
Port-Hamiltonian Systems
Theory: An Introductory

Overview

Arjan van der Schaft
Johann Bernoulli Institute for Mathematics

and Computer Science
University of Groningen, the Netherlands

a.j.van.der.schaft@rug.nl

Dimitri Jeltsema
Delft Institute of Applied Mathematics

Delft University of Technology, the Netherlands
d.jeltsema@tudelft.nl

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2600000002



Foundations and Trends R© in Systems and Control

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. van der Schaft and D. Jeltsema. Port-Hamiltonian Systems Theory: An Introductory
Overview. Foundations and Trends R© in Systems and Control, vol. 1, no. 2-3,
pp. 173–378, 2014.

This Foundations and Trends R© issue was typeset in LATEX using a class file designed by Neal
Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-787-7
c© 2014 A. van der Schaft and D. Jeltsema

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of pay-
ment has been arranged. Authorization does not extend to other kinds of copying, such as that
for general distribution, for advertising or promotional purposes, for creating new collective
works, or for resale. In the rest of the world: Permission to photocopy must be obtained from
the copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339,
USA; Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2600000002



Foundations and Trends R© in
Systems and Control

Volume 1, Issue 2-3, 2014
Editorial Board

Editors-in-Chief

Panos J. Antsaklis
University of Notre Dame
United States

Alessandro Astolfi
Imperial College, United Kingdom
University of Rome “Tor Vergata”, Italy

Editors

John Baillieul
Boston University

Peter Caines
McGill University

Christos Cassandras
Boston University

Denis Dochain
UC Louvain

Magnus Egerstedt
Georgia Institute of Technology

Karl Henrik Johansson
KTH Stockholm

Miroslav Krstic
University of California, San Diego

Jan Maciejowski
Cambridge University

Dragan Nesic
University of Melbourne

Marios Polycarpou
University of Cyprus

Jörg Raisch
TU Berlin

Arjan van der Schaft
University of Groningen

M. Elena Valcher
University of Padova

Richard Vinter
Imperial College

George Weiss
Tel Aviv University

Full text available at: http://dx.doi.org/10.1561/2600000002



Editorial Scope

Topics

Foundations and Trends R© in Systems and Control publishes survey
and tutorial articles in the following topics:

• Control of:

– Hybrid and discrete
event systems

– Nonlinear systems

– Network systems

– Stochastic systems

– Multi-agent systems

– Distributed parameter
systems

– Delay systems

• Systems

– Energy storage

– Grid integration

– Conversion technologies

– Underpinning materials
developments

• Filtering, estimation, and
identification

• Optimal control

• Systems theory

• Control applications

Information for Librarians

Foundations and Trends R© in Systems and Control, 2014, Volume 1, 4 issues.
ISSN paper version 2325-6818. ISSN online version 2325-6826. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2600000002



Foundations and Trends R© in Systems and Control
Vol. 1, No. 2-3 (2014) 173–378
c© 2014 A. van der Schaft and D. Jeltsema

DOI: 10.1561/2600000002

Port-Hamiltonian Systems Theory: An

Introductory Overview

Arjan van der Schaft
Johann Bernoulli Institute for Mathematics

and Computer Science
University of Groningen, the Netherlands

a.j.van.der.schaft@rug.nl

Dimitri Jeltsema
Delft Institute of Applied Mathematics

Delft University of Technology, the Netherlands
d.jeltsema@tudelft.nl

Full text available at: http://dx.doi.org/10.1561/2600000002



ii

Dedicated to the memory of Jan C. Willems,
inspiring teacher and friend.

Full text available at: http://dx.doi.org/10.1561/2600000002



Contents

1 Introduction 2

1.1 Origins of port-Hamiltonian systems theory . . . . . . . 2
1.2 Summary of contents . . . . . . . . . . . . . . . . . . . 5

2 From modeling to port-Hamiltonian systems 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Port-based modeling and Dirac structures . . . . . . . . 13
2.3 Energy-storing elements . . . . . . . . . . . . . . . . . . 20
2.4 Energy-dissipating (resistive) elements . . . . . . . . . . 21
2.5 External ports . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Port-Hamiltonian dynamics . . . . . . . . . . . . . . . . 24
2.7 Port-Hamiltonian differential-algebraic equations . . . . 28
2.8 Detailed-balanced chemical reaction networks . . . . . 32

3 Port-Hamiltonian systems on manifolds 38

3.1 Modulated Dirac structures . . . . . . . . . . . . . . . . 38
3.2 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Input-state-output port-Hamiltonian systems 49

