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ABSTRACT
In the current noisy intermediate-scale quantum (NISQ)
era, quantum machine learning is emerging as a dominant
paradigm to program gate-based quantum computers. In
quantum machine learning, the gates of a quantum circuit
are parameterized, and the parameters are tuned via clas-
sical optimization based on data and on measurements of
the outputs of the circuit. Parameterized quantum circuits
(PQCs) can efficiently address combinatorial optimization
problems, implement probabilistic generative models, and
carry out inference (classification and regression). This mono-
graph provides a self-contained introduction to quantum
machine learning for an audience of engineers with a back-
ground in probability and linear algebra. It first describes
the necessary background, concepts, and tools necessary
to describe quantum operations and measurements. Then,
it covers parameterized quantum circuits, the variational
quantum eigensolver, as well as unsupervised and supervised
quantum machine learning formulations.
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1
Introduction

Motivation

As with many engineers, I developed an early fascination for quantum
theory – for its history, its counterintuitive predictions, its central role in
the development of many existing technologies (semiconductors, lasers,
MRI, atomic clocks) and, perhaps above all, its promise to unlock future,
revolutionary, paradigms in materials, chemical, industrial, computer,
and communication engineering.

At first, the topic is inviting for an engineer with my background on
electrical and information engineering: The mathematical formalism is
familiar, based as it is on linear algebra and probability; and concepts
with wide-ranging and intriguing implications, such as superposition
and entanglement, can be easily described on paper. Spend more time
with it, however, and the field reveals its complexity, becoming for many,
the former me included, too abstruse to invite further study. Particu-
larly unfamiliar are ideas and architectures underlying key quantum
algorithms, such as Shor’s factorization method. As if that was not
enough, the impressions that most algorithmic breakthroughs are by
now textbook material, and that all the “action” is currently focused
on scaling hardware implementations, have kept me from engaging with
the state of the art on quantum computing.

2
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3

This monograph is motivated by a number of recent developments
that appear to define a possible new role for researchers with an engineer-
ing profile similar to mine. First, there are now several software libraries
– such as IBM’s Qiskit, Google’s Cirq, and Xanadu’s PennyLane – that
make programming quantum algorithms more accessible, while also
providing cloud-based access to actual quantum computers. Second, a
new framework is emerging for programming quantum algorithms to be
run on current quantum hardware: quantum machine learning.

Quantum Machine Learning

Quantum computing algorithms have been traditionally designed by
hand assuming the availability of fault-tolerant quantum processors
that can reliably support a large number of qubits and quantum
operations, also known as quantum gates. A qubit is the basic unit of
quantum information and computing, playing the role of a bit in classical
computers. In practice, current quantum computers implement a few
tens of qubits, with quantum gates that are inherently imperfect and
noisy. Quantum machine learning refers to an emerging, alternative
design paradigm that is tailored for current noisy intermediate-
scale quantum (NISQ) computers. The approach follows a two-step
methodology akin to classical machine learning. In it, one first fixes a
priori a, possibly generic, parameterized architecture for the quantum
gates defining a quantum algorithm, and then uses classical optimization
to tune the parameters of the gates.

In more detail, as sketched in Figure 1.1, in quantum machine
learning, the quantum algorithm is defined by a quantum circuit
– denoted as U(θ) in the figure – whose constituent quantum gates
implement operations that depend on a vector θ of free parameters.
Measurements of the quantum state produced by the quantum circuit
produce classical information that is fed to a classical processor, along
with data. The classical optimizer produces updates to the vector θ
with the goal of minimizing some designer-specified cost function.

The quantum machine learning architecture of Figure 1.1 has a num-
ber of potential advantages over the traditional approach of handcrafting
quantum algorithms assuming fault-tolerant quantum computers:
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4 Introduction

• By keeping the quantum computer in the loop, the classical opti-
mizer can directly account for the non-idealities and limitations
of quantum operations via measurements of the output of the
quantum computer.

• If the parameterized quantum algorithm is sufficiently flexible
and the classical optimizer sufficiently effective, the approach may
automatically design well-performing quantum algorithms that
would have been hard to optimize by hand via traditional formal
methods.

classical 

optimizer

average

Figure 1.1: Illustration of the quantum machine learning design methodology: A
parameterized quantum circuit with a pre-specified architecture is optimized via its
vector of parameters, θ, by a classical optimizer based on data and measurements
of its outputs. As we will see in this monograph, the operation of a parameterized
quantum circuit is defined by a unitary matrix U(θ) dependent on vector θ. The
block marked with a gauge sign represents quantum measurements, which convert
quantum information produced by the quantum circuit into classical information. This
conversion is inherently random, and measurement outputs are typically averaged
before being fed to the classical optimizer.

