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Adaptive Internal Models in
Neuroscience
Mireille Broucke1

1University of Toronto, Canada; broucke@control.utoronto.ca

ABSTRACT

This monograph examines in mathematical terms an open
question in neuroscience on the function of the cerebellum,
a major brain region involved in regulation of the motor
systems, speech, emotion, and other cognitive functions of
the body. Reasoning from the perspective of control theory,
we make a hypothesis that the primary function of the
cerebellum is disturbance rejection of exogenous reference
and disturbance signals. This brings to the fore the internal
model principle of control theory: that any good controller
must include a model of its environment.

The monograph is structured around a pursuit of the validity
of this hypothesis. Given the system level architecture and
the measurement structure of the cerebellum, is disturbance
rejection mathematically feasible? Second, is a disturbance
rejection interpretation consistent with experiments? Specif-
ically we investigate the possibility that the cerebellum
provides adaptive internal models of signals generated by
the environment. After a brief historical overview of compu-
tational theories of cerebellar function and of the relevant
parts of control theory in the area of regulator theory, we
carry out a more or less chronological review of subjects in
control theory that impinge on our investigation.

Mireille Broucke (2022), “Adaptive Internal Models in Neuroscience”, Founda-
tions and Trends® in Systems and Control: Vol. 9, No. 4, pp 365–550. DOI:
10.1561/2600000027.
©2022 M. Broucke
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We begin with classical regulator theory with its character-
istic features of a known plant and known frequency content
of disturbance and reference signals. We then pause to ex-
amine classical regulator theory from the perspective of
modeling the cerebellum, finding that several aspects are
not well suited to this endeavor. Foremost is the unrealistic
assumption that the plant and exosystem parameters are
apriori known. More subtle issues arise from the fact that
classical regulator theory developed in a setting where out-
put and error measurements are regarded as persistent, an
assumption not valid in the brain. Next, we review adaptive
control theory, organized in terms of error models. The main
control theoretic tools appear in Section 5, as a synthesis
of classical regulator theory and adaptive control, where we
present several adaptive internal model designs.

To test our hypothesis on cerebellar function, we apply
adaptive internal model designs to several motor systems
regulated by the cerebellum. These include the slow eye
movement systems: the vestibulo-ocular reflex, gaze holding,
smooth pursuit, and the optokinetic system. We also study
discrete time behaviors regulated by the cerebellum: the
saccadic eye movement system and, more generally, visuo-
motor adaptation. The results from these modeling studies
suggest that an interpretation of cerebellar function in terms
of disturbance rejection is compelling, with the potential to
provide a unifying framework to explain how the cerebellum
can contribute to so many different systems in the body. The
monograph concludes with suggestions for future research
directions.
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1
Introduction

This monograph makes contributions to the field of systems neuroscience.
Systems neuroscience aims to understand the brain at a systems or
behavioral level, particularly considering the interactions between differ-
ent brain regions and the rest of the body. By way of contrast, systems
biology regards the study of biological processes, particularly at the
cellular level.

When one peruses the literature on systems neuroscience one rather
quickly stumbles upon terms such as motor control, adaptation, learning,
perception, consolidation, and internal models, among others. All words
that pique the curiosity of the control theorist. Questions that arise
are: what control architectures does the brain use to solve problems
of motor control and adaptation? Are these control architectures the
same as the ones already employed in robotics and engineering? Where
are these internal models in the brain? How does the brain deal with
disturbances? What control problems has the brain already solved
through its evolutionary advantage that control theorists with their
engineering models and principles have not?

This monograph initiates an investigation into some of these ques-
tions. We were particularly intrigued by the pervasiveness of discourse

3
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4 Introduction

on internal models in the brain in the neuroscience literature, contrasted
with a void regarding internal models of control theory. This dichotomy
was highlighted in a session at the 2018 IEEE Conference on Decision
and Control (Huang et al., 2018), with the hope that the two research
areas could be brought closer together.

Our working hypothesis is that the internal model principle of control
theory is operating in one or more areas of the brain. This is not a wild
conjecture since neuroscientists have been discussing internal models
for at least 40 years. Rather it shifts the focus from the role of internal
models to replicate the dynamics of a system to be controlled (Jordan
and Rumelhart, 1992; Wolpert and Kawato, 1998) to a role of internal
models to replicate exogenous signals (Francis and Wonham, 1975).
This shift of interpretation brings into view developments in control
theory on the design of internal models, developments which have, up to
now, not been regarded as relevant to brain modeling by either research
community.

