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Abstract

This manuscript summarizes a line of research that maps certain classi-
cal problems of discrete mathematics — such as the Hamiltonian Cycle
and the Traveling Salesman Problems — into convex domains where
continuum analysis can be carried out. Arguably, the inherent diffi-
culty of these, now classical, problems stems precisely from the discrete
nature of domains in which these problems are posed. The convexifi-
cation of domains underpinning the reported results is achieved by
assigning probabilistic interpretation to key elements of the original
deterministic problems.

In particular, approaches summarized here build on a technique
that embeds Hamiltonian Cycle and Traveling Salesman Problems in a
structured singularly perturbed Markov Decision Process. The unify-
ing idea is to interpret subgraphs traced out by deterministic policies
(including Hamiltonian Cycles, if any) as extreme points of a convex
polyhedron in a space filled with randomized policies.

The topic has now evolved to the point where there are many, both
theoretical and algorithmic, results that exploit the nexus between
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graph theoretic structures and both probabilistic and algebraic enti-
ties of related Markov chains. The latter include moments of first
return times, limiting frequencies of visits to nodes, or the spectra of
certain matrices traditionally associated with the analysis of Markov
chains. Numerous open questions and problems are described in the
presentation.
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1

Embedding of a Graph in a Markov
Decision Process

1.1 Introduction

Arguably, the inherent difficulty of many problems of discrete mathe-
matics and combinatorial optimization stems, precisely, from the dis-
crete nature of the domains in which these problems are posed. This
manuscript is devoted to a line of research that maps such problems
into convex domains where continuum analysis can be easily carried
out. This convexification of domains is achieved by assigning proba-
bilistic interpretation to the key elements of the original problems even
though these problems are deterministic.

While there are probably other instances of similar ideas being
exploited elsewhere, our approach builds on the innovation introduced
in Filar and Krass [35] where the Hamiltonian Cycle and the Travel-
ing Salesman Problems were embedded in a structured singularly per-
turbed Markov Decision Process (MDP, for short). The unifying idea
of [35] was to interpret subgraphs traced out by deterministic policies
(including Hamiltonian Cycles, if any) as extreme points of a convex
polyhedron in a space filled with randomized policies.

1
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2 Embedding of a Graph in a Markov Decision Process

This approach was continued by Chen and Filar [20]1 and, inde-
pendently, by Feinberg [32, 33]. Further results were obtained by Filar
and Liu [37], Andramonov et al. [7], Filar and Lasserre [36], Ejov et al.
[24, 25, 26, 27, 28, 29, 30, 31] and in Borkar et al. [16, 17]. Thus there
is now an active group of mathematicians in a number of countries
interested in this approach to discrete problems. Majority of these con-
tributions focused on the classical Hamiltonian Cycle Problem but,
in principle, many of the techniques used could be adapted to other
problems of discrete mathematics (as, indeed, was done by Feinberg
in [33]).

The essence of the Hamiltonian Cycle Problem (HCP, for short)
is contained in the following — deceptively simple — single sentence
statement: given a graph on N nodes, find a simple cycle that con-
tains all vertices of the graph (Hamiltonian Cycle (HC)) or prove that
HC does not exist. The HCP is known to be NP-hard and has become
a challenge that attracts mathematical minds both in its own right
and because of its close relationship to the famous Traveling Sales-
man Problem (TSP). An efficient solution of the latter would have an
enormous impact in operations research, optimization, and computer
science. However, from a mathematical perspective the underlying diffi-
culty of the TSP is, perhaps, hidden in the Hamiltonian Cycle Problem.
Hence we focus on the latter.

Just to indicate the flavor of the results reported in this survey,
consider a key observation that led to the recent results presented in
Borkar et al. [16, 17]. Namely, that: the “correct” convex domain where
Hamiltonian Cycles should be sought, is the set DS of doubly stochastic
matrices2 induced by a given graph.

