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ABSTRACT
This monograph provides an exposition of recently developed re-
inforcement learning-based techniques for decision and control in
human-engineered cognitive systems. The developed methods learn
the solution to optimal control, zero-sum, non zero-sum, and graph-
ical game problems completely online by using measured data along
the system trajectories and have proved stability, optimality, and ro-
bustness. It is true that games have been shown to be important in
robust control for disturbance rejection, and in coordinating activ-
ities among multiple agents in networked teams. We also consider
cases with intermittent (an analogous to triggered control) instead
of continuous learning and apply those techniques for optimal regu-
lation and optimal tracking. We also introduce a bounded rational
model to quantify the cognitive skills of a reinforcement learning
agent. In order to do that, we leverage ideas from behavioral psy-
chology to formulate differential games where the interacting learn-
ing agents have different intelligence skills, and we introduce an it-
erative method of optimal responses that determine the policy of an
agent in adversarial environments. Finally, we present applications of
reinforcement learning to motion planning and collaborative target
tracking of bounded rational unmanned aerial vehicles.

Kyriakos G. Vamvoudakis and Nick-Marios T. Kokolakis (2020), “Synchronous
Reinforcement Learning-Based Control for Cognitive Autonomy”, Foundations and
TrendsR© in Systems and Control: Vol. 8, No. 1–2, pp 1–175. DOI: 10.1561/2600000022.
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1
Introduction

1.1 A Unified Approach

This monograph describes the use of principles of reinforcement learning
(RL) to design feedback policies for continuous-time dynamical systems
that combine features of adaptive control and optimal control. Adaptive
control (Ioannou and Fidan, 2006) and optimal control (Lewis et al.,
2012a) represent different philosophies for designing feedback controllers.
These methods have been developed by the control systems community.

Optimal controllers minimize user-prescribed performance functions
and are normally designed offline, i.e., performing all the calculations
before being implemented into a system, by solving Hamilton–Jacobi–
Bellman (HJB) equations, for example, the Riccati equation, using
complete knowledge of the system dynamics. Determining optimal
control policies for nonlinear systems requires the offline solution of
nonlinear HJB equations.

Adaptive controllers learn online, i.e., process data and decide in
real-time, to control unknown systems using data measured along the
system trajectories. In fact, adaptive control is a powerful tool that
uses online tuning of parameters to provide effective controllers for non-
linear or linear systems with modeling uncertainties and disturbances.

2

Full text available at: http://dx.doi.org/10.1561/2600000022



1.1. A Unified Approach 3

Closed-loop stability while learning the parameters is guaranteed, often
by using Lyapunov design techniques. Parameter convergence, however,
often requires that the measured signals carry sufficient information
about the unknown parameters known as a persistence of excitation
(PE) condition, that is similar to exploration and exploitation in the
learning terminology. Nevertheless, adaptive controllers are not usu-
ally designed to be optimal in the sense of minimizing user-prescribed
performance functions. Indirect adaptive controllers use system iden-
tification techniques to first identify the system parameters and then
use the obtained model to solve optimal design equations (Ioannou and
Fidan, 2006). Adaptive controllers may satisfy certain inverse optimality
conditions (Li and Krstic, 1997).

Several machine learning techniques have been employed for en-
abling adaptive autonomy (Vamvoudakis et al., 2015). Machine learning
is grouped, in supervised, unsupervised or RL, depending on the amount
and quality of feedback about the system or task. In supervised learning,
the feedback information provided to learning algorithms is a labeled
training data set, and the objective is to build the system model rep-
resenting the learned relation between the input, output and system
parameters. In unsupervised learning, no feedback information is pro-
vided to the algorithm and the objective is to classify the sample sets
to different groups based on the similarity between the input samples.
Finally, RL, that is the subject of this monograph, is a goal-oriented
learning tool wherein the agent, decision maker or controller learns a
policy to optimize a long-term reward by interacting with the environ-
ment. At each step, an RL agent gets evaluative feedback about the
performance of its action, allowing it to improve the performance of
subsequent actions (Bertsekas and Tsitsiklis, 1996; Cao, 2007; Liu et al.,
2017; Sutton and Barto, 2018; Wiering and Van Otterlo, 2012).

In a control engineering context, RL bridges the gap between tra-
ditional optimal control and adaptive control algorithms (Bertsekas,
2019; Hovakimyan and Cao, 2010; Ioannou and Fidan, 2006; Jiang and
Jiang, 2013; Kamalapurkar et al., 2018; Krstić and Kanellakopoulos,
1995; Lewis et al., 2012a,b; Tao, 2003; Zhang et al., 2020). In our frame-
work the goal is to learn the optimal policy and value function for a
potentially uncertain physical system. Nevertheless, it is worth pointing
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4 Introduction

out that the application of RL to the control discipline is not restricted
solely in learning the optimal strategy and value function, but rather
it is applicable in diverse applications such as system identification,
adaptive control and even to the coordination of multi-agent systems
(Hunt et al., 1992; Mannor and Shamma, 2007; Poveda et al., 2019;
Sontag, 1993; Sontag and Sussmann, 1997; Wang and Hill, 2009). Unlike
traditional optimal control, RL finds the solution to the HJB equation
online. On the other hand, unlike traditional adaptive controllers, that
are not usually designed to be optimal in the sense of minimizing cost
functionals, RL algorithms are optimal. This has motivated control
system researchers to enable adaptive and cognitive autonomy in an
optimal manner by developing RL-based controllers. In continuous-time
(CT) linear systems with multiple decision makers and quadratic costs,
one has to rely on solving complicated matrix Riccati equations that
require complete knowledge of the system matrices and need to be
solved offline and then implemented online in the controller. In the era
of complex and big data systems, modeling the processes exactly is most
of the time infeasible and offline solutions make the systems vulnerable
to parameter changes (drift).

