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ABSTRACT
This survey monograph overviews a large core of research
results produced by the authors in the past decade about
reset controllers for linear and nonlinear plants. The cor-
responding feedback laws generalize classical dynamic con-
trollers because of the interplay of mixed continuous/discrete
dynamics. The obtained closed-loop system falls then within
the category of hybrid dynamical systems, with the specific
feature that the hybrid nature arises from the nature of
the controller, rather than the nature of the plant, which
is purely continuous-time. Due to this fact, the presented
results focus on performance and stability notions that
prioritize continuous-time evolution as compared to the
discrete-time one. Dwell-time logics (namely, conditions
preventing consecutive jumps that are too close to each
other) are indeed enforced on solutions, to ensure that
the continuous evolution of solutions is complete (no Zeno
solutions occur).
After presenting a historical motivation and an overview of
the results on this topic in Part I, several results on stability

Christophe Prieur, Isabelle Queinnec, Sophie Tarbouriech and Luca Zaccarian (2018),
“Analysis and Synthesis of Reset Control Systems”, Foundations and TrendsR© in
Systems and Control: Vol. 6, No. 2-3, pp 117–338. DOI: 10.1561/2600000017.
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2

and performance analysis and on control design for general
linear continuous-time plants are developed in Part II. These
results are developed by exploiting the well-established
formalism for nonlinear hybrid dynamical systems intro-
duced by Andy Teel and co-authors around 2004. With
this formalism, by ensuring sufficient regularity of the reset
controller dynamics, we ensure robustness of stability with
respect to small disturbances and uncertainties together with
suitable continuity of solutions, generally regarded as well-
posedness of the hybrid closed loop. Throughout Part II, we
provide several simulation studies showing that reset control
strategies may allow to attain better performance with
respect to the optimal ones obtained by classical continuous-
time controllers.

Finally, in Part III we focus on planar systems, that is
reset closed loops involving a one-dimensional linear plant
and a one-dimensional reset controller. For this simple
interconnection interesting stability conditions can be drawn
and relevant extensions addressing the reference tracking
problem are introduced, illustrating them on a few relevant
case studies emerging in the automotive field.
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1
Introduction

1.1 Historical overview

Reset controllers were proposed for the first time more than 50 years
ago by Clegg (1958), with the aim at providing more flexibility in linear
controller designs and at potentially removing fundamental performance
limitations of linear controllers (see, e.g., the motivating example in
Section 2.2). The first systematic designs for reset controllers were
reported in the 1970s by Krishnan and Horowitz (1974) and Horowitz
and Rosenbaum (1975) and there has been a renewed interest in this
class of systems in the late 1990s with Beker et al. (1999b), Beker et al.
(1999a), Beker et al. (2001b), Beker et al. (2004), Chait and Hollot
(2002), Chen et al. (2000a), Chen et al. (2000b), Chen et al. (2001),
Haddad et al. (2000), Hollot et al. (1997), Hollot et al. (2001), Hu et al.
(1997), and Zheng et al. (2000).

More specifically, a reset controller, according to its historical
definition, is a linear controller whose output is reset to zero whenever
its input and output satisfy an appropriate algebraic relationship (even
though generalizations not necessarily resetting to zero will be also
considered in this survey). For instance, in Beker et al. (2004) and the
references cited therein, a class of reset controllers was considered where

4
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1.1. Historical overview 5

