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Abstract

In this monograph we consider the class of continuous-time positive

switched systems. We discuss several problems, including stability, per-

formance analysis, stabilization via switching control, and optimization.

The monograph starts with a chapter where several application exam-

ples are provided, to motivate the interest in this class of systems. The

rest of the monograph is dedicated to the theory of stability, stabiliza-

tion and performance optimization of positive switched systems. The

main existing results are recalled, but also new challenging problems

are proposed and solved. Special attention has been devoted to point

out those results that specifically pertain to positive (linear) switched

systems and do not find a counterpart for the wider class of (nonposi-

tive) linear switched systems.

F. Blanchini, P. Colaneri and M. E. Valcher. Switched Positive Linear Systems.
Foundations and TrendsR© in Systems and Control, vol. 2, no. 2, pp. 101–273, 2015.
DOI: 10.1561/2600000005.
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1

Introduction

Positive systems are an important class of systems that frequently arise

in application areas, such as in the chemical process industry, electronic

circuit design, communication networks and biology.

Stability problems arising in the study of positive systems differ

from those pertaining to standard systems. The main difference stems

from the fact that the state variables are confined to the positive or-

thant. Thus, the whole analysis of these systems focuses only on the

trajectories generated under positivity constraints, and consequently

stability can be deduced from the existence of copositive Lyapunov

functions whose derivatives are required to be negative only along the

system trajectories in the positive orthant.

Switched positive systems also arise in a variety of applications.

Examples can be found in TCP congestion control, in processes de-

scribed by non-homogeneous Markov chains, in image processing, in

biochemical networks, etc... Differently from general switched systems,

that have received a lot of attention in the past years, the theory for

positive switched systems is still in a relative infancy.

In this monograph we study the stability, performance evaluation,

stabilization via switching control and optimal control of (continuous-

2
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3

time and linear) positive switched systems. We discuss results that have

already been established in the literature, but other results, especially

those regarding norm computation and optimization, are new and in-

tegrated with the previous ones.

In Chapter 2 we present many examples and motivations for study-

ing positive switched systems. These examples include thermal systems,

fluid networks, traffic systems, biological and epidemiological models

and transmission networks. We present some specific problems that

should be inspirational (at least we hope they are) for the subsequent

chapters.

In Chapter 3, we consider the stability problem, namely the prob-

lem of determining stability under arbitrary switching. We show that

this problem can be generalized to the problem of establishing a con-

vergence (or divergence) rate. We characterize the stability property

in terms of the existence of convex homogeneous Lyapunov functions.

In general these functions can be extremely complex, so we provide

some special classes of Lyapunov functions, including copositive linear

and copositive quadratic Lyapunov functions, which are conservative

but simpler to be computed. We also discuss a famous conjecture, now

disproved in the general case, regarding the equivalence between stabil-

ity under arbitrary switching and Hurwitz robustness, namely the fact

that all the matrices in the convex hull of the family of system matrices

are Hurwitz. The statement is true for 2-dimensional systems and false

in general, since Hurwitz robustness is only necessary when the system

dimension n is greater than 2. We also investigate the case when dwell

time is imposed on the switching signals, namely a minimum amount

of time has to elapse between any pair of consecutive switching times.

In Chapter 4 we discuss the performance evaluation of positive

switched systems in terms of several input-output induced norms.

Notwithstanding the fact that, for positive systems, it is often easy

to establish the worst-case signal, namely the one providing the

largest output norm, computing these norms is in general hard.

Then we provide computationally tractable ways to generate upper

bounds, for both arbitrary switching signals and dwell-time constrained

ones.

Full text available at: http://dx.doi.org/10.1561/2600000005



4 Introduction

In Chapter 5 we consider the stabilization problem for systems for

which the switching signal represents a control input. This problem has

some interesting properties that are the counterpart of some proper-

ties established in the stability analysis case. Stabilizability is equiva-

lent to the existence of a concave homogeneous copositive control Lya-

punov function. Again, finding any such function is in general hard,

so we investigate special classes including linear and quadratic coposi-

tive functions. We also provide some sufficient stabilizability conditions

in terms of Lyapunov Metzler inequalities. The disproved conjecture

about stability has a counterpart for the stabilizabity case: is stabiliz-

ability equivalent to the existence of at least one Hurwitz element in the

convex hull of the matrices? Again the is true for 2-dimensional systems

and false in general, as the existence of a Hurwitz convex combination

is only a sufficient condition for stabilization. It is interesting to note

that the existence of a Hurwitz convex combination is a necessary and

sufficient condition for the existence of a smooth homogeneous control

Lyapunov function.