4.1 Linear resistive structures . . . . . . . . . . . . . . . . . 49
4.2 Input-state-output port-Hamiltonian systems . . . . . . . 51
4.3 Memristive dissipation . . . . . . . . . . . . . . . . . . . 54

iii

Full text available at: http://dx.doi.org/10.1561/2600000002



iv

4.4 Relation with classical Hamiltonian systems . . . . . . . 55

5 Representations of Dirac structures 59

5.1 Kernel and image representations . . . . . . . . . . . . 60
5.2 Constrained input-output representation . . . . . . . . . 60
5.3 Hybrid input-output representation . . . . . . . . . . . . 61
5.4 Canonical coordinate representation . . . . . . . . . . . 62
5.5 Spinor representation . . . . . . . . . . . . . . . . . . . 63

6 Interconnection of port-Hamiltonian systems 65

6.1 Composition of Dirac structures . . . . . . . . . . . . . . 66
6.2 Interconnection of port-Hamiltonian systems . . . . . . 68

7 Port-Hamiltonian systems and passivity 71

7.1 Linear port-Hamiltonian systems . . . . . . . . . . . . . 73
7.2 Available and required storage . . . . . . . . . . . . . . 75
7.3 Shifted port-Hamiltonian systems and passivity . . . . . 77

8 Conserved quantities and algebraic constraints 79

8.1 Casimirs of conservative port-Hamiltonian systems . . . 80
8.2 Linear resistive structures and the dissipation obstacle . 81
8.3 Algebraic constraints . . . . . . . . . . . . . . . . . . . . 82
8.4 Elimination of algebraic constraints . . . . . . . . . . . . 83

9 Incrementally port-Hamiltonian systems 86

9.1 Incrementally port-Hamiltonian systems . . . . . . . . . 87
9.2 Connections with incremental and differential passivity . 91
9.3 Composition of maximal monotone relations . . . . . . . 93

10 Input-output Hamiltonian systems 96

10.1 Input-output Hamiltonian systems with dissipation . . . 96
10.2 Positive feedback interconnection and stability . . . . . 102

11 Pseudo-gradient representations 106

11.1 Towards the Brayton-Moser equations . . . . . . . . . . 107
11.2 Geometry of the Brayton-Moser equations . . . . . . . . 110
11.3 Interconnection of gradient systems . . . . . . . . . . . 112

Full text available at: http://dx.doi.org/10.1561/2600000002



v

11.4 Generation of power-based Lyapunov functions . . . . . 112

12 Port-Hamiltonian systems on graphs 114

12.1 Background on graphs . . . . . . . . . . . . . . . . . . . 115
12.2 Mass-spring-damper systems . . . . . . . . . . . . . . 117
12.3 Swing equations for power grids . . . . . . . . . . . . . 123
12.4 Available storage . . . . . . . . . . . . . . . . . . . . . . 124
12.5 Analysis of port-Hamiltonian systems on graphs . . . . 127
12.6 Symmetry reduction . . . . . . . . . . . . . . . . . . . . 132
12.7 The graph Dirac structures and interconnection . . . . 135
12.8 The Kirchhoff-Dirac structure . . . . . . . . . . . . . . . 136
12.9 Topological analogies . . . . . . . . . . . . . . . . . . . 140

13 Switching port-Hamiltonian systems 142

13.1 Switching port-Hamiltonian systems . . . . . . . . . . . 143
13.2 Jump rule for switching port-Hamiltonian systems . . . . 147
13.3 Charge and flux transfer in switched RLC circuits . . . . 150
13.4 The jump rule for switched mechanical systems . . . . . 154

14 Distributed-parameter systems 157

14.1 The Stokes-Dirac structure . . . . . . . . . . . . . . . . 158
14.2 Distributed-parameter port-Hamiltonian systems . . . . 160
14.3 Presence of sources and dissipation . . . . . . . . . . . 164
14.4 Conservation laws . . . . . . . . . . . . . . . . . . . . . 168
14.5 Covariant formulation of port-Hamiltonian systems . . . 170

15 Control of port-Hamiltonian systems 172

15.1 Control by interconnection . . . . . . . . . . . . . . . . . 172
15.2 Energy transfer control . . . . . . . . . . . . . . . . . . . 174
15.3 Stabilization by Casimir generation . . . . . . . . . . . . 175
15.4 The dissipation obstacle and beyond . . . . . . . . . . . 180
15.5 Passivity-based control . . . . . . . . . . . . . . . . . . 182
15.6 Energy-shaping and damping injection . . . . . . . . . . 182
15.7 Interconnection and damping assignment . . . . . . . . 185
15.8 Power-shaping control . . . . . . . . . . . . . . . . . . . 188