The above observation is nearly obvious, once we recall the famous
(and nonobvious) Birkhoff-von Neumann Theorem which states that
the set of all N × N doubly stochastic matrices is the convex hull of
permutation matrices. Of course, in searching for a Hamiltonian Cycle
of a given graph we need to restrict ourselves to the convex hull of
only those permutation matrices that correspond to subgraphs of that

1 Despite the fact that [20] appeared before [35], the latter preceded [20].
2 A square nonnegative matrix is doubly stochastic if both its row-sums and column-sums
are equal to 1.
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1.1 Introduction 3

graph. Results in [16, 17] imply that after a suitable perturbation and
defining the random variable

τ1 := the first hitting time of the home node 1 (after time 0),

the Hamiltonian Cycle Problem essentially reduces to “merely” mini-
mizing the variance-like functional

E[(τ1 − N)2]

over the space DS. This probabilistic, almost statistical, interpretation
should permit us to bring to bear a wide range of both analytical and
algorithmic tools on the HCP.

Thus the theoretical aim of this line of research is to explain the
essential difficulty of the Hamiltonian Cycle Problem — that is, its NP-
hardness — in analytic terms such as a measure of variability, or the
size of a gap between certain optimization problems, or by the nature
of certain singularities.

The algorithmic aim of these studies is to construct a gen-
eral purpose heuristic algorithm for the HCP and is based on the
belief that some classical “static” optimization problems can be ana-
lyzed by embedding them in suitably constructed Markov Decision
Processes.

In our setting, the theoretical and algorithmic aims are not separate.
Indeed, results on one of these aims seem to influence progress on the
other. For instance, the heuristic algorithm in Ejov et al. [24] follows
directly from [35] and [20] but has identified difficulties that some of
the theoretical developments in [16] are trying to resolve.

The general approach constitutes one of the few instances where
probabilistic, continuous optimization and dynamic control methods
are combined to deal with a hard problem of discrete mathemat-
ics. Arguably, simulated annealing could be seen as a precursor of
this approach. However, it should be mentioned that relationships
between Markov chains and graphs are also of recent interest to other
researchers; notably Aldous and Fill [4] and Hunter [44].

Many of the successful classical approaches of discrete optimization
to the HCP and TSP focus on solving a linear programming “relax-
ation” followed by heuristics that prevent the formation of sub-cycles
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4 Embedding of a Graph in a Markov Decision Process

(e.g., see Lawler et al. [52]). In the present approach, we embedded a
given graph in a singularly perturbed MDP in such a way that we can
identify Hamiltonian Cycles with irreducible Markov chains and sub-
cycles with non-exhaustive ergodic classes. This permitted a search for
a Hamiltonian Cycle in the frequency space of an MDP that is a poly-
tope with a nonempty interior, thereby converting the original discrete
problem to a continuous one.

Next we shall, briefly, differentiate between our approach and some
of the best known, well established, approaches to the HCP.

We first note that the present line of research is essentially different
from that adopted in the study of random graphs where an underlying
random mechanism is used to generate a graph (eg., see Karp’s seminal
paper [47]). In our approach, the graph that is to be studied is given
and fixed but a controller can choose arcs according to a probability
distribution and with a small probability (due to a perturbation) an
arc may take you to a node other than its “head.” Of course, ran-
dom graphs played an important role in the study of Hamiltonicity,
a striking result to quote is that of Robinson and Wormald [62] who
showed that with high probability k-regular graphs3 are Hamiltonian
for k ≥ 3.

Typical general purpose heuristic algorithms can, perhaps, be clas-
sified (we cite only few representative papers) as rotational trans-
formation algorithms Posa [60], cycle extension Bollobas et al. [14],
long path algorithms [50], low degree vertices algorithms Broder
et al. [18], Brunacci [19], multipath search Kocay and Li [50], and
pruning algorithms Christofides [21]. Of course, much research has
been done on algorithms for finding a Hamiltonian Cycle on vari-
ous restricted graph classes (e.g., see Parberry [58]). Clearly, algo-
rithms designed for particular classes of graphs tend to outperform
the best general purpose algorithms when applied to graphs from these
classes.

Finally, the reported results open up many natural directions for
further investigation. The recently implemented heuristic interior-point
algorithm (see Ejov et al. [24] and Section 3.2) is based on the cited

3 Namely, graphs where the in-degree and the out-degree at every node is equal to k.
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1.2 A Graph and A Markov Decision Process 5

stochastic embedding and is performing competitively with alterna-
tive — general purpose — algorithms on various test problems includ-
ing the “Knight’s tour” problem on chessboards of the size up to
32 × 32. See also the “Branch and Fix” heuristics of Sections 3.4
and 3.5.