Validating our hypothesis requires working both on the control
theory side and on the neuroscience side. The task involves carefully
examining the experimental record in neuroscience for any evidence of
behavior that reflects the internal model principle. On the other side, we
review developments in control theory to determine if available internal
model designs are suitable for brain modeling (see Section 3). This
monograph offers a curated and condensed view of two major thrusts
of the last 50 years in control theory: regulator theory, discussed in
Section 2, and adaptive control, discussed in Section 4. The synthesis
of these two areas (a process still ongoing) has resulted in adaptive
internal models, discussed in Section 5.

On the neuroscience side we have particularly focused on experimen-
tal results for the oculomotor system. Study of the oculomotor system
proves to be immensely gratifying because the brain structures and the
neural circuits are reasonably well known; the experimental record is
thorough and unrelenting; the oculomotor research community has a
history of outstanding modelers (Robinson, 1981; Zee, 2018); and finally,
the oculomotor system is widely regarded to provide the blueprint for
all other motor systems. Results for the oculomotor system as well as
visuomotor adaptation are found in Sections 6–9. These sections draw
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1.1. Internal Models in Control Theory 5

upon our prior work (Battle and Broucke, 2021; Broucke, 2020; Broucke,
2021; Gawad and Broucke, 2020; Hafez et al., 2021).

1.1 Internal Models in Control Theory

Regulator theory and the associated regulator problem regard a control
specification to make an error signal of a control system tend to zero
asymptotically, despite the presence of persistent, exogenous disturbance
and reference signals entering the control loop. A key assumption is
that the disturbance and reference signals can be modeled by a linear
exosystem. A controller that satisfies the requirements of the regulator
problem is called a regulator.

Starting from the 1970s, regulator designs progressed from multi-
input multi-output (MIMO) linear time-invariant (LTI) systems with
known plant and exosystem parameters, to uncertain nonlinear systems
(Byrnes et al., 1997), and finally to regulator designs when neither
plant nor exosystem parameters are known. Of particular relevance are
regulator designs based on adaptive internal models, which appeared in
the control theory literature in the mid 1990s to early 2000s (Bodson et
al., 1994; Bodson and Douglas, 1997; Nikiforov, 1996; Nikiforov, 1997a;
Marino and Tomei, 2000; Marino and Tomei, 2003a; Serrani and Isidori,
2000; Serrani et al., 2001). We present highlights of this progression for
linear systems.

Known Plant and Exosystem. When both the plant parameters
and exosystem parameters are known, the solution is given in Davison
(1976), Francis and Wonham (1976), and Francis (1977), where necessary
and sufficient conditions for regulation are provided. The solution relies
on the design of an observer or a servocompensator that asymptotically
reconstructs exogenous signals using an internal model. The internal
model is not adaptive. These developments are reviewed in Section 2.

Known Plant and Unknown Exosystem. In the case when
the plant model is known and only the dimension of the exosystem
is known, then the adaptive internal models in Nikiforov (1996) and
Marino and Tomei (2003b) provide an asymptotic estimate of exogenous
signals. If only an upper bound on the dimension of the exosystem is
available, but the plant is minimum phase, asymptotically stable, and
has known relative degree, then the adaptive internal model in Marino

Full text available at: http://dx.doi.org/10.1561/2600000027



6 Introduction

and Tomei (2007) asymptotically reconstructs exogenous signals. For
this design, persistent excitation guarantees exponential convergence of
observer and parameter estimation errors. Linear systems with known
parameters but subject to unknown time delays in the control loop were
studied in Gerasimov et al. (2020), Gerasimov et al. (2019a), Gerasimov
et al. (2019b), and Nikiforov et al. (2020). In the case of discrete-time
systems, a design based on averaging theory is developed in Guo and
Bodson (2009). A different approach for discrete-time systems appears
in Fiorentini et al. (2006) but requires the online solution of a Sylvester
equation at each time-step.