Full text available at: http://dx.doi.org/10.1561/2600000002



vi

Appendices 191

A Proofs 192

A.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . 192
A.2 Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . 193
A.3 Extension of Proposition 2.1 . . . . . . . . . . . . . . . . 193

B Physical meaning of efforts and flows 194

References 197

Full text available at: http://dx.doi.org/10.1561/2600000002



Abstract

An up-to-date survey of the theory of port-Hamiltonian systems
is given, emphasizing novel developments and relationships with
other formalisms. Port-Hamiltonian systems theory yields a system-
atic framework for network modeling of multi-physics systems. Ex-
amples from different areas show the range of applicability. While the
emphasis is on modeling and analysis, the last part provides a brief
introduction to control of port-Hamiltonian systems.

A. van der Schaft and D. Jeltsema. Port-Hamiltonian Systems Theory: An Introductory
Overview. Foundations and Trends R© in Systems and Control, vol. 1, no. 2-3,
pp. 173–378, 2014.
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1

Introduction

1.1 Origins of port-Hamiltonian systems theory

The theory of port-Hamiltonian systems brings together different tra-
ditions in physical systems modeling and analysis.

Firstly, from a modeling perspective it originates in the theory
of port-based modeling as pioneered by Henry Paynter in the late
1950s Paynter (1960); Breedveld (1984, 2009). Port-based modeling
is aimed at providing a unified framework for the modeling of sys-
tems belonging to different physical domains (mechanical, electri-
cal, hydraulic, thermal, etc.). This is achieved by recognizing energy
as the ’lingua franca’ between physical domains, and by identifying
ideal system components capturing the main physical characteristics
(energy-storage, energy-dissipation, energy-routing, etc.). Historically
port-based modeling comes along with an insightful graphical nota-
tion emphasizing the structure of the physical system as a collection
of ideal components linked by edges capturing the energy-flows be-
tween them. In analogy with chemical species these edges are called
bonds, and the resulting graph is called a bond graph. Motivated by,
among others, electrical circuit theory the energy flow along the bonds
is represented by pairs of variables, whose product equals power. Typ-

2
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1.1. Origins of port-Hamiltonian systems theory 3

ical examples of such pairs of variables (in different physical domains)
are voltages and currents, velocities and forces, flows and pressures,
etc.. A port-Hamiltonian formulation of bond graph models can be
found in Golo et al. (2003). Port-based modeling can be seen to be a
further abstraction of the theory of across and through variables (cf.
MacFarlane (1970)) in the network modeling of physical systems1.

A second origin of port-Hamiltonian systems theory is geomet-
ric mechanics; see e.g. Arnol’d (1978); Abraham & Marsden (1994);
Marsden & Ratiu (1999); Bloch (2003); Bullo & Lewis (2004). In this
branch of mathematical physics the Hamiltonian formulation of clas-
sical mechanics is formalized in a geometric way. The basic paradigm
of geometric mechanics is to represent Hamiltonian dynamics in a
coordinate-free manner using a state space (commonly the phase
space of the system) endowed with a symplectic or Poisson struc-
ture, together with a Hamiltonian function representing energy. This
geometric approach has led to an elegant and powerful theory for
the analysis of the complicated dynamical behavior of Hamiltonian
systems, displaying their intrinsic features, such as symmetries and
conserved quantities, in a transparant way. Also infinite-dimensional
Hamiltonian systems have been successfully cast into this framework
Olver (1993).

Finally, a third pillar underlying the framework of port-
Hamiltonian systems is systems and control theory, emphasizing dy-
namical systems as being open to interaction with the environ-
ment (e.g. via inputs and outputs), and as being susceptible to con-
trol interaction. The description and analysis of physical subclasses
of control systems has roots in electrical network synthesis the-
ory. Its geometric formulation was especially pioneered in Brockett
(1977); see e.g. van der Schaft (1984, 1982a,b); Crouch (1981, 1984);
Crouch & van der Schaft (1987); Nijmeijer & van der Schaft (1990);
Maschke & van der Schaft (1992); Bloch (2003); Bullo & Lewis (2004)
for some of the main developments, especially with regard to the anal-

1‘Abstraction’ since the theory of across and through variables emphasizes the
balance laws in the system; an aspect which is usually not emphasized in port-based
modeling. In Chapter 12 and in Chapter 14 we will see how port-Hamiltonian sys-
tems can be also defined starting with the basic balance laws of the system.
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4 Introduction

ysis and control of nonlinear mechanical systems (e.g. with nonholo-
nomic kinematic constraints).

