyperparameters θ, that can be effectively applied across the
class of tasks of interest.

• Optimization for adaptation: Meta-learning prepares the train-
ing algorithm ϕtr(D|θ) to adapt to potentially new tasks through
the selection of the hyperparameters θ. This is because the model
parameter vector ϕ is left free by design to be adapted to the
training data Dtr

k of each task k.
Meta-testing. As mentioned, the goal of meta-learning is ensuring
generalization to any new task that is drawn at random from the same
task environment. For any new task, during the meta-testing phase, we
have access to training set Dtr and validation set Dva. The new task
is referred to as the meta-test task, and is illustrated in Figure 1.3
along with the meta-training tasks.

The training data Dtr of the meta-test task is used to adapt the
model parameter vector to the meta-test task, obtaining ϕtr(Dtr|θ).
Importantly, the training algorithm depends on the hyperparameter θ.
The performance metric of interest for a given hyperparameter θ is the
test loss for the meta-test task, or meta-test loss, given by

LDva(ϕtr(Dtr|θ)). (1.6)

In (1.6), the population loss of the trained model is estimated via the
test loss evaluated with the test set Dva.

We have just seen that meta-testing requires a split of the data for
the new task into a training part, used for adaptation, and a validation
part, used to estimate the population loss (1.6). We now discuss how
the idea of splitting per-task data sets into training and validation parts
can be useful also during the meta-training phase.

As explained in Section 1.2.4, the training algorithm ϕ(Dtr|θ) is
defined by an optimization procedure for the problem of minimizing
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the training loss on the training set Dtr. We can write the learning
procedure informally as

ϕtr(Dtr|θ)←
θ

min
ϕ

LDtr(ϕ), (1.7)

highlighting the dependence of the training algorithm on the training
loss LDtr(ϕ) and on the hyperparameter θ.

Because of (1.7), in problem (1.5) one is effectively optimizing the
training losses LDtr

k
(ϕ) for the meta-training tasks k = 1, ..., K twice,

first over the model parameters in the inner optimization (1.7) and then
over the hyperparameters θ in the outer optimization (1.5). This reuse
of the meta-training data for both adaptation and meta-learning may
cause overfitting to the meta-training data, and thus result in a training
algorithm ϕtr(·|θ) that fails to generalize to new tasks.

The problem highlighted above is caused by the fact that the meta-
training loss (1.4) does not provide an unbiased estimate of the sum
of the population losses across the meta-training tasks. The bias is a
consequence of the reuse of the same data for both adaptation and
hyperparameter optimization. To address this problem, for each meta-
training task k, we can partition the available data into two data sets,
a training data set Dtr

k and a validation data set Dva
k . Therefore, the

overall meta-training data set is given as Dmtr = {(Dtr
k ,Dva

k )K
k=1}.

The key idea is that the training data set Dtr
k is used for adaptation

using the training algorithm (1.7), while the test data set Dva
k is kept

aside to estimate the population distribution of task k for the trained
model. The hyperparameter θ is not optimized to minimize the sum of
the training losses as in (1.5). Rather, they target the sum of the test
losses, which provides an unbiased estimate of the corresponding sum
of population losses.
Meta-learning as nested optimization. To summarize, the general
procedure followed by many meta-learning algorithms consists of a
nested optimization of the following form:

• Inner loop: For a fixed hyperparameter vector θ, training on each
task k is done separately, producing per-task model parameters

ϕk = ϕtr(Dtr
k |θ)←

θ
min

ϕ
LDtr

k
(ϕ) (1.8)

for k = 1, ..., K;
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• Outer loop: The hyperparameter vector θ is optimized as

θDmtr = arg min
θ
LDmtr(θ), (1.9)

where the meta-training loss is (re-)defined as

LDmtr(θ) = 1
K

K∑
k=1

LDva
k

(ϕtr(Dtr
k |θ)). (1.10)

As we will detail in Section 2, the specific implementation of a meta-
learning algorithm depends on the selection of the training algorithm
ϕtr(D|θ) and on the method used to solve the outer optimization.

1.2.5 Meta-Inductive Bias

While the inductive bias underlying the training algorithm used in the
inner loop is optimized by means of meta-learning, the meta-learning
process itself assumes a meta-inductive bias. The meta-inductive bias
encompasses the choices of the hyperparameters to optimize in the outer
loop – e.g., the initialization of an SGD training algorithm – as well as
the optimization algorithm used in the outer loop. There is of course no
end to this nesting of inductive biases: any new learning level brings its
own assumptions and biases. Meta-learning moves the potential cause
of bias at the outer level of the meta-learning loop, which may improve
the efficiency of training.

It is important, however, to note that the selection of a meta-
inductive bias may cause meta-overfitting in a similar way as the
choice of an inductive bias can cause overfitting in conventional learning.
In a nutshell, if the meta-inductive bias is too broad and the number
of tasks insufficient, the meta-trained inductive bias may overfit the
meta-training data and fail to prepare for adaptation to new tasks.

1.3 Organization of the Monograph

The rest of the monograph is organized as follows.
Section 2. Meta-Learning Algorithms: This section provides

a taxonomy and an introduction to the most common meta-learning
algorithms, including model agnostic meta-learning (MAML).
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Section 3. Bilevel Optimization for Meta-Learning: This
section presents a general optimization-based perspective on meta-
learning, which views meta-learning as a form of stochastic bilevel
optimization.

Section 4. Statistical Learning Theory for Meta-learning:
This section revisits meta-learning through the different perspective of
generalization. Specifically, it investigates from a theoretical viewpoint
the performance of meta-learning algorithms in terms of their capacity
to generalize outside the meta-training data set to new tasks.

Section 5. Meta-Learning Applications to Communications:
This section turns to several examples of applications of meta-learning to
the engineering problem of designing communication systems. Examples
of reviewed applications include demodulation and power control.

Section 6. Integration with Emerging Computing Technolo-
gies: This section highlights the potential synergies between meta-
learning and two emerging computing technologies, namely neuromor-
phic and quantum computing.

Section 7. Outlook: The last section presents an outlook on the
area of meta-learning by offering a brief review of open problems and
further directions for reading and research.
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