Unknown Plant and Known Exosystem. It is possible that
uncertainties are limited to the plant, while the exosystem is known
perfectly. If the plant is stable, then an adaptive internal model design
is given in Marino and Tomei (2015). It uses knowledge of the signs
of the DC gain and either the real or imaginary part of the frequency
response at the frequencies of the exosystem.

Unknown Plant and Unknown Disturbance. The most com-
plex case is when both the plant model and the exosystem are uncertain.
There are a number of results for this problem. Kreisselmeier observers
and backstepping are proposed in Nikiforov (1997a) to design adaptive
internal models to reconstruct exogenous signals assuming the order of
the exosystem is known. More generally, novel techniques for design-
ing internal models to reconstruct exogenous signals were presented in
Nikiforov (2004a) and Nikiforov (2004b). The case of output tracking a
measurable reference signal with unknown frequencies by an unknown
single-input single-output (SISO) LTI system using output feedback
was considered in Nikiforov (1997b).

If the plant is minimum phase with known relative degree and
bounds on parameter uncertainties (for both the plant and exosystem)
are known, then the design in Marino and Tomei (2011) may be used.
In Marino and Tomei (2016), the design of Marino and Tomei (2015)
was extended by estimating disturbance frequencies online. The design
relies on averaging theory, and it is assumed that the plant is stable and
the frequency response information previously mentioned is available. A
discrete-time solution is given in Tomei (2017), also using averaging the-
ory. An alternative design for discrete-time systems appeared in Hoagg

Full text available at: http://dx.doi.org/10.1561/2600000027



1.2. Internal Models in Neuroscience 7

et al. (2008) based on deadbeat control and employing a logarithmic
Lyapunov function argument for stability and parameter convergence.

Uncertain plants and exosystems are considered in Basturk and
Krstic (2012) and Basturk and Krstic (2014) when only state derivative
feedback measurements are available to the internal model. Unknown
time delays in the input or state are addressed in Basturk and Krstic
(2015) and Basturk (2017). Finally, Yilmaz and Basturk (2019) considers
unknown minimum-phase LTI systems with known relative degree
and system order. Again using Kreisselmeier observers and adaptive
backstepping as in Nikiforov (1997a), the internal model design in
Yilmaz and Basturk (2019) rejects unknown sinusoidal exogenous signals
while making the system output track a given reference trajectory using
only output feedback.

1.2 Internal Models in Neuroscience

Many parts of the brain have been implicated in motor control and
motor learning including, but not limited to, the basal ganglia, the
motor cortex, and the cerebellum. What is of greatest interest to us
is that neuroscientists have posited that the cerebellum, in particular,
contains internal models. Here we review relevant theories of cerebellar
function. Our review is not complete, but highlights theoretical model
development since the 1970s, focusing on those theories that inter-
pret cerebellar function in terms of adaptive control, adaptive filters,
and internal models; see Barlow (2002) for a detailed discussion and
Montgomery and Bodznick (2016) for a historical perspective.

In 1967, Eccles, Ito, and Szentagothai published a landmark book
on the neuronal structure of the cerebellum (Eccles et al., 1967). Their
use of the term “neuronal machine” invited comparison with computer
science and control theory. The striking uniformity of the cerebellum (see
Section 3.2), despite the fact that it receives inputs from many parts of
the cerebral cortex, inspired Marr (1969) and Albus (1971) to propose
computational models of the cerebellar circuit as a spatial pattern
classifier. The Marr-Albus theory provided significant detail concerning
the neuronal circuitry and the specific wiring of the cerebellum, with a
focus on modifiable synapses to account for learning. The Albus theory
arguably provided the first neural network model of the cerebellum.

Full text available at: http://dx.doi.org/10.1561/2600000027



8 Introduction

Following this, Calvert and Meno (1972) developed a spatio-temporal
model of cortical activity and applied it to the cerebellum. They oper-
ated under the assumption that while the true input-output relationship
is highly nonlinear (exhibiting such phenomena as saturation and refrac-
tory periods), the cerebellum may be modeled as a linear system since
the ensemble behavior appears linear. To the best of our knowledge,
this is the first attempt at using linear models to qualitatively describe
cerebellar function and behavior, albeit at a neuronal level rather than
at a higher behavioral level.