A main difference of port-Hamiltonian systems theory with geo-
metric mechanics lies in the fact that for port-Hamiltonian systems
the underlying geometric structure is not necessarily the symplec-
tic structure of the phase space, but in fact is determined by the in-
terconnection structure of the system. In this sense port-Hamiltonian
systems theory intrinsically merges geometry with network theory. The
appropriate geometric object appears to be the notion of a Dirac
structure, which was explored before in Weinstein (1983); Courant
(1990); Dorfman (1993) as a geometric object generalizing at the
same time symplectic and Poisson structures2. The usefulness of
Dirac structures for a geometric theory of port-based modeling and
analysis was first recognized in van der Schaft & Maschke (1995);
Bloch & Crouch (1999); Dalsmo & van der Schaft (1999). Among oth-
ers it has led to a theory of Hamiltonian differential-algebraic equations.
Extensions to the distributed-parameter case were first explored in
van der Schaft & Maschke (2002). A key property of Dirac structures
is the fact that compositions of Dirac structures are again Dirac struc-
tures. This has the crucial consequence that the power-conserving
interconnection of port-Hamiltonian systems (through their external
ports) is again a port-Hamiltonian system; a fundamental property
for network modeling and control.

Another main extension of port-Hamiltonian systems theory with
respect to geometric mechanics is the inclusion of energy-dissipating ele-
ments, which are largely absent in classical Hamiltonian systems. This
greatly broadens the range of applicability of port-Hamiltonian sys-
tems compared to that of Hamiltonian systems in analytical dynamics.
In fact, the framework of port-based modeling and port-Hamiltonian
systems emerges as a general theory for the modeling of complex
physical systems as encountered in many areas of engineering3. Fur-

2The terminology ‘Dirac structure’ seems to be largely inspired by the ’Dirac
bracket’ introduced by Paul Dirac in order to cope with Hamiltonian systems sub-
ject to constraints due to degeneracy of the underlying Lagrangian function Dirac
(1950, 1958). This was motivated in its turn by quantization theory.

3It should be added here that our emphasis in physical system modeling is on
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1.2. Summary of contents 5

thermore, because of its emphasis on energy and power as the lingua
franca between different physical domains, port-Hamiltonian systems
theory is ideally suited for a systematic mathematical treatment of
multi-physics systems, i.e., systems containing subsystems from differ-
ent physical domains (mechanical, electro-magnetic, hydraulic, chem-
ical, etc.).

Apart from offering a systematic and insightful framework for
modeling and analysis of multi-physics systems, port-Hamiltonian
systems theory provides a natural starting point for control. Especially
in the nonlinear case it is widely recognized that physical properties of
the system (such as balance and conservation laws and energy consid-
erations) should be exploited and/or respected in the design of control
laws which are robust and physically interpretable. Port-Hamiltonian
systems theory offers a range of concepts and tools for doing this, in-
cluding the shaping of energy-storage and energy-dissipation, as well
as the interpretation of controller systems as virtual system compo-
nents. In this sense, port-Hamiltonian theory is a natural instance of
a ’cyber-physical’ systems theory: it admits the extension of physi-
cal system models with virtual (’cyber’) system components, which
may or may not mirror physical dynamics. From a broader perspec-
tive port-Hamiltonian systems theory is also related to multi-physics4

network modeling approaches aimed at numerical simulation, such as
20-sim (based on bond graphs) and Modelica/Dymola.

1.2 Summary of contents

In these lecture notes we want to highlight a number of directions in
port-Hamiltonian systems theory. Previous textbooks covering mate-
rial on port-Hamiltonian systems are van der Schaft (2000) (Chapter
4), and Duindam et al. (2009). Especially Duindam et al. (2009) goes
into more detail about a number of topics, and presents a wealth of

‘modeling for control’. Since the addition of control will anyway modify the dynami-
cal properties of the system the emphasis is on relatively simple models reflecting the
main dynamical characteristics of the system.

4For specific physical domains (e.g., mechanical, electrical, chemical, hydraulic, ..)
there are many network modeling and simulation software packages available.
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6 Introduction

material on various application domains. The current lecture notes
present an up-to-date account of the basic theory, emphasizing novel
developments.