the output of the controller is reset to zero whenever its input is equal
to zero. The Clegg integrator introduced in Clegg (1958) acts like a
linear integrator whenever its input and output have the same sign and
it resets its output to zero otherwise (see Section 1.2). Consequently, its
describing function has the same magnitude plot as the linear integrator
but it has 51.9◦ less phase lag. This feature of the Clegg integrator
was used for the first time in Krishnan and Horowitz (1974) to provide
a systematic procedure for controller design exploiting this device.
Subsequently, a new reset device called the First Order Reset Element
(FORE) was introduced in Horowitz and Rosenbaum (1975), essentially
generalizing the Clegg integrator’s base linear dynamics by also allowing
for a nonzero real pole. Horowitz and Rosenbaum (1975) also proposed
a design procedure consisting of two steps. First, a non-reset part of
the controller was designed to achieve all design specifications except
for the overshoot. Then, in the second step, the pole of the FORE was
selected to reduce the overshoot. It was illustrated through examples
and simulations that the controller in the first step of the procedure
could indeed be designed with lower phase margin, which provided more
design flexibility. A nice account of these results and their relation to
more recent developments in reset control are given in Chait and Hollot
(2002).

The first example that clearly illustrated the advantages of reset
over linear controllers was presented in Beker et al. (2001a) where a
reset controller was designed to achieve design specifications that are
impossible to achieve by any linear controller (see also Feuer et al.,
1997). Indeed, for linear plants including an integral action, if the
desired rise time is sufficiently small, then the output must overshoot
with any linear controller. However, a reset controller is designed in
Beker et al. (2001a) that overcomes this fundamental performance
limitation of linear controllers. To date, this appears to be the only real
situation where reset designs have been shown to outperform the best
possible classical design, nevertheless, practical experience reveals that
desirable closed-loop behavior is obtained when suitably embedding
resets in otherwise continuous-time control devices. Examples of such
experiences can be found in the experimental applications reported in
Zheng et al. (2007), Fernandez et al. (2008), Wu et al. (2007), Li et al.

Full text available at: http://dx.doi.org/10.1561/2600000017



6 Introduction

(2009), Bakkeheim et al. (2008), Guo et al. (2009), Panni et al. (2014),
Cordioli et al. (2015), Zheng et al. (2000), Carrasco and Baños (2012),
Li et al. (2011), Vidal and Baños (2010), and Villaverde et al. (2011).
The difficulty in proving rigorous statements with reset systems was
due to the lack of suitable stability and performance analysis tools for
systems whose solutions may experience instantaneous jumps (this is
the case for an integrator reset to zero).

From a theoretical viewpoint, first attempts to rigorously analyze
stability of reset systems with Clegg integrators can be found in Hu
et al. (1997) and Hollot et al. (1997). In particular, an integral quadratic
constraint was proposed in Hollot et al. (1997) to analyze stability of a
class of reset systems. However, the proposed condition was conservative
as it was independent of reset times. BIBO stability analysis of reset
systems consisting of a second-order plant and a FORE was conducted
in Chen et al. (2001) (see also Chen et al., 2000b). The proofs are based
on an explicit characterization of reset times which are proved to be
equidistant under mild conditions. Using this fact, the authors prove
asymptotic and BIBO stability of the reset system via the discrete-
time model of the system that describes the system at reset times
only. However, the same approach could not be used to analyze higher-
order reset systems. Stability analysis of general reset systems can be
found in Beker et al. (2004) (see also Hollot et al., 2001; Chen et al.,
2000a)) where Lyapunov-based conditions for asymptotic stability were
presented and computable conditions for quadratic stability based on
linear matrix inequalities (LMIs) were given. Moreover, in Beker et
al. (2004), BIBO stability of general reset systems was obtained as a
consequence of quadratic stability and an internal model principle was
proved for reference tracking and disturbance rejection.

In the last decade, perhaps triggered by the inspiring work of Beker
et al. (2004), a significant renewed interest in Lyapunov-based analysis
and synthesis for reset systems has been witnessed by the scientific
community. This survey monograph reports on a research strand that
started around 2005, motivated by the results in Beker et al. (2004),
wherein some recent stability and performance analysis tools for hybrid
dynamical systems have been brought to bear into the framework of
reset control systems. While many alternative and relevant approaches
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1.2. The Clegg integrator circuit 7

have been developed during the last decade (a selection of them is briefly
overviewed in the following Section 1.5), we specifically concentrate here
on a research strand that emerged from the hybrid Lyapunov theory
proposed in Goebel et al. (2012). Some important differences between
what is reported here and alternative approaches are discussed in the
next sections, which explain the spirit of our approach to reset control.
To this end, we need to somewhat come back to the very origins of
reset control and take a close look at the analog circuit proposed by
J.C. Clegg in 1958, which is discussed in the next section.

