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ABSTRACT

The study of uncertain systems has undoubtedly played a

primary role in the history of control engineering as un-

known quantities are often present in the available mathe-

matical model of a plant. This monograph aims to provide

the reader with a unified framework for the fundamental

and challenging area of robustness analysis of uncertain sys-

tems, where even the most basic problem of establishing

robust stability may be still open due to complexity and

conservatism even for a third order system linearly affected

by a scalar parameter. The described framework is based

on linear matrix inequalities (LMIs) and exploits polynomi-

als that can be expressed as sums of squares of polynomials

(SOS). The interest for this framework is motivated by sev-

eral reasons, such as allowing to consider various types of

uncertainties, providing guarantees for robust stability and

robust performance, requiring the solution of convex opti-

mization problems, allowing for trade-off between conser-

vatism and complexity, and including a number of methods

in the literature as special cases. Several numerical exam-

ples are also provided to illustrate the use and potentialities

Graziano Chesi (2024), “LMI-Based Robustness Analysis in Uncertain Systems”, 
Foundations and Trends® in Systems and Control: Vol. 11, No. 1-2, pp 1–185. DOI: 
10.1561/2600000030.
©2024 G. Chesi
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of the presented framework, shedding some light on what

can be achieved and what cannot.
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Introduction

1.1 A Brief History

Robustness analysis via LMIs started in the 1970s when the prob-

lem of simultaneous stability was addressed by looking for a common

quadratic Lyapunov function through LMIs, see, e.g., Araki (1976),

Barker et al. (1978), Khalil and Kokotovic (1979), Boyd and Yang

(1989), and Nemirovski (1993). In the 1990s, the celebrated book by

Boyd et al. (1994), not only generalized this framework to systems with

different types of uncertainties such as polytopic and norm bounded,

for both robust stability analysis and robust performance analysis, but

especially introduced LMIs and their potentialities to the research com-

munity, opening the doors to the huge development of various and so-

phisticated LMI methods that the last three decades have witnessed.

In the area of robustness analysis, this includes the development of

LMI methods based on nonquadratic or parameter dependent Lya-

punov functions, which have been introduced for reducing the conser-

vatism of the classic common quadratic Lyapunov functions, see, e.g.,

Zelentsovsky (1994), Jarvis-Wloszek and Packard (2002), and Chesi

et al. (2003) for contributions based on common polynomial Lyapunov

functions, Gahinet et al. (1996), Neto (1999), Oliveira et al. (1999), and

3
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4 Introduction

Dettori and Scherer (2000) for contributions based on linearly parame-

ter dependent quadratic Lyapunov functions, Zhang et al. (2003), Bli-

man (2004), Chesi et al. (2005b), and Ebihara and Hagiwara (2005) for

contributions based on polynomially parameter dependent quadratic

Lyapunov function, and Chesi et al. (2007) for contributions based

on polynomially parameter dependent polynomial Lyapunov functions.

LMIs have been exploited for robustness analysis using not only Lya-

punov functions but also other tools such as determinants, eigenvalue

combinations, Hermite matrices and stability tables, see, e.g., Chesi

et al. (1999) and Henrion et al. (2004). Last but not least, LMIs have

been exploited for robustness analysis not only in the case of uncertain-

ties defined in the time domain, but also in the case of uncertainties

defined in the frequency domain, in particular through the Kalman-

Yakubovich-Popov lemma that establishes an equivalence between a

frequency condition and the existence of a quadratic Lyapunov func-

tion, see, e.g., Rantzer (1996) and Iwasaki and Hara (2005).

The scope of the monograph is to present a unified framework for ro-

bustness analysis of uncertain systems via LMIs. The considered model

for uncertain systems includes both parametric and nonparametric un-

certainties, the former represented by a vector of time varying parame-

ters supposed constrained with their time variations into semialgebraic

sets (which include, e.g., polytopes, multi intervals, hyper ellipsoids),

the latter by a generic block connected in closed loop supposed con-

strained by polynomial constraints on the input and output (that al-

low to consider, e.g., norm bounded, positive real, and sector bounded

uncertainties). LMI conditions are presented for establishing robust

stability and various robust performance indexes (i.e., decay rate, L2

gain, dissipation, impulse response energy, impulse response peak and

D-stability) of this model of uncertain systems by exploiting the theory

of positive polynomials, in particular, SOS polynomials. The interest

for these conditions is fivefold: 1) allow to consider various type of uncer-

tainties; 2) provide guarantees for robust stability and various robust

performance indexes; 3) require the solution of convex optimization

problems; 4) allow for trade-off between conservatism and complexity;

5) include a number of methods in the literature (such as the classi-

cal methods based on quadratic Lyapunov functions) as special cases.