Q-learning is a model-free action-dependent RL technique, i.e., does
not require information about the environment, developed primarily for
discrete-time systems (Watkins, 1989). It learns an action-dependent
value function that ultimately gives the expected utility of taking a
given action in a given state and following the optimal policy thereafter.
When such an action-dependent value function is learned, the optimal
policy can be computed easily. The biggest strength of Q-learning is
that it is model-free. It has been proven in Watkins (1989) that for any
finite Markov Decision Process, Q-learning eventually finds an optimal
policy. In complex-systems Q-learning needs to store massive amounts of
data, which makes the algorithm infeasible. This problem can be solved
effectively by using adaptation techniques. Specifically, Q-learning can
be improved by using the universal function approximation property
that allow us to solve difficult optimization problems online and forward
in time. This makes it possible to apply the algorithm to larger problems,
even when the state space is continuous, and infinitely large.

Full text available at: http://dx.doi.org/10.1561/2600000022



1.1. A Unified Approach 5

Synchronous RL arises from a combination of techniques based
on model-free and model-based RL. Specifically, RL techniques are
used to design adaptive systems with novel structures that learn the
solutions to optimization-based problems by observing data along the
system trajectories. We term these as optimal adaptive controllers.
These adaptive controllers are learned online and the policies converge
to the optimal ones by tuning all parameters in all loops simultaneously,
giving rise to synchronous RL. This is accomplished by developing
two learning networks that interact with each other as they learn, and
so mutually tune their parameters together simultaneously without
any iterations. This learning mechanism is composed of an actor/critic
structure, wherein there are two networks in two control loops – critic-
network that evaluates the performance of current control policies and
an actor-network that computes those current policies.

Game theory develops mathematical models allowing us to capture
the strategic interaction among rational decision-makers/players (Başar
and Olsder, 1999; Myerson, 2013). A rational agent can be thought of
as an agent that has clear preferences, models uncertainty via expected
values, and always chooses to perform the policy with the optimal
expected outcome for itself from among all feasible actions. The solutions
of several types of non-cooperative games (the cooperation among the
agents is not allowed), namely the equilibrium strategies of the game,
rely on the assumption of perfect rationality (Myerson, 2013). However,
in real-world problems, the assumption of perfect rationality turns out
to be quite strong and incapable of interpreting the actual behavior of
the players (Crawford and Iriberri, 2007), thereby giving rise in bounded
rationality (Simon, 1984) wherein the agents are bounded rational in the
sense that the intelligence of the agents is limited by the information they
have, the cognitive limitations of their minds, and the finite amount of
time they have to make a decision. In the framework of RL, game theory
is regraded as a bounded-rational interpretation of how equilibrium
may result. Finally, based on the above, it follows that the synchronous
RL can constitute a means for enabling online gaming by allowing the
agents to learn their optimal policies online by measuring data along
the players’ trajectories, even when the environment is unknown or
subject to changes.

Full text available at: http://dx.doi.org/10.1561/2600000022



6 Introduction

1.2 RL and Cognitive Autonomy

Autonomy means having the freedom to act or function independently,
i.e., self-government. Concerning the terminology of this term, it origi-
nally came from the Greek word “autonomia,” which is a combination
of the Greek words “auto” (self) and “nomy” (a system of rules). In
the discipline of control engineering, this means that the agents can
make a decision, namely to select a control policy, without involving a
supervisor. Systems featuring these properties are the so-termed “In-
telligent Autonomous Systems” (IAS), examples include Unmanned
Aerial Vehicles (UAVs), Autonomous Underwater Vehicles (AUVs), of-
fice and residential buildings that regulate their energy consumption
while adapting to the needs of their inhabitants (smart buildings), safety
systems and environmentally friendly energy systems in automobiles
(smart cars, smart highways) (Antsaklis et al., 1991; Asama et al., 2013;
Vamvoudakis et al., 2015). However, the IAS should be designed so that
they are capable of dealing with the endogenous uncertainty imposing
by the environment involving the presence of modeling uncertainties,
the unavailability of the model, the possibility of cooperative along with
non-cooperative goals, and malicious attacks compromising the security
of teams of complex systems (Lamnabhi-Lagarrigue et al., 2017). Never-
theless, it is evident that the Synchronous RL with the flexibility that
it offers in tackling uncertainty, it has facilitated the evolution of cogni-
tive autonomy aiming towards building fully autonomous IAS that are
highly cognitive, reflective, multitask-able, and effective in knowledge
discovery without external intervention. Ideally, moving towards full
autonomy, the control engineering community desires to construct IAS,
which should perhaps have the ability to perform even hardware repair
if any of their components fails.