1.2 The Clegg integrator circuit

In 1958, J.C. Clegg published a paper (Clegg, 1958) where he proposed
a modification to the existing analog control schemes to reduce the
phase lag induced by a linear integrator. The relevance of Clegg’s work
was mostly targeted to analog control, because digital control systems
were still non-existent in the late 1950s, nevertheless, follow-up works
considered digital versions of the scheme proposed by Clegg. Let us
here consider the analog device proposed by Clegg and derive the
corresponding equations.

In the ideal case of using infinite gain operational amplifiers, it is
well known that a linear integrator can be implemented using a resistor
on the input path and a capacitor on the feedback path of the circuit, as
represented in Figure 1.1. The corresponding input/output relation of
the linear integrator can be written in the time domain as ẋc = − 1

RC e,
where we use xc for the integrator output, to resemble the fact that the
integrator state is the state of a feedback controller from the tracking
error e. In this figure, R is the resistance on the input branch of the

C

R vC
e xc

Figure 1.1: A linear analog integrator.
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8 Introduction

C

R

e

C

R vC1

vC2

Rd xc

–

–

Figure 1.2: The “Clegg integrator”.

amplifier, C is the capacity in the feedback branch, and vC is the voltage
across the capacitor.

The modification proposed by Clegg corresponds to the scheme
of Figure 1.2 (which is reported here from Clegg (1958) with a sign
inversion at the output, for convenience of exposition), where we use the
same notation as in Figure 1.1, with possibly different voltages vC1 and
vC2 and extra diodes and resistors. We describe the Clegg integrator
dynamics assuming that Rd � R and disregarding the forward-bias
voltage drop across the diodes, leading to the following ideal relationships
between voltage and current across capacitors, resistors, and diodes:

iC(t) = C
dvC(t)
dt

iR(t) = vR(t)/R

iD(t) =
{

+∞, if vD(t) > 0,
0 if vD(t) ≤ 0.

First note that by the infinite gain assumption of the operational
amplifier, the input voltages (marked by gray dots on the figure) are
always zero. Then, the two capacitors’ voltages satisfy vC1(t) ≤ 0
and vC2(t) ≥ 0 for all times (otherwise the infinite current flowing in
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1.2. The Clegg integrator circuit 9

the diodes would instantaneously discharge the capacitor). Moreover,
when e(t) < 0, regardless of the preceding voltage stored in the upper
capacitor, the current flowing in the two diodes and through the upper
Rd will (almost) instantaneously impose vC1(t) = 0. However, when
e(t) ≥ 0, the upper circuit will correspond to the linear integrator
because the diodes will both be open (being subjected to a non-positive
voltage). Similarly for the lower circuit, if e(t) > 0, we will have vC2(t) =
0 and if u(t) ≤ 0 the circuit will integrate. Since, as commented above,
vC1(t) ≤ 0 and vC2(t) ≥ 0 for all times, given xc(t) := −vC1(t)− vC2(t),
the integrating and reset conditions for both circuits can be written as
the following hybrid dynamics

ẋc = 1
RC

e, is allowed when xce ≥ 0,

x+
c = 0, is allowed when xce ≤ 0,

(1.1)

where we insist on the fact that the situation e(t) = 0 leads to an
undetermined behavior of the circuit mostly dependent on the effect of
unmodeled noise and uncertainties. In this model, we use the shorthand
notation ẋ for d

dtx(t, j) and x+ for x(t, j + 1) which will be formally
defined later on in the survey. The strategy that we prefer to adopt for
handling such undetermined cases is to allow for multiple solutions to
the dynamics (1.1), thereby considering in our model all the possible
scenarios. See the discussion given later in Remark 1.1.