1.2 A Graph and A Markov Decision Process

Consider a directed graph G with the node set S and the arc set A.
We can associate a Markov Decision Process Γ with the graph G as
follows:

• The set of N nodes is the finite state space S = {1,2, . . . ,N}
and the set of arcs in G is the total action space A =
{(i, j), i, j ∈ S} where, for each state (node) i, the action
space is the set of arcs (i, j) emanating from this node and
will be denoted by A(i).

•
{
p(j|i,a) = δaj |a = (i, j) ∈ A(i), i, j ∈ S

}
, where δaj the Kro-

necker delta, is the set of (one-step) transition probabilities.
Note that, we are adopting the convention that a equals to
both arc (i, j) and its “head” j, whenever there is no possi-
bility of confusion as to the “tail” i.

A stationary policy f in Γ is a set of N probability vectors f(i) =
(f(i,1),f(i,2), . . . ,f(i,N)), where f(i,k) denotes the probability of
choosing an action k (arc emanating from i to k) whenever state
(node) i is visited. Of course,

∑N
k=1 f(i,k) = 1 and if the arc (i,k) /∈

A(i), then f(i,k) = 0. Equivalently, it will be sometimes conve-
nient to represent a policy f as an N × N matrix whose (i,k)th
entry is f(i,k). The set of all stationary policies will be denoted
by F .

A deterministic policy f is simply a stationary policy that selects a
single action with probability 1 in every state (hence, all other available
actions are selected with probability 0). That is, f(i,k) = 1 for some
(i,k) ∈ A(i). For convenience, we will write f(i) = k in this case. The
set of all deterministic policies will be denoted by D.
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6 Embedding of a Graph in a Markov Decision Process

It is easy to check that any stationary policy f ∈ F induces a prob-
ability transition matrix

P (f) =
[
p(j|i,f)

]
, i, j = 1, . . . ,N,

where for all i, j ∈ S

p(j|i,f) =
N∑

a=1

p(j|i,a) f(i,a).

In the above summation, we assume that p(j|i,a) = 0 if the arc
(i,a) /∈ A.

A doubly stochastic policy f ∈ F is one which induces a probability
transition matrix P (f) that is doubly stochastic; namely all of its rows
and columns sum to unity. The set of all doubly stochastic policies will
be denoted by DS. It should be clear from the construction that

DS ⊆ F .

Assume now that 1 is the initial state (home node). We shall say that
a deterministic policy f in Γ is a Hamiltonian Cycle (HC) (or sim-
ply “is Hamiltonian”) in G if the sub-graph Gf with the set of arcs{
(1,f(1)),(2,f(2)), . . . ,(N,f(N))

}
is a HC in G.

If an analogous sub-graph Gf induced by a deterministic policy f

contains cycles of length less than N , say m, we say that f has an
m-sub-cycle.

However, such a straightforward identification of G with Γ leads to
an inevitable difficulty of confronting multiple ergodic classes induced
by various deterministic policies.

Note that if f ∈ DS ∩ D, then the Markov chain induced by f cor-
responds to either a Hamiltonian Cycle or to a policy tracing out a
union of disjoint sub-cycles in the graph G.

Example 1.1. All of the above can be illustrated on a complete graph
G4 on 4 nodes (without self-loops) in Figure 1.1. A policy f1 such
that f1(1) = 2, f1(2) = 3, f1(3) = 4, and f1(4) = 1 induces a sub-graph
Gf1 =

{
(1,2),(2,3),(3,4),(4,1)

}
that is a Hamiltonian Cycle. Policy f1
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1.2 A Graph and A Markov Decision Process 7

Fig. 1.1 Complete graph G4.

also induces a Markov chain with the probability transition matrix

P (f1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


that has a single ergodic class containing all four states. A policy f2 such
that f2(1) = 2, f2(2) = 1, f2(3) = 4, and f2(4) = 3 induces a sub-graph
Gf2 =

{
(1,2),(2,1),(3,4),(4,3)

}
which contains two 2-sub-cycles (see

Figure 1.2). Policy f2 also induces a Markov chain with the probability
transition matrix

P (f2) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

which has two ergodic classes corresponding to the sub-cycles of Gf2 .