Finally, in Chapter 6, we consider the optimal control problem for

positive systems with a controlled switching signal. We show how some

of the material presented in the previous chapters, such as the Lya-

punov Metzler inequalities technique, can be successfully exploited to

derive some conditions that allow to design a guaranteed cost control.

In addition to the simple numerical examples provided in Chapters

3-5 to illustrate the developed theory, in this chapter simulations are

provided for a couple of “realistic” examples presented in Chapter 2,

dedicated to the motivational part, and specifically: the optimal ther-

apy scheduling for mitigation of the HIV viral load, and the disease free

control applied to a SIS (Susceptible-Infective-Susceptible) epidemio-

logical system.

This survey does not aim at providing an exhaustive account of all

the research problems investigated in the literature and concerned with

positive switched systems. Important issues have been omitted here,

due to page constraints. Among them, it is worth quoting the follow-

ing ones: controllability/reachability (see Fornasini and Valcher [2011],

Santesso and Valcher [2008], Valcher and Santesso [2010], Valcher

Full text available at: http://dx.doi.org/10.1561/2600000005



1.1. Notation 5

[2009], Xie and Wang [2006]), observability of positive switched sys-

tems (Li et al. [2014]), positive switched systems with delays (Li et al.

[2013a,b], Liu and Dang [2011], Liu and Lam [2012], Xiang and Xiang

[2013]), and interesting characterizations like joint spectral properties

and asymptotic properties of matrix semigroups (Guglielmi and Pro-

tasov [2013], Protasov et al. [2010], Jungers [2012], and extremal norms

for linear inclusions, Mason and Wirth [2014]). For all these topics we

refer the interested Reader to the previous references. On the other

hand, for the topics specifically addressed in this monograph, no ref-

erences are provided in this introduction, being them appropriately

quoted when needed within the text.

1.1 Notation

The notation used throughout the monograph is standard for positive

systems. The sets of real and natural numbers are denoted by R and N,

respectively, while R+ is the set of nonnegative real numbers. Capital

letters denote matrices, small (bold face) letters denote vectors. For

matrices or vectors, (>) indicates transpose. The (`, j)th entry of a

matrix A is denoted by [A]`,j , while the ith entry of a vector x is xi or

[x]i. When the vector x is obtained as the result of some mathematical

operation, e.g. x = Ay, we will generally adopt the latter notation

[Ay]i. The symbol ei denotes the ith canonical vector in Rn, where n

is always clear from the context, while 1n denotes the n-dimensional

vector with all entries equal to 1. The symbol In denotes the identity

matrix of order n.

A (column or row) vector x ∈ Rn is said to be nonnegative, x ≥ 0,

if all its entries xi, i = 1, 2, . . . , n, are nonnegative. It is positive if

nonnegative and at least one entry is positive. In this case, we will use

x > 0. It is said to be strictly positive if all its entries are greater than

0, and in this case, we will use the notation x � 0. The set of all n-

dimensional nonnegative vectors is denoted by Rn+ and referred to as

the positive orthant. The expressions x � y, x > y and x ≥ y mean

that the difference x− y is strictly positive, positive and nonnegative,

respectively. Similar notation is used for the (real) matrices.

Full text available at: http://dx.doi.org/10.1561/2600000005



6 Introduction

The set of n-dimensional nonnegative vectors whose entries sum up

to 1 is the simplex

An := {α = (α1, . . . , αn) ∈ Rn+ :
n∑
i=1

αi = 1}.

A square matrix A ∈ Rn×n is said to be Metzler1 if its off-diagonal

entries [A]ij , i 6= j, are nonnegative. Every Metzler matrix A has a

real dominant eigenvalue λF ∈ σ(A) satisfying Re(λF ) > Re(λ) for

every λ ∈ σ(A), λ 6= λF . λF is called the Frobenius eigenvalue of A, see

Farina and Rinaldi [2000]. Also, associated with λF there is always both

a left and a right positive eigenvector, known as (left/right) Frobenius

eigenvectors.

An n×n Metzler matrix A is reducible if there exists a permutation

matrix Π such that

Π>AΠ =
[
A11 A12
0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices, otherwise it is

irreducible. It follows that 1× 1 matrices are always irreducible.

A linear state space model described by the linear differential equa-

tion ẋ(t) = Ax(t), where A is a Metzler matrix, is called a positive

system, see Berman et al. [1989], Farina and Rinaldi [2000], Kaczorek

[2002], Krasnoselskii [1964], Luenberger [1979], because it enjoys the

property that any trajectory starting in the positive orthant remains

confined in it.

A square matrix is Hurwitz if all its eigenvalues lie in the open left

half plane. A Metzler matrix is Hurwitz if and only if there exists a

vector v � 0 such that v>A � 0, or, equivalently if and only there

exists a vector w � 0 such that Aw � 0, see e.g. Farina and Rinaldi

[2000].