One way to understand the hybrid model (1.1) for the Clegg
integrator is to call its first equation the “flow” equation and its second
equation the “jump” equation. The two conditions at the right-hand
side become then the “flow” condition and the “jump” condition. At
any time, a solution to the hybrid system (1.1) may then flow or jump
depending on whether its value at that time belongs to the so-called
“jump set” (namely, the set of states for which the jump condition is
true) or it belongs to the “flow set”. In case both conditions are true,
then the solution will be free to choose whether flowing or jumping,
thereby establishing a peculiar non-uniqueness feature.

Further insight into Equation (1.1) can be gained by observing that
e and xc can never have opposite signs. Indeed, if e ≥ 0, then v+

C2 = 0,
and since vC1 ≤ 0 for all times, exc ≥ 0. Similarly for the case e ≤ 0.
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Figure 1.3: Response of the Clegg integrator (solid) to a sine input (dashed).

On the other hand, whenever e 6= 0, there will always be one circuit
integrating (the upper one if e > 0 and the lower one if e < 0) and
the other circuit will be forced to be at zero. For illustrative purposes,
Figure 1.3 represents the Clegg integrator state (solid curve) when the
input e is selected as a sine wave with unit frequency (dashed curve).
Note that xc and e always have the same sign, which is ensured by the
fact that around times t1 = 3.2 and t2 = 6.2 the solution jumps. In
particular, the upper condition of Equation (1.1) would not be satisfied
if the solution did not jump, indeed violation of this condition forbids
flowing.

One way to interpret the dynamics (1.1) is to regard it as a linear
filter with a pole at the origin embedded with a special resetting rule
dependent on the value of the input and output of the filter at each time.
This interpretation is the starting point for the FORE generalization
discussed in the next section. The interest of Clegg integrator will
become clear in Section 2.2 when using Clegg integrator for a linear
plant, and in Chapter 3 when designing hybrid loops for nonlinear
control systems. As it will be explained in these parts (and in many
other parts of this survey), the performance of Clegg integrators, and
more generally of reset control is better to what could be done with
classical linear or nonlinear controllers. The extra flexibility given by

Full text available at: http://dx.doi.org/10.1561/2600000017



1.3. Modeling issues with reset control 11

the jump rule is exploited to improve the performance of the closed-loop
system in the presence of reset controllers.

1.3 Modeling issues with reset control

The model (1.1) derived in the previous section for the hybrid dynamics
can be easily generalized to the following dynamics, where the eigenvalue
associated with the continuous dynamics is not necessarily at zero:{

ẋc = acxc + bce, is allowed when xce ≥ 0,
x+
c = 0, is allowed when xce ≤ 0,

(1.2)

the model of the Clegg integrator corresponding to ac = 0 and bc = 1
RC .

The generalized dynamical system (1.2) was introduced in Horowitz
and Rosenbaum (1975) and therein called First Order Reset Element
(FORE). In Horowitz and Rosenbaum (1975) and follow-up works, this
generalization was meant for stable filters (namely, ac ≤ 0), but it will
be emphasized in this survey that this is not a necessary assumption
and indeed unstable selections (ac > 0) lead sometimes to desirable
aggressive control actions.

It should be acknowledged that models (1.1) and (1.2) do not
correspond to the models originally developed from the 1960s. Indeed,
while Clegg’s discussion in Clegg (1958) well referred to the dynamical
behavior of his analog circuit as a circuit resetting to zero whenever input
and output had opposite signs, his qualitative description incorporated
the following observation:

“Whenever the input voltage e passes through zero from
either direction, the output voltage is quickly dropped to
zero.”