In Hassul and Daniels (1977), the authors observed discrepancies
between experimental results and the predictions of Calvert and Meno
(1972). They opted for a simpler model by treating the cerebellar cortex
as a lumped linear system, bypassing the need to model the spatial
structure of neuronal circuitry in the cerebellum. Their model predicted
that the cerebellum implements a form of lead-lag compensation to
maintain loop stability in spite of the substantial delays involved in
signal paths to and from the cerebellum.

While the Marr-Albus model has been highly influential both on
subsequent theory and experimentation, it did not account for the
temporal aspect of adaptation and learning, considering that information
in the central nervous system (CNS) is conveyed by continuous time
(analog) signals that are frequency-modulated by nerve impulses. To
address this shortcoming, Fujita (1982) proposed an adaptive filter
model inspired by the least mean square algorithm in adaptive signal
processing (Widrow and Stearns, 1985). This model built on the work in
Hassul and Daniels (1977) to provide a mechanism by which the lead-lag
compensator could be made adaptive in order to account for the learning
capabilities attributed to the cerebellum. If some performance metric is
defined on the output of the cerebellum by way of some reference or
target output, then the adaptive filter minimizes the mean square error
of this performance metric. Using the adaptive filter model, Fujita was
able to successfully simulate the vestibulo-ocular reflex (Fujita, 1982), a
critical step in translating neuronal models to tangible motor behavior.
A comprehensive review of this work can be found in Ito (1984). The
adaptive filter model has been further developed by Dean, Porrill, and
co-workers to account for experimental discoveries on synaptic plasticity
and noise cancellation (Dean et al., 2010); see below.

Full text available at: http://dx.doi.org/10.1561/2600000027



1.2. Internal Models in Neuroscience 9

The idea that the cerebellum contains internal models appears to
originate in the work of Ito and Kawato (Ito, 1970; Kawato et al., 1987).
Internal models are defined as neural mechanisms that can mimic the
input-output characteristics (or their inverses) of the motor apparatus
(Kawato, 1999; Miall and Wolpert, 1996; Wolpert et al., 1998). Forward
internal models predict sensory consequences from efference copies of
issued motor commands, whereas inverse internal models calculate
feedforward motor commands from desired reference trajectories.

The inverse model interpretation of the cerebellum was elaborated
in Gomi and Kawato (1992) and Kawato and Gomi (1992) as feedback
error learning, related to the computed-torque method in robotics (Spong
et al., 2005). The cerebellum builds an inverse model of the part of the
motor system to be controlled. It takes desired reference trajectories
which are assumed to be available as measurements and converts them
to feedforward motor commands. The difference between actual motor
commands (which include feedback terms) and feedforward motor com-
mands generates a motor error, which drives the adaptation process to
improve the estimate of the inverse model.

The forward model interpretation of the cerebellum has been elabo-
rated over a series of papers (Dean et al., 2002; Porrill et al., 2004; Dean
and Porrill, 2008; Dean et al., 2010). The forward model transforms
motor commands (available as efference copies) to predictions of motor
action. These predictions of motor action are compared to the actual
system response to generate an output (sensory) error, which, in turn,
is used to train the cerebellum to generate improved motor commands.
Dean and Porrill further interpret the function of the cerebellum to
decorrelate sensory signals from error signals. This interpretation fits
well within the mathematical framework of regulator theory in which
exogenous (sensory) signals must be removed or “rejected” from errors,
if those errors are to be driven to zero.

Several other theories of cerebellar function have been proposed. A
Smith predictor model of the cerebellum was suggested in Miall et al.
(1993). A Smith predictor is a compensator that counteracts long delays
in the feedback path (Smith, 1959). Such a control mechanism would
allow to overcome the long transport delays from visual feedback to mo-
tor command, for instance. Other theories propose that the cerebellum
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10 Introduction

is a Kalman filter (Paulin, 1989), an optimal controller (Jordan and
Todorov, 2002) or a Bayesian state estimator (Paulin, 2005). Despite
numerous proposals, there is no consensus, to date, on a computational
model of the cerebellum.

This monograph describes a different approach to modeling the
cerebellum. We delegate to the cerebellum a primary role of satisfying
the internal model principle of control theory (Francis and Wonham,
1976). On this basis, we then apply adaptive internal models from the
control literature on regulator theory. Despite a different angle of attack,
our approach and resulting models may be regarded as an extension of
the class of models that derive from the adaptive filter interpretation of
cerebellar function.