Given two matrices A ∈ Rn×m and B ∈ Rp×q, the expression C =
A⊗ B ∈ Rnp×mq stands for the usual Kronecker product. If A ∈ Rn×n

and B ∈ Rp×p, their Kronecker sum is defined as A ⊕ B = A ⊗ Ip +
1A Metzler matrix is also known in the literature as “essentially nonnegative

matrix” (see Berman et al. [1989], Horn and Johnson [1985]) or as the opposite of a
“Z-matrix” (see Horn and Johnson [1991]).
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1.2. Continuous-time positive switched systems 7

In ⊗ B ∈ Rnp×np. Properties of Kronecker operators can be found in

Graham [1981].

The symbols �,�,≺ and � are used to denote order relations

induced by definiteness properties. For instance, the expression P =
P> � 0 ∈ Rn×n means that P is a (symmetric and) positive definite

matrix, i.e. x>Px > 0 for every x 6= 0. P1 � P2 means that P1 − P2 is

a (symmetric and) positive semi-definite matrix.

1.2 Continuous-time positive switched systems

A continuous-time positive switched system is described by the following

equation

ẋ(t) = Aσ(t)x(t), t ∈ R+, (1.1)

where x(t) denotes the value of the n-dimensional state variable at

time t, and σ(t) is a right-continuous and piece-wise constant mapping

from R+ into the finite set {1, ...,M}. This latter property ensures that

in any bounded time interval the map σ has always a finite number

of discontinuities, known as switching instants and denoted in the fol-

lowing by 0 = t0 < t1 < t2 < . . . . This amounts to saying that σ(t)
takes some constant value ik ∈ {1, 2, . . . ,M} at every t ∈ [tk, tk+1) and

that σ(tk) 6= σ(tk+1). In the sequel, when we will refer to an “arbitrary

switching signal” σ we will always mean an arbitrary switching signal

endowed with the aforementioned properties and we will denote the set

of such switching signals by the symbol D0. The reason for this notation

will be clarified later on.

A function x : R+ 7→ Rn is a solution of (1.1) if, see Shorten et al.

[2007], it is continuous and piecewise continuously differentiable and

if there is a switching signal σ such that (1.1) holds at every t ∈ R+,

except at the switching instants. For every value i taken by the switch-

ing signal σ (at t), ẋ(t) = Aix(t) is a (autonomous2) continuous-time

positive system, which means that Ai is an n×n Metzler matrix. This

ensures that if x(0) belongs to the positive orthant Rn+, then, for every

choice of σ, the state evolution x(t) = x(t; x(0), σ) belongs to Rn+ for

2In this monograph by an autonomous system we will always mean a system with
no inputs, see Khalil [2002], Sun and Ge [2005], Willems [1970].
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8 Introduction

every t ∈ R+. It is worth noticing that also for switched systems the

Metzler property of the matrices Ai, i ∈ {1, 2, . . . ,M}, is both neces-

sary and sufficient to ensure that all the state trajectories starting in

the positive orthant remain in Rn+ at all subsequent times, for every

choice of the switching signal. Given any initial state xi ∈ Rn+, any

switching signal σ : R+ 7→ {1, 2, . . . ,M}, and any pair of time instants

t ≥ τ ≥ 0, the state at time t can be expressed as

x(t) = Φ(t, τ, σ)xi,

where Φ(t, τ, σ) represents the state transition matrix of system (1.1)

corresponding to the time interval [τ, t] and the switching signal σ.

Clearly, if we denote by τ = t1 < t2 < · · · < tk < tk+1 = t the

switching instants in the time interval [τ, t] and by ih the value of the

switching signal σ in the time interval [th, th+1), h ∈ {1, 2, . . . , k}, then

Φ(t, τ, σ) = eAik (t−tk) . . . eAi2 (t3−t2)eAi1 (t2−τ).

In the following, we will also consider non-autonomous positive

switched systems, described, for instance (but not only), by the fol-

lowing equations:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),
y(t) = Cσ(t)x(t) +Dσ(t)u(t), t ∈ R+,

(1.2)

where x(t),u(t) and y(t) are the n-dimensional state variable, the m-

dimensional input variable and the p-dimensional output variable, re-

spectively, at time t. For every value i taken by σ (at t), Ai is an n×n
Metzler matrix, while Bi, Ci and Di are nonnegative matrices. Under

these conditions, the nonnegativity of the input at every time t ≥ 0 and

the nonnegativity of the initial condition x(0) ensure the nonnegativity

of the state and output trajectories at every t ≥ 0.
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