This sentence propagated into the follow-up work of Horowitz and
co-authors, who never really wrote down equations but only described
in words this behavior specifying resetting the controller state to zero
at zero-crossings of the input. Much later in the 1990s, Hollot and co-
authors (see, e.g., Chait and Hollot, 2002; Beker et al., 2004, and
references therein), and then also Baños and co-authors (see, e.g.,
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Baños and Barreiro, 2011, and references therein) reported the following
dynamical description of the Clegg mechanism:{

ẋc = acxc + bce, if e 6= 0,
x+
c = 0, if e = 0.

(1.3)

The modified hybrid dynamics (1.3) was then used as the base-
line hybrid reset control mechanism implemented in the control logic
of modern digital control systems. Somehow the nice and intrinsic
robustness properties of the analog circuit proposed by Clegg got lost
along the route towards digitalization of modern feedback control. In
particular, dynamics (1.3) no longer describes the behavior of the
circuit in Figure 1.2 for ac = 0 because solutions to Equation (1.3)
starting from xc 6= 0 and exc < 0 do not lead to an instantaneous
reset to zero of the controller state xc. In particular, dynamics (1.3)
is associated with resetting in a so-called “thin set”, as opposed to
dynamics (1.2) (and the behavior of Clegg’s circuit) where resets are
enforced in half of the input–output space of the controller. This
difference is well highlighted in Figure 1.4 where the e axis has been
reversed in anticipation for negative error feedback interconnection
of the FORE with a linear plant. In Figure 1.4 the sets enabling
continuous flow of solutions are denoted by F (the “flow set”) and
the sets enabling discrete jump of solutions are denoted by J (the
“jump set”). Figure 1.4 also shows the possible different evolutions of

FF

xc

e

F

J

J

JF

xc

e

F

Figure 1.4: The jump (gray) and flow (striped) sets for the model (1.3) (left), and
original model (1.2) (right) proposed by Clegg.
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1.4. Using thin jump sets: Existence of solutions and robustness 13

two solutions starting from the same initial conditions, for the two
dynamics.

1.4 Using thin jump sets: Existence of solutions and robustness

The model (1.2) for the First Order Reset Element (FORE) was first
introduced in Nešić et al. (2005) and Zaccarian et al. (2005), where the
hybrid dynamical systems formalism of Goebel et al. (2009) and Goebel
et al. (2012) has been employed for the first time for representing the
peculiar evolutions of reset control systems whose state (notably, the
controller state) may be integrated following a differential equation
during the continuous-time flow phase, or may be reset to zero following
a discrete update law at the jump times.

The useful features of model (1.2) have been first characterized
in Nešić et al. (2005) and Zaccarian et al. (2005), and are worth
summarizing here, with specific reference to the typical scenario of a
Clegg integrator (or a more general FORE) interconnected in error
feedback with a linear continuous-time plant P, as represented in
Figure 1.5. When focusing on stabilization only (that is, r = 0), the
general dynamics arising from using this model may be well represented
by using the notation in Goebel et al. (2009) and Goebel et al. (2012),
and corresponds to the following closed loop involving the overall state
x := [ xpxc ], with xp being the state of the plant P:{

ẋ = Ax+Bd is allowed when x ∈ F
x+ = Gx is allowed when x ∈ J , (1.4)

where A, G and B are suitable constant matrices and the jump and
flow sets correspond to the following symmetric cones, defined on the

er y
P

d

xc

–

Clegg

Figure 1.5: A Clegg integrator in error feedback interconnection with a linear plant.
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basis of an output equation y = Cyx, and already shown at the right
of Figure 1.4 (remember that we are looking at a negative feedback
interconnection that motivates reversing the horizontal axis)

F :=

(xp, xc) :
[
xc
y

]> [0 1
1 0

] [
xc
y

]
≤ 0

 ,
J :=

(xp, xc) :
[
xc
y

]> [0 1
1 0

] [
xc
y

]
≥ 0

 .
(1.5)