Fig. 1.2 Sub-graph Gf2 .
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8 Embedding of a Graph in a Markov Decision Process

Of course, randomized stationary policies can be regarded as convex
combinations of deterministic policies. For instance, if in this example
we take a policy f3 that is a set of 4 probability vectors

f3(1) = (f3(1,2),f3(1,3),f3(1,4)) = (1,0,0),

f3(2) = (f3(2,1),f3(2,3),f3(2,4)) = (0.8,0.2,0),

f3(3) = (f3(3,1),f3(3,2),f3(3,4)) = (0,0,1), and

f3(4) = (f3(4,1),f3(4,2),f3(4,3)) = (0.2,0,0.8),

then it is clear that f3 = 0.2f1 + 0.8f2 which induces the Markov chain
probability transition matrix

P (f3) = 0.2P (f1) + 0.8P (f2) =


0 1 0 0

0.8 0 0.2 0
0 0 0 1

0.2 0 0.8 0

 .

1.2.1 Classification of Deterministic Policies

We shall now describe a useful partition ofD that is based on the graphs
“traced out” in G by deterministic policies. As above, with each f ∈ D
we associate a sub-graph Gf of G defined by

(i, j) ∈ Gf ⇐⇒ f(i) = j.

We shall also denote a simple cycle of length m and beginning at 1 by
a set of arcs

c1
m =

{
(i1 = 1, i2),(i2, i3), . . . ,(im, im+1 = 1)

}
, m = 2,3, . . . ,N.

Note that c1
N is a HC. If Gf contains a cycle c1

m, we write Gf ⊃ c1
m. Let

C1
m :=

{
f ∈ D|Gf ⊃ c1

m

}
,

namely, the set of deterministic policies that trace out a simple cycle
of length m, beginning at node 1, for each m = 2,3, . . . ,N . Of course,
C1

N is the (possibly empty) set of policies that correspond to HCs and
any single C1

m can be empty depending on the structure of the original
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1.2 A Graph and A Markov Decision Process 9

Fig. 1.3 A typical policy f in C1
m.

graph G. Thus, a typical policy f ∈ C1
m traces out a graph Gf in G

that might look as Figure 1.2 where the dots indicate the “immaterial”
remainder of Gf in the sense that it corresponds to states/nodes that
will never be observed if the process begins at node 1 and the policy
f is adhered to. The broken arrows indicate a sequence of one or more
arcs (Figure 1.3). We now introduce the partition of the deterministic
policies of the form:

D =

[
N⋃

m=2

C1
m

]⋃
Nc,

where Nc contains all deterministic policies that are not in any of the
C1

ms. A typical policy f ∈ Nc traces out a sub-graph Gf in G as in
Figure 1.4, where the dots again denote the immaterial part of Gf . We
shall call policies in Nc noose cycles. For many operations related to
Markov chains induced by deterministic policies properties of interest
to us will be invariant under permutations of states/nodes that leave
the home node unchanged. Thus unless stated otherwise, and without
loss of generality, it is sufficient to consider only fm ∈ C1

m tracing out
the graph in Figure 1.5 as the representative of the whole class C1

m and
also, fk

m ∈ Nc that traces out Figure 1.6 as the representative of the
entire class Nc.

Fig. 1.4 A typical policy f in Nc.

Full text available at: http://dx.doi.org/10.1561/0900000003



10 Embedding of a Graph in a Markov Decision Process

Fig. 1.5 A representative fm of the whole class C1
m.

Fig. 1.6 A representative fk
m of the whole class Nc.

1.3 Perturbed Embedding Γε

We have seen that the direct embedding of G in Γ, in general, induces a
multi-chain ergodic structure. This and some other technical difficulties
would vanish if we force the MDP to be unichain. The latter is a Markov
Decision Process in which every stationary policy induces a Markov
chain containing only a single ergodic class plus a (possibly empty) class
of transient states. A completely ergodic MDP is a unichain MDP in
which the class of transient states is empty no matter which stationary
policy induces the Markov chain.

There are many possible ways of perturbing the MDP Γ discussed
in the preceding section to obtain a parameterized family of perturbed
unichain or completely ergodic MDP’s Γε, where ε ∈ (0,1) will be called
the perturbation parameter. However, all these perturbations share the
characteristic of altering the ergodic structure of Markov chains induced
by various stationary policies. Hence, they are so-called singular
perturbations.

The question of what constitutes the “best” perturbation is poten-
tially very interesting if the notion of optimality for such perturbations
were formalized. In the results reported here three (generic) perturba-
tions were considered.