Full text available at: http://dx.doi.org/10.1561/2600000030
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Several numerical examples are also provided to illustrate the use and

potentialities of the presented framework. These examples study un-

certain systems with various orders and various numbers and types of

uncertainties, and aim to shed some light on what can be achieved by

the presented framework and what cannot.

It is worth remarking that even the problem of establishing robust

stability, which is the most basic one in robustness analysis, may be

still open even for a third order system linearly affected by a scalar

parameter as shown in the numerical examples in Section 5.3. This is

due to two main factors. The first factor is complexity, as the computa-

tional burden quickly grows with the system dimensions (i.e., order of

the system, number of uncertainties, and degree of the system matrices

on the uncertainties) and with the degree of the polynomials used for

the investigation (e.g., Lyapunov functions). The second factor is con-

servatism, as the available conditions for establishing robust stability

are generally only sufficient, and, though some of them may be also

necessary by suitably increasing the computational burden (e.g., by in-

creasing the degree of the Lyapunov functions), it is generally unknown

a priori the increment required for achieving necessity.

A final note concerns our previous work Chesi et al. (2009), where

robustness analysis of uncertain systems with polytopic uncertainty is

addressed by exploiting a class of SOS polynomials, specifically, SOS

homogeneous polynomials. This monograph aims to provide a more

general framework, in particular by considering nonparametric uncer-

tainties in addition to the parametric uncertainty, by allowing the set

of admissible parametric uncertainty to be a generic semialgebraic set

rather than a polytope only, and by addressing the investigation of vari-

ous robust performance indexes that are not considered in our previous

work.

1.2 Section Content

The monograph is organized in seven sections. Section 1 introduces

some historical notes, a summary of the contributions of the various

sections, and the notation.

Full text available at: http://dx.doi.org/10.1561/2600000030



6 Introduction

Section 2 introduces LMIs and three main optimization problems

with LMIs, specifically, the LMI problem (LMIP), which considers the

task of establishing feasibility of a system of LMIs, the eigenvalue prob-

lem (EVP) or semidefinite program (SDP), which consider the mini-

mization of the maximum eigenvalue of an affine matrix function sub-

ject to LMIs or equivalently the minimization of a linear function sub-

ject to LMIs, and the generalized eigenvalue problem (GEVP), which

considers the minimization of the maximum generalized eigenvalue of

a pair of affine matrix functions subject to LMIs.

Section 3 investigates positive matrix polynomials, in particular by

introducing the class of SOS matrix polynomials, i.e., matrix polynomi-

als that can be expressed as sums of matrix polynomials multiplied by

their transposes, and the Gram matrix method, which allows to estab-

lish if a matrix polynomial is SOS via an LMIP. This leads to the intro-

duction of three optimization problems, namely, SOS-LMIP, SOS-SDP

and SOS-GEVP, that extend the optimization problems with LMIs de-

fined in Section 2 by including constraints that impose that some ma-

trix polynomials with coefficients depending linearly on some decision

variables are SOS. Conditions for establishing positive semidefiniteness

or definiteness of a matrix polynomial are formulated as an SOS-LMIP

by recalling that nonnegative polynomials can be expressed as sums of

squares of rational functions. Analogous conditions are presented for

establishing double positive semidefiniteness or definiteness, and for es-

tablishing positive semidefiniteness or definiteness over a semialgebraic

set or over the simplex.

Section 4 introduces the model considered in this monograph for

uncertain systems, namely, the mixed parametric nonparametric rep-

resentation (MPNR), which is a state space model that includes para-

metric and nonparametric uncertainties. This model can be seen as a

generalization of three basic models for uncertain systems, specifically,

the parametric direct representation (PDR), where the system matri-

ces are rational functions of the parametric uncertainty, the parametric

linear fractional representation (PLFR), where a closed loop is built

through auxiliary inputs and outputs connected via a matrix gain that

depends rationally on the parametric uncertainty, and the nonparamet-

ric linear fractional representation (NLFR), where an analogous closed

Full text available at: http://dx.doi.org/10.1561/2600000030
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loop is built via a generic block regarded as nonparametric uncertainty.

In all models, the parametric uncertainty and its time variation are

supposed constrained into semialgebraic sets, while the nonparamet-

ric uncertainty is supposed constrained by polynomial constraints that

can model typical uncertainties in the literature such as norm bounded,

positive real, and sector bounded uncertainties. Analysis conditions for

the MPNR are hence formulated through SOS-LMIPs by exploiting the

methods presented in Section 3.

Section 5 investigates robust stability of the MPNR. A sufficient

condition based on the search for a polynomial Lyapunov function and

testable with an SOS-LMIP is presented. The specialization of this

condition to the three basic models for uncertain systems included in

the