1.3 Control Theory and Systems Neuroscience

Control theory has contributed to understanding many biological pro-
cesses, but the application of control theory in system-level studies of
the brain is a relatively new endeavor. One must grapple with what
level in the hierarchy of neurological processes to focus for a specific
modeling problem (Gernstner and W. Kistler, 2014). Single neurons or
small groups of neurons are modeled using the Hodgkin-Huxley model
of action potential propagation, or larger groups of neurons comprising
neural circuits of modest size may be modeled using population dynamic
models such as the Wilson-Cowan model. Next come studies of brain
regions such as the visual cortex, the hippocampus, and the thalamus,
which likewise draw upon neural network and population dynamic mod-
els. At the highest level is the study of networks of brain regions and
their interaction with the body, as in the study of the motor systems, of
Parkinson’s disease, and so forth. See Gernstner and W. Kistler (2014)
and Dayan and Abbott (2001) for further discussion on computational
methods. The emerging interface between control theory and systems
neuroscience is further discussed in Madhav and Cowan (2020), Schiff
(2009), and Schiff (2012).

This monograph attends to the highest level of the hierarchy by
exploring the functional role of the cerebellum and how it contributes to
motor systems in humans. However, a number of other themes are being
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1.3. Control Theory and Systems Neuroscience 11

explored at the interface between systems neuroscience and control
theory.

• In addition to the work of David Robinson and others on the
oculomotor system (Robinson, 1981), fundamental concepts of
linear system theory such as feedback and controllability have
been applied to clarify and understand the brain at a systems
level. For example, Gu et al. (2015) explore the degree to which
the network structure of the brain determines the level of brain
activity in connected brain regions. To make precise their idea, the
authors utilize a discrete-time linear system whose state vector
captures neural activity in distinct brain regions. The controlla-
bility Gramian is used to obtain quantitative predictions on brain
activity based on network structure. Khalil and co-workers studied
micro-stimulation of the basal ganglia and Parkinson’s disease by
using using ideas from MIMO linear system theory (Liu et al.,
2010; Liu et al., 2011).

• Optimal control theory has been applied to clarify how the brain
manages redundant degrees of freedom of the limbs to achieve re-
peatable, energy efficient movements (Jordan and Todorov, 2002).
The interactions between the motor cortex (M1), basal ganglia,
and motor periphery to produce multi-joint movements such as
arm reaches have similarly been explored using optimal control
theory (Scott, 2004). Optimal control theory was also applied in
Gu et al. (2017) to understand how the brain makes transitions
through different brain states - states of neural activity within
discrete brain regions.

• Dynamical system theory has held a prominent place both in
systems neuroscience and systems biology (Iglesias and Ingalls,
2009). For instance, Slotine and co-workers utilized nonlinear
contraction analysis to model action selection by the basal ganglia
(Girard et al., 2008). Dynamical system theory has been applied
to large scale models of the cerebral cortex, for instance, to model
epileptic seizures, sleep, and anesthesia (Breakspear, 2017).
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12 Introduction

• Network theory is another key contributor to the study of the brain
at a systems level, taking inspiration from the area of network
biology (Barabasi and Oltvai, 2004). Hierarchically organized
networks of neurons combined with linear threshhold population
models were utilized in Nozari and Cortes (2021a) and Nozari
and Cortes (2021b) to analyze the emergent behavior of selective
attention. Many other works treat the brain from a network
perspective.

Finally, it is worth mentioning that while this monograph focuses
on the application of the internal model principle to understand the
cerebellum, the principle has also found application in systems biology.
Doyle and co-workers (Yi et al., 2000) applied the internal model
principle to show robustness to disturbances in bacterial chemotaxis.
Their analysis specifically regards disturbance rejection of constant
exogenous signals using integral feedback.

1.4 Notation

Let R denote the real numbers, R+ denotes the non-negative real
numbers, and C denotes the complex numbers. For a matrix A ∈ Rn×n,
σ(A) denotes its spectrum; the elements of σ(A) are the eigenvalues of
A. For a symmetric matrix A ∈ Rn×n, λmax(A) denotes the largest real
eigenvalue of A. Also for symmetric A ∈ Rn×n, we write A > 0 if A is
positive definite.
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