1.3.1 The Symmetric Linear Perturbation

This is achieved by passing to a singularly perturbed MDP Γs
ε, that

is obtained from Γ by introducing perturbed transition probabilities

Full text available at: http://dx.doi.org/10.1561/0900000003



1.3 Perturbed Embedding Γε 11

{pε(j|i,a)| (i, j) ∈ A, i, j ∈ S}, where for any ε ∈
(
0, 1

N−1

)
pε(j|i,a) :=

{
1 − (N − 1)ε if a = j,

ε if a 6= j.

Note that this perturbation ensures that every f ∈ D induces a Markov
chain with a completely ergodic transition probability matrix Pε(f)
whose dominant terms coincide with the 1-entries of the corresponding
unperturbed probability transition matrix P (f) that the same policy
f induces in Γ.

For instance, if in the example of the preceding section we consider
the policy f2 that traces out the two sub-cycles depicted in Figure 1.2,
it is clear that in Γs

ε the same policy induces the probability transition
matrix

Pε(f2) =


ε 1 − 3ε ε ε

1 − 3ε ε ε ε

ε ε ε 1 − 3ε

ε ε 1 − 3ε ε

 ,

where, for instance, the second entry in the first row can be formally
derived as

pε(2|1,f2) =
∑

a∈A(1)

pε(2|1,a)f2(1,a) = pε(2|1,2)f2(1,2) = 1 − 3ε.

Of course, Pε(f2) now has only a single ergodic class and no transient
states. The latter is a desirable property but comes at a price of replac-
ing a sparse probability transition matrix with one that is “dense,” in
the sense of not having any zero entries.

The above symmetric linear perturbation has been used in [16]
and [17] where a perturbation was needed that also preserved double-
stochasticity of a probability transition matrix.

1.3.2 The Asymmetric Linear Perturbation

In the sequence of papers that launched this topic (e.g., [20], [35],
and [37]) an asymmetric linear perturbation was used. Its goal was
not only to eliminate multiple ergodic classes but also to differentiate
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12 Embedding of a Graph in a Markov Decision Process

the home node from all other nodes and to maintain the sparsity
of probability transition matrices induced by deterministic policies.
This was achieved by passing to a singularly perturbed MDP Γa

ε , that
is obtained from Γ by introducing perturbed transition probabilities{
pε(j|i,a)

∣∣ (i, j) ∈ A, i, j ∈ S
}
, where for any ε ∈ (0,1)

pε(j|i,a) :=



1 if i = 1 and a = j,

0 if i = 1 and a 6= j,

1 if i > 1 and a = j = 1,

ε if i > 1, a 6= j and j = 1,

1 − ε if i > 1, a = j and j > 1,

0 if i > 1, a 6= j and j > 1.

Note that 1 denotes the home node. For each pair of nodes i, j (not
equal to 1) corresponding to a (deterministic) arc (i, j), our pertur-
bation replaces that arc by a pair of “stochastic arcs” (i,1) and (i, j)
(see Figure 1.7) with weights ε and 1 − ε, respectively. This stochastic
perturbation has the interpretation that a decision to move along arc
(i, j) results in movement along (i, j) only with probability of (1 − ε)
and with probability ε it results in a return to the home node 1. We
emphasize that the perturbation is chosen to ensure that the Markov
chain defined by Pε(f) contains only a single ergodic class. On the other
hand, the ε-perturbed process Γε clearly “tends” to Γ as ε→ 0, in the
sense that Pε(f)→ P0(f) for every stationary policy f .

For instance, if in the example of the preceding section we consider
the policy f2 that traces out the two sub-cycles depicted in Figure 1.2,

Fig. 1.7 Perturbation of a deterministic action (arc).

Full text available at: http://dx.doi.org/10.1561/0900000003



1.3 Perturbed Embedding Γε 13

it is clear that in Γa
ε the same policy induces the probability transition

matrix

Pε(f2) =


0 1 0 0
1 0 0 0
ε 0 0 1 − ε

ε 0 1 − ε 0


that still has only a single ergodic class, but now has a nonempty class
{3,4} containing the two transient states created by this perturbation.