The overall dynamics (1.4), (1.5) falls into the larger class of homoge-
neous hybrid systems (see, e.g., Goebel and Teel, 2010; Tuna and Teel,
2006), and will be the modeling framework adopted in this survey. We
emphasize that the jump and flow sets defined in Equation (1.5) are
closed. This condition is necessary for the theoretical developments in
Goebel et al. (2012, Ch. 7) to apply. Those results (which have also been
used in Nešić et al. (2005) and Zaccarian et al. (2005) and later works)
allow us to establish existence of solutions from any initial conditions
(therefore, some type of well posedness of the hybrid dynamics) in
addition to suitable robustness properties of asymptotic stability of
the origin for the error dynamics of the closed loop represented in
Figure 1.5.

Remark 1.1. (Non-uniqueness of solutions) Note that asking that the
sets F and J be closed implies that there are some regions of the state
space belonging to both sets. Therefore, solutions may jump or flow in
these regions, so that the solutions to the arising reset linear systems
may be nonunique. Nonuniqueness becomes a necessary notion when
wanting to establish robust results for the reset system, as a matter of
fact, when the feedback system is affected by (arbitrarily small) noise,
the state could be pushed in several different directions and different
solutions may correspond to different noise selections. These and other
robustness issues are addressed and solved in the hybrid framework that
we adopt here and in the stability results that we will rely on in this
survey.

We emphasize now that the desirable existence and robustness
properties highlighted above for the adopted modeling framework are
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1.4. Using thin jump sets: Existence of solutions and robustness 15

not guaranteed, in general, whenever relying on the alternative model
(1.3). When using that model, and using the notation of some recent
papers, the closed loop in Figure 1.5 may be represented by the equations{

ẋ = Ax+Bd, if x 6∈ M
x+ = Gx, if x ∈M,

(1.6)

whereM := {x : Cyx = 0, and (I −G)x 6= 0} (recall that we defined
y = Cyx).

Model (1.6), which is based on Equation (1.3), is actually used
in a large number of results that can be found in the literature (see
Bupp et al. (2000), Chait and Hollot (2002), Beker et al. (2004), Baños
and Barreiro (2011), Barreiro et al. (2014), and Ghaffari et al. (2014)
just to cite a few) but is associated to some subtle issues related to
existence of solutions. In particular, the following observation was
already made in Nešić et al. (2005) regarding (Beker et al., 2004,
Theorem 1), which establishes asymptotic stability of the origin under
suitable Lyapunov conditions. Consider however the reset system (1.6)
with d = 0 and A =

[
−1 0 0
0 −1 −1
0 1 −1

]
, G =

[ 1 0 0
0 1 0
0 0 0

]
, Cy = [ 1 0 0 ]. Then it

is not clear how to define solutions for an initial condition satisfying
Cyx0 = 0, (I − G)x0 = 0. Indeed, in that case x0 6∈ M and the reset
is not possible at the initial time, which means that the dynamics
can only be governed by the flow equation (1.6) for small t ≥ 0.
Moreover, integrating the differential equation (1.6) from the same
initial condition yields Cyx(t) = 0 for all t and (I−G)x(t) = [ 0 0 x3(t) ]>,
which is initially zero but is nonzero for all small t (thus x(t) ∈ M
for t > 0 and thus flowing from the initial condition is not possible).
Note that the conditions of Beker et al. (2004, Theorem 1) hold for
this example by simply selecting V (x) = |x|2, which yields V̇ = −2V
and ∆V ≤ 0. However, the established stability conditions hold for a
system that does not guarantee existence of solutions from some initial
conditions.