Quantum machine learning, intended as the study of applications
of parameterized quantum circuits, is distinct from the related topic of
quantum-aided classical machine learning. The aim of this older line of
work is to speed up classical machine learning methods by leveraging
traditional quantum computing subroutines. This monograph will focus
solely on quantum machine learning as illustrated in Figure 1.1.

Important open research questions in the field of quantum machine
learning are discussed at the end of this text. It is my hope that
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5

researchers who may not have otherwise contributed to these research
directions would be motivated to do so upon reading these pages.

Goal and Organization

The main goal of this monograph is to present a self-contained introduc-
tion to quantum information processing and quantum machine learning
for a readership of engineers with a background in linear algebra and
probability. My ambition in presenting this text is to offer a resource
that may allow more researchers with no prior exposure to quantum
theory to contribute to the field of quantum machine learning with new
ideas and methods.

The monograph is written as a textbook, with no references except
at the end of each section. References are kept to a minimum, and
are mostly limited to books that the reader may peruse for additional
information on different topics introduced in these pages. I have also
included problems at the end of each section with the main aims of
reviewing some key ideas described in the text and of inviting the reader
to explore topics beyond this monograph.

It may be worth emphasizing that the text is meant to be read
sequentially, as I have attempted to introduce notations and concepts
progressively from the first page to the last page.

The monograph does not include discussions about specific appli-
cations and use cases. There are several reasons for this. First, many
applications are domain specific, pertaining fields like quantum chem-
istry, and are deemed to be outside the scope of this text, which focuses
on concepts and tools. Second, many existing generic tasks and data
sets currently used in the quantum machine learning literature are quite
simplistic, and they arguably yield little insight into the potential of
the technology. The reader is referred to research papers, appearing on
a daily basis on repositories like arXiv, for up-to-date results, including
new benchmarks and experiments.

The rest of the monograph is organized as follows:

• Section 2. Classical bit (cbit) and quantum bit (qubit):
This section introduces the concept of qubit through an algebraic
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6 Introduction

generalization of random classical bits (cbits). A qubit can evolve
in quantum systems via reversible linear (unitary) transformations
– also known as quantum gates – or via measurements. The math-
ematical formalism underlying the description of both quantum
gates and measurements is also covered in the section. Finally,
the section illustrates a key difference in the behavior of random
cbits and qubits, namely the phenomenon of interference.

• Section 3. Classical bits (cbits) and quantum bits (qubits):
This section extends the concepts introduced in the previous
section, including quantum gates and measurements, to systems
comprising multiple qubits. The new phenomenon of entanglement
– a form of correlation between quantum systems with no classical
counterpart – is introduced, and superdense coding is presented
as an application of entanglement.

• Section 4. Generalizing quantum measurements (Part I):
The third section presents two important generalizations of quan-
tum measurements, namely measurements in an arbitrary basis
and non-selective measurements. Decoherence, density matrices,
and partial trace are also presented as concepts arising naturally
from the introduction non-selective measurements.

• Section 5. Quantum computing: Section 4 presents a brief
introduction to the traditional approach for the design of quantum
algorithms in gate-based quantum computers. This presentation
culminates in the description of Deutsch’s algorithm, the first
example of a quantum solution that can provably improve over
classical algorithms. The section also describes the no cloning the-
orem, which sets important constraints on the design of quantum
computing algorithms.

• Section 6. Generalizing quantum measurements (Part II):
This section presents two further extensions of quantum mea-
surements: projective measurements and positive operator-valued
measurements (POVMs). POVMs represent the most general form
of quantum measurement. As an example of the application of
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projective measurements, the problem of quantum error correction
is briefly introduced; while unambiguous state detection is pre-
sented as technique enabled by POVMs. Observables are covered,
and the section ends with a description of quantum channels as
non-selective quantum measurements.

• Section 7. Quantum machine learning: The final section
provides an introduction to quantum machine learning that builds
on the material covered in the previous sections. After a descrip-
tion of the taxonomy of quantum machine learning methods, the
concepts of parameterized quantum circuits and ansatz are intro-
duced, along with the definition of cost functions used in quantum
machine learning. These are leveraged to describe the variational
quantum eigensolver (VQE), as well as unsupervised and super-
vised learning strategies for settings in which data are classical
and processing is quantum. An outlook is also provided pointing
to more advanced techniques and directions for research.
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