1.3.3 The Asymmetric Quadratic Perturbation

Of course, there are situations where the presence of transient states
is undesirable. For that reason, in [29] and [24] the asymmetric per-
turbation was modified slightly by introducing a quadratic (in ε) term.
This was achieved by passing to a singularly perturbed MDP Γq

ε, that
is obtained from Γ by introducing perturbed transition probabilities{
pε(j|i,a)

∣∣ (i, j) ∈ A, i, j ∈ S
}
, where for any ε ∈

(
0, 1√

N−2

)

pε(j|i,a) :=



1 − (N − 2)ε2 if i = 1 and a = j,

ε2 if i = 1 and a 6= j > 1,

1 if i > 1 and a = j = 1,

ε if i > 1, a 6= j and j = 1,

1 − ε if i > 1, a = j and j > 1,

0 if i > 1, a 6= j and j > 1.

In this instance, in the example of the preceding section we consider
the policy f2 that traces out the two sub-cycles depicted in Figure 1.2,
it is clear that in Γq

ε the same policy induces the probability transition
matrix

Pε(f2) =


0 1 − 2ε2 ε2 ε2

1 0 0 0
ε 0 0 1 − ε

ε 0 1 − ε 0

 ,
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14 Embedding of a Graph in a Markov Decision Process

which now has a single ergodic class and no transient states. The fact
that this perturbation preserves much of the sparsity of P (f) is easier
to see in examples of higher dimensions.

Remark 1.1. It should be clear that the above perturbations link this
topic with the well developed field of analytic perturbations of operators
and Markov chains. The treatise by Kato [48] is the seminal reference
for the latter topic. However, some of the techniques used here are,
perhaps, somewhat more in the spirit of the recent developments such
as those reported in Avrachenkov et al. [9, 10]. More particularly, in the
context of perturbation and sensitivity analysis of MDP’s the papers
by Schweitzer [65, 66] and Veinott [68] are quite relevant to the results
reported here.

1.4 Background from Markov Chains and MDPs

As before, let f ∈ F be a stationary policy and P (f) be the correspond-
ing probability transition matrix. By P ∗(f) we denote its stationary
distribution matrix, that is defined as the limit Cesaro-sum matrix

P ∗(f) := lim
T→∞

1
T + 1

T∑
t=0

P t(f), P 0(f) = I,

where I is an N × N identity matrix. It is well known (e.g., see [13])
that the above limit exists and satisfies the identity

P (f)P ∗(f) = P ∗(f)P (f) = P ∗(f)P ∗(f) = P ∗(f). (1.1)

An important special case arises when the Markov chain correspond-
ing to P (f) contains only a single ergodic class. In this case, P ∗(f)
consists of identical rows, each of which will be denoted by π(f) =
(π1(f),π2(f), . . . ,πN (f)), where

∑N
i=1 πi(f) = 1. Hence, π(f) consti-

tutes a probability vector that is often called the stationary or invari-
ant distribution of such a Markov chain. It follows from the preceding
identity that π(f) is a solution of the linear system of equations:

π(f)P (f) = π(f); π(f)1 = 1, (1.2)
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1.4 Background from Markov Chains and MDPs 15

where 1 := (1,1, . . . ,1)T . Indeed, π(f) is the unique solution of (1.2).
An even more special but also extremely important case is that of

an irreducible Markov chain, where P (f) contains only a single ergodic
class and no transient states. In this case, the invariant distribution vec-
tor π(f) is still the unique solution of (1.2) and possesses the additional
useful property that πi(f) > 0 ∀i = 1,2, . . . ,N.

Another two very important matrices associated with the probabil-
ity transition matrix P (f) of a Markov chain induced by a policy f ∈ F
are the fundamental matrix G(f) that is defined by

G(f) :=
(
I − P (f) + P ∗(f)

)−1 = lim
β→1−

∞∑
t=0

βt(P (f) − P ∗(f))t, (1.3)

and the closely related deviation matrix

D(f) := G(f) − P ∗(f). (1.4)

The following identities are well known (e.g., see [13, 45, 49, 61])

D(f)P ∗(f) = P ∗(f)D(f) = 0, (1.5)

where the 0 on the right-hand side above is an N × N matrix with 0s

in all entries, and

(I − P (f))D(f) + P ∗(f) − I = D(f)(I − P (f)) + P ∗(f) − I

= P ∗(f), (1.6)

D(f)1 = 0 & G(f)1 = 1, (1.7)

where 1 and 0 are N -vectors consisting entirely of 1s and 0s,
respectively.