In general, there is a need for approaches that respond to situations
not programmed or anticipated in the design. Therefore, by leveraging
ideas from the recent advances of Synchronous RL and game theory, we
bring together and combine interdisciplinary ideas from different fields
as pictorially illustrated in Figure 1.1, i.e., computational intelligence,
game theory, control theory, and information theory to endow IAS with
novel cognitive learning algorithms intending to ensuring full autonomy
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1.2. RL and Cognitive Autonomy 7

Figure 1.1: The Synchronous RL-based framework for enabling cognitive autonomy
arises from the intersection of several diverse fields including, optimization-based
control, adaptive learning, game theory, and RL.

and secure operation. Exploiting the adaptive nature of Synchronous
RL, we apply the ideas of synchronous RL to kinodynamic motion
planning algorithms that enable IAS to navigate securely and explore
an unknown, challenging, environment with obstacles while guaranteeing
the avoidance of collision with them. Furthermore, in the aerospace
community is of profound importance to develop algorithms that will
enable the coordination of autonomous swarms of UAVs to apprehend
malicious vehicles that enter a protected zone, a phenomenon that has
already been observed. To address that problem, we enforce “geofencing”
protocols by constructing cognitive hierarchy-based algorithms inspired
by the human brain, to coordinate a team of bounded rational UAVs
for tracking an intelligent invading moving target. Finally, from the
aforementioned, it is obvious that the Synchronous RL-based algorithms
are featured by strong abilities of learning, and thus, the complex
systems will be fully autonomous and tolerant to failures.

Full text available at: http://dx.doi.org/10.1561/2600000022



8 Introduction

In this monograph we present a family of model-free, and model-
based online adaptive learning algorithms for single and multi-agent
systems using measurements along the system trajectories with continu-
ous and intermittent feedback. The algorithms developed here are based
on Synchronous RL principles, and rely on actor/critic-network schemes
involving simultaneous tuning of the actor/critic neural networks (NNs)
while providing online solutions to complex Hamilton–Jacobi (HJ) equa-
tions. However, it is worth mentioning that several of these techniques
can be implemented without knowing the complete system dynamics,
enabling cognitive autonomy.

1.3 Organization

The remainder of this monograph is structured as follows. Section 2
presents an adaptive method based on actor/critic RL for solving online
the optimal control problem for deterministic CT input-affine nonlinear
systems with known or partially unknown dynamics as well as with
saturating and non-saturating actuators. In Section 3, under the as-
sumption of perfect rationality, we develop adaptive controllers that
learn optimal solutions for several differential game theory problems,
including zero-sum, multi-player non-zero-sum, as well as graphical
games. In the sequel, Section 4 proposes online Q-learning algorithms
for solving the optimal control problem of a system with completely
uncertain/unknown dynamics and shows its applications to differential
game theory. Model-free and model-based intermittent control algo-
rithms are displayed in Section 5 using ideas from RL. Next, by relaxing
the assumption of perfect rationality, Section 6 introduces the non-
equilibrium differential game theory and demonstrates its applications
to cyber-physical systems security (CPS). Section 7 applies synchronous
RL-based decision-making algorithms to motion planning in robotics as
well as to coordinated target tracking using a team of bounded rational
UAVs. Finally, Section 8 provides concluding remarks and potential fu-
ture research perspectives on the area of synchronous RL-based control
for cognitive autonomy.

Moreover, it is worth mentioning that throughout the monograph,
we omit to include the proofs of the theorems as well as simulation
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1.4. Notation 9

results to avoid breaking the flow of the document. Nevertheless, we
refer the reader to particular references wherein there are complete
proofs, and simulation results verifying the efficiency of the presented
control algorithms. Last but not least, note that instead of having
a “centralized” literature review in this introductory section, and in
following with the spirit of this monograph, we adopt a “distributed”
literature review approach, where each section itself contains a review
of the references that are relevant to the particular section content.

1.4 Notation

The notation used here is standard. R+ is the set of positive real
numbers. ‖ · ‖ denotes the Euclidean norm of a vector. The superscript
? is used to denote the optimal solution of an optimization problem,
λ(A) is the minimum eigenvalue of a matrix A, λ̄(A) is the maximum
eigenvalue of a matrix A, tr(A) is the trace of a matrix A, and 1m is the
column vector with m ones. The gradient of a scalar-valued function
with respect to a vector-valued variable x is defined as a column vector,
and is denoted by ∇ := ∂/∂x. The vec(A) and the vech(A) denote the
vectorization and the half-vectorization of a symmetric n × n matrix
A, respectively. The notations K, |K|, and ∂K denote the closure, the
cardinality, and the limit points of the set K, respectively. The U ⊗ V
denotes the Kronecker product of two vectors. The ⊕ is the Minkowski
sum of two sets.
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