Due to the reasons above, and due to the lack of guarantee of
robustness of asymptotic stability, we will restrict our attention to the
formalism in dynamics (1.4), (1.5) and will establish robust properties
via the Lyapunov tools of Goebel et al. (2012).
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Remark 1.2. It should be further emphasized that in the model (1.6)
resets are only possible on the hyperplane Cyx = 0 (as long as some
flow has occurred since the last reset), whereas in our model (1.4),
(1.5) resets are enforced on a sector J . As a consequence, solutions to
model (1.6) flow also in regions of the state space where our model
does not allow flowing solutions. The consequence of this fact is that
when wanting to use Lyapunov tools to prove asymptotic or exponential
stability of the origin, using Equation (1.6) it is necessary to impose a
“decrease along flows” condition in almost all the state space, which then
implies, by continuity, that this condition holds everywhere. Instead,
with our model, and using the Lyapunov tools of Goebel et al. (2012),
we only need to impose the “decrease along flows” condition in half of
the state space (well understood from Figure 1.4) and this leads to less
conservative conditions. In particular, even for just a Clegg integrator
connected to an integrator plant P = 1

s (this is the system considered
in Beker et al. (2001a), corresponding to A =

[ 0 1
−1 0

]
) the model

(1.6) cannot lead to a strict Lyapunov function proving asymptotic
stability of the origin. We will show in the next chapters that desirable
stability properties can be shown with model (1.4), (1.5) even in cases
when the continuous-time linear dynamics associated with matrix A is
exponentially unstable, because the stabilization is obtained by way of
the resetting mechanism. This peculiar feature of stabilizing a plant by
way of exponentially diverging inputs, that are eventually reset to some
value leads to desirable and aggressive control actions, is well illustrated
by the simulations and experimental studies reported in the last part
of this survey.

1.5 An overview of recent reset systems results

In the previous section we clarified that this survey monograph is focused
on robust reset systems, arising from the use of model (1.1) and the
arising closed-loop representation (1.4), (1.5).

This modeling framework has been used in a range of recent papers
to address various analysis and design questions for reset systems. Those
papers constitute the basis for the results in this survey and are shortly
described below. The first paper where the modeling framework has
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been used is Zaccarian et al. (2005), where the main observations of
this chapter were first pointed out, together with Nešić et al. (2005),
where Lyapunov like conditions for L2 stability and exponential stability
of reset systems were proposed (later improved and revised in Nešić
et al. (2008b)). Among other things, the conditions proposed in these
papers involved locally Lipschitz Lyapunov functions as opposed to
the continuously differentiable ones considered in Beker et al. (2004).
This allowed us to consider piecewise quadratic Lyapunov functions
in verifying exponential or L2 stability of reset systems (see Zaccarian
et al. (2011), which is a revised and improved version of Zaccarian
et al. (2005)). In later years, further developments of this field provided
some explicit Lyapunov constructions for a class of planar reset systems,
reported in Zaccarian et al. (2006), while the properties of reset set-
point stabilizers and necessary and sufficient conditions for exponential
and L2 stability have been reported first in Zaccarian et al. (2007) and
Nešić et al. (2008a), and then revised and better illustrated, together
with several properties of homogeneous hybrid systems, in Nešić et al.
(2011). This modeling framework has also been used to provide LMI-
based approaches for the H2 performance analysis and L2 performance
analysis of reset control systems, respectively, in Witvoet et al. (2007)
and Aangenent et al. (2008) (see also Aangenent et al., 2010). More
recently, higher-dimensional generalizations of these reset controllers
were initially investigated in Prieur et al. (2010), later improved in
Prieur et al. (2013). That specific generalization was actually focusing
on a full state feedback architecture and was therefore generalized,
in the context of linear plants, to the case of output feedback and
Luenberger observers in Fichera et al. (2013b), where suitable dwell-
time logics were introduced to avoid Zeno phenomena. The arising LMI-
based conditions, finally led to a solution of the H∞ design problem
in Fichera et al. (2016) (which is a revised version of the preliminary
work in Fichera et al., 2012a). Parallel to these works, Loquen et al.
(2007) addressed the presence of input saturation in reset systems while
Tarbouriech et al. (2011) and Fichera et al. (2013a) suggested anti-
windup actions to manage input saturation effects. Finally, Loquen
et al. (2008) studied stability of reset systems in the presence of nonzero
reference signals.
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Even though this survey monograph concentrates on the above-
mentioned bulk of literature, there are several recent additional results
in the literature, following somewhat different routes, but indicating
that reset control is yet an active research field attracting much scientific
interest. One route is devoted to strategies where the reset actions are
triggered at fixed time instants, often periodic. Stability and L2 gain
properties have been addressed in Heemels et al. (2016) for a class
of hybrid systems that exhibit linear flow dynamics, periodic time-
triggered jumps and arbitrary nonlinear (possibly discontinuous) jump
maps, making a link with the lifted system approach from sampled-data
control theory. Discrete-time triggering conditions have been provided in
Guo et al. (2012) in view of a computer-based implementation, for which
the triggering condition is replaced by a discrete-time counterpart using
a sampled triggering signal. In that paper, the reset controller is designed
in three steps involving the baseline controller design, the reset matrix
design and the triggering condition tuning. Nearly-periodic situations
have been addressed in Hetel et al. (2013), considering uncertain intervals
between to reset instants, and manipulating the time condition rather
than the state condition for the resetting rule.