Another matrix, also induced by any policy f ∈ F , that plays an
important role in the theory of Markov Decision Processes is the
resolvent-like matrix

[I − βP (f)]−1 =
∞∑

t=0

βtP t(f), (1.8)

where the parameter β ∈ [0,1), is frequently called the discount factor.
Note that this choice of the domain for β ensures that the spectral

Full text available at: http://dx.doi.org/10.1561/0900000003



16 Embedding of a Graph in a Markov Decision Process

radius of βP (f) is strictly less than 1, thereby guaranteeing the exis-
tence of the above inverse and the power series expansion.

In a traditional, Markov Decision Process setting, there is also a
reward or a cost, denoted by r(i,a), associated with each state i and
action a. The interpretation is that this is the reward/cost associated
with action a if that action is selected in state i. However, if actions
are being selected in accordance with a stationary policy f ∈ F , then
the “lottery” on the actions available in state i is prescribed by f and
hence the expected reward in that state is given by

r(i,f) :=
N∑

a=1

r(i,a)f(i,a), i ∈ S. (1.9)

This immediately defines the expected reward/cost vector, r(f),
induced by f the transpose of which is defined by

rT (f) := (r(1,f), r(2,f), . . . , r(N,f)). (1.10)

There are now two well-known MDP’s that have been extensively stud-
ied in the literature (e.g., see [61] and [38]). They are differentiated by
the manner of aggregating the infinite stream of expected rewards/costs
induced by a policy4 f . The first of these is the so-called limiting (or
long-run) average process (AMD, for short) where the performance of
the policy f is defined by the value vector

v(f) := P ∗(f)r(f), (1.11)

whose entries v(i,f) := [P ∗(f)r(f)]i for each i ∈ S are simply the long-
run average expected rewards induced by f when the process begins in
state i.

Analogously, the second process is the so-called discounted Markov
Decision Process (DMD, for short) where the performance of the policy

4 Note that in the theory of MDP’s policies can be more general than the stationary policies

introduced here. For instance, they may depend on past histories of states and actions.
However, for our purposes stationary policies suffice.
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1.4 Background from Markov Chains and MDPs 17

f is defined by the value vector

vβ(f) := [I − βP (f)]−1r(f), (1.12)

whose entries vβ(i,f) := {[I − βP (f)]−1r(f)]}i for each i ∈ S are sim-
ply the discounted expected rewards induced by f when the process
begins in state i.

The optimization problems normally associated with the AMD and
DMD processes, respectively, are

max
f∈F

v(f), and max
f∈F

vβ(f), (1.13)

where the maximization is taken componentwise in the above
expressions.

The above optimization problems are well understood and, for most
purposes, completely solved. In particular, it is a remarkable fact that
in each case there exist deterministic policies f0,f0

β ∈ D that, respec-
tively, attain the maxima in (1.13), componentwise. Furthermore, if β is
sufficiently near 1, there exists a deterministic policy that is simultane-
ously optimal for both the AMD and DMD processes. While many out-
standing researchers contributed to this topic Blackwell’s 1962 paper
(see [13]) is, perhaps, the authoritative reference. There are also many
treatments of this problem in text books (e.g., see [23, 38, 61]).

Remark 1.2. In our embedding of the Hamiltonian Cycle Problem
in Markov Decision Processes, in most instances, we use rewards/costs
only to differentiate the home node 1 from the other nodes. For that
purpose it is sufficient to assume that r(i,a) ≡ 0 for all actions/arcs
emanating from nodes other than the home node, and that r(1,a) ≡ 1
for all actions/arcs emanating from the home node 1. Hence, unless
explicitly stated otherwise, we shall assume that

rT (f) = eT
1 = (1,0, . . . ,0), ∀f ∈ F .

Remark 1.3. The above notation was developed for the unperturbed
MDP Γ, however, whenever we use one of the previously defined
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18 Embedding of a Graph in a Markov Decision Process

ε-perturbed MDP’s, we shall simply add a subscript ε to the relevant
quantity. For instance, the probability transition, stationary distri-
bution and fundamental matrices P (f), P ∗(f), G(f) are replaced by
Pε(f), P ∗ε (f), Gε(f), where ε > 0 is the perturbation parameter. Sim-
ilar indexing by ε will also apply to other quantities. When the choice
of the type of perturbation used is clear from context, the perturbed
MDP will be denoted simply by Γε.
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