Chapter 2 provides the basic definition of port-Hamiltonian sys-
tems and elaborates on the concept of a Dirac structure. Chapter 3
deals with Dirac structures on manifolds, and the resulting defini-
tion of port-Hamiltonian systems on manifolds. A brief discussion
concerning integrability of Dirac structures is given, and the relation
with the theory of kinematic constraints is provided. Chapter 4 de-
tails the special, but important, subclass of input-state-output port-
Hamiltonian systems arising from the assumption of absence of alge-
braic constraints and the linearity of energy-dissipation relations. The
resulting class of port-Hamiltonian systems is often taken as the start-
ing point for the development of control theory for port-Hamiltonian
systems.

With the general definition of port-Hamiltonian systems given in a
geometric, coordinate-free, way, it is for many purposes important to
represent the resulting dynamics in suitable coordinates, and in a form
that is convenient for the system at hand. Chapter 5 shows how this
amounts to finding a suitable representation of the Dirac structure,
and how one can move from one representation to another. In Chapter
6 it is discussed how the power-conserving interconnection of port-
Hamiltonian systems again defines a port-Hamiltonian system. This
fundamental property of port-Hamiltonian system is based on the re-
sult that the composition of Dirac structures is another Dirac struc-
ture. Chapter 7 investigates the close connection of port-Hamiltonian
systems with the concept of passivity, which is a key property for
analysis and control. In Chapter 8 other structural properties of port-
Hamiltonian systems are studied, in particular the existence of con-
served quantities (Casimirs) and algebraic constraints.

Chapter 9 takes a step in a new direction by replacing the compo-
sition of the Dirac structure and the resistive structure by a general
maximal monotone relation, leading to the novel class of incremen-
tally port-Hamiltonian systems. In Chapter 10 the relation of port-
Hamiltonian systems with the older class of input-output Hamilto-

Full text available at: http://dx.doi.org/10.1561/2600000002



1.2. Summary of contents 7

nian systems is explored, and the key property of preservation of sta-
bility of input-output Hamiltonian systems under positive feedback
(in contrast with negative feedback for port-Hamiltonian and pas-
sive systems) is discussed. Finally Chapter 11 makes the connection
of port-Hamiltonian systems to another class of systems, namely the
pseudo-gradient systems extending the Brayton-Moser equations of
electrical circuits.

Chapter 12 deals with port-Hamiltonian systems on graphs, start-
ing from the basic observation that the incidence structure of the graph
defines a Poisson structure on the space of flow and effort variables
associated to the vertices and edges of the graph. This is illustrated
on a number of examples. In Chapter 13 the framework is extended
to switching port-Hamiltonian systems, including a formulation of
a jump rule generalizing the classical charge and flux conservation
principle from electrical circuits with switches. Chapter 14 deals with
the port-Hamiltonian formulation of distributed-parameter systems,
based on the formulation of the Stokes-Dirac structure expressing
the basic balance laws. Finally, Chapter 15 gives an introduction to
the control theory of port-Hamiltonian systems, exploiting their basic
properties such as passivity and existence of conserved quantities.

What is not in these lecture notes

The overview of port-Hamiltonian systems theory presented in
this article is far from being complete: a number of topics are
not treated at all, or only superficially. Notable omissions are the
theory of scattering of port-Hamiltonian systems Stramigioli et al.
(2002); van der Schaft (2009), treatment of symmetries and con-
servation laws of port-Hamiltonian systems van der Schaft (1998);
Blankenstein & van der Schaft (2001), controllability and observ-
ability for input-output Hamiltonian systems and port-Hamiltonian
systems van der Schaft (1984, 1982a,b); Maschke & van der Schaft
(1992), realization theory of input-output Hamiltonian systems
and port-Hamiltonian systems Crouch & van der Schaft (1987),
port-Hamiltonian formulation of thermodynamical systems
Eberard et al. (2007), model reduction of port-Hamiltonian sys-
tems Polyuga & van der Schaft (2011), well-posedness and stability
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8 Introduction

of distributed-parameter port-Hamiltonian systems Villegas (2007);
Jacob & Zwart (2012), and structure-preserving discretization of
distributed-parameter port-Hamiltonian systems Golo et al. (2004);
Seslija et al. (2012). Furthermore, Chapter 15 on control of port-
Hamiltonian systems only highlights a number of the developments
in this area; for further information we refer to the extensive literature
including Ortega et al. (2001a,b); Duindam et al. (2009); Ortega et al.
(2008).
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