Recently, van Loon et al. (2017) proposed frequency-domain tools for
stability analysis of reset control system, with the objective to attract
interest of industrials in reset control strategies. Actually, little has
been done until now in the direction of frequency-domain tools allowing
to derive graphically verifiable stability conditions based on measured
frequency response data, with no need to manipulate a parametric
model. First attempts in that direction are contained in Hollot et al.
(2001), in which results regarding BIBO stability were provided for a
second-order linear continuous-time closed-loop dynamics. In Zhao and
Hua (2017), a Generalized First Order Reset Element (GFORE) has
been introduced to better fit for implementation on a physical analog
device. The main idea was to establish reset conditions depending on
input and output data, rather than less accessible information about
the plant states.

Reset control systems have also been extensively studied in the
presence of time delays. Stability analysis independent of the delay
was proposed in Baños and Barreiro (2009) using Lyapunov–Krasovskii
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functionals. On the other hand, stability analysis dependent of the delay
was addressed in Barreiro and Baños (2010) and Davó et al. (2017),
using an impulsive delay dynamical systems framework to manage resets
as impulsive events. Moreover, using a delay-dependent approach Zhao
and Wang (2014) considered piecewise Lyapunov functions to prove
stability of the reset observer. Stability analysis of time-delay reset
systems is also addressed in an application to networked control system
involving time-varying network-induced delays in Baños et al. (2014a),
but considering discrete-time reset system descriptions. Finally, reset
logics for improving the performance of high-gain observers have been
studied in Andrieu et al. (2016), the idea being to use reset to project
trajectories approaching a region of the state-space where high-gain
peaking occurs to another region free of peaking phenomena.

A different research route corresponds to the study of reset observers
(not addressed in this survey due to their different nature), as reported
in Paesa et al. (2011) and Paesa et al. (2012) and Andrieu et al. (2016)
with the idea to exploit resetting of some observer states to improve
the observer settling time and overshoot/peaking performance.

The main stream of studies relative to reset control systems has been
considering interconnection of reset compensators with linear plants.
There exist however a few works that explored the interconnection of
reset control systems with nonlinear plants. A passivity-based approach
has been proposed in Carrasco et al. (2010), considering a linear
compensator with reset action interconnected with a nonlinear plant. A
key advantage of the passivity-based approach is that it allows to derive
stability conditions to be checked on the linear compensator without
considering the reset action. Passivation-based arguments were also
used in Forni et al. (2011) using a passivity property of the continuous-
time part of the reset controller associated with a suitable non-increase
condition for the storage function at jumps to prove stability. Stability
analysis for a class of Lipschitz nonlinear systems involving some
resetting action at fixed time instants was also performed in Rios et al.
(2017). LMI-based stability conditions were therein proposed thanks to
the use of a 2D vector Lyapunov function issued from the impulsive
system representation.
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