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ABSTRACT

In recent years, Economic Model Predictive Control (empc)

has received considerable attention of many research groups.

The present tutorial survey summarizes state-of-the-art ap-

proaches in empc. In this context empc is to be understood

as receding-horizon optimal control with a stage cost that

does not simply penalize the distance to a desired equilibrium

but encodes more sophisticated economic objectives. This

survey provides a comprehensive overview of empc stability

results: with and without terminal constraints, with and

without dissipativtiy assumptions, with averaged constraints,

formulations with multiple objectives and generalized ter-

minal constraints as well as Lyapunov-based approaches.

Moreover, we compare different performance criteria for

some of the considered approaches and comment on the

connections to recent research on dissipativity of optimal

control problems. We consider a discrete-time setting and

point towards continuous-time variants. We illustrate the

different empc schemes with several examples.

Timm Faulwasser, Lars Grüne and Matthias A. Müller (2018), “Economic Nonlinear
Model Predictive Control”, Foundations and Trends R© in Systems and Control: Vol.
5, No. 1, pp 1–98. DOI: 10.1561/2600000014.
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1

Introduction

The principle idea of Model Predictive Control (mpc) can be dated

back to the 1960s, when [76] as well as [56] suggested receding-horizon

solutions of Optimal Control Problems (ocp). While mpc saw its first

applications in petro-chemical industries in the 1970s, by now a mature

body of knowledge encompasses stability and robustness of linear and

nonlinear mpc,1 strategies and tools for efficient numerical implemen-

tation ranging from sub-microseconds for small scale linear-quadratic

mpc to handling of strong nonlinearities, differential-algebraic dynamics

and partial-differential equations in real-time feasible implementations.

Several monographs provide overviews on the field of mpc, see [77, 39,

20]. In other words, nowadays mpc can be regarded as mature control

method, which has had significant impact on industrial process control,

cf. [61, p. xi].

Standard control tasks frequently solved with nmpc include setpoint

regulation and trajectory tracking, whereby the former refers to the

stabilization of known setpoints defined in the state-space or some

1In the literature, mpc often refers to the a setting with linear systems, convex
quadratic objective and linear constraints while nmpc, which stands for Nonlinear
Model Predictive Control, highlights the presence of nonlinear dynamics and non-
convex constraints.

2
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3

output space and the latter refers to the task of tracking time-dependent

reference trajectories. However, even before first stability results on

nmpc with state and input constraints were available, it has been

observed by [66] that

[in] attempting to synthesize a feedback optimizing

control structure, our main objective is to translate

the economic objective into process control objectives.

The classical way to tackle this problem of designing economically

beneficial control schemes is by means of the so-called control pyramid,

wherein real-time optimization is used to compute economically desirable

targets, which are then passed to the advanced process control, i.e.

the mpc layer, [21]. In other words, classically economic targets are

translated into setpoints and reference trajectories, which are in turn

stabilized by control techniques such as mpc. If indeed mpc is used to

track these targets, then it is natural that the mpc objective penalizes

mainly the deviation from the desired setpoint. It is this setting of

setpoint regulation and tracking in which the vast majority of results

on mpc stability and robustness of are formulated, cf. [64, 39, 77], and

which is used frequently in industrial practice. At the same time, in

process systems engineering and other fields of application, one aims at

economic process operation. Hence, in the view of the quote from [66]

given above, the question of closed-loop properties of receding-horizon

optimal control with generic or economic objectives is very natural. In

the process control community this issue has been addressed using the

label Dynamic Real Time Optimization [50], while in [3, 4] the term

Economic Model Predictive Control (empc) has been coined.

The present survey provides a concise overview of different ap-

proaches on the question of stability and optimality in different formu-

lations of empc. In contrast to previous overviews on the same topic

[19], we cover approaches both with and without terminal constraints

and end penalties, and turnpike/dissipativity-based settings as well as

Lyapunov-based approaches.

Full text is available at http://dx.doi.org/10.1561/2600000014



4 Introduction

1.1 Outline

In Section 2 we recall important stability results for stabilizing nmpc.

Section 3 analyzes the stability of empc based on dissipativity properties

and terminal constraints. Section 4 investigates the counterpart without

terminal constraints and penalties. In Section 5 we provide an overview

of performance bounds for the empc schemes from Section 3 and

Section 4.

empc with averaged constraints is discussed in Section 6, while

Section 7 revisits generalized terminal constraints. Lyapunov-based

approaches and multi-objective approaches are presented in Section 8

and Section 9, respectively. This survey ends with conclusions and an

outlook on open issues in Section 10.

1.2 Notation

Throughout this review, we use the following notation: Real vectors are

denoted by Latin letters, i.e. x ∈ Rnx , u ∈ Rnu . The two-norm of any

vector x ∈ Rnx is ‖x‖.

Consider a discrete-time system x(t + 1) = f(x(t), u(t)) with f :

Rnx × Rnu → Rnx . The trajectory originating from x0 driven by the

input u(·) is written as x(·; x0, u(·)). Whenever the control sequence is

clear from context, we write simply x(·; x0).

We will use the following standard classes of comparison functions:

• L :=
{

γ : R+
0 → R+

0 | γ continuous and decreasing with

lim
k→∞

γ(k) = 0
}

• K := {α : R+
0 → R+

0 | α continuous and strictly increasing with

α(0) = 0}

• K∞ := {α ∈ K | α unbounded}

• KL := {β : R+
0 × R+

0 → R+
0 | β(·, k) ∈ K, β(r, ·) ∈ L}.

We refer to [52] for a detailed overview of properties of these comparison

functions.

Full text is available at http://dx.doi.org/10.1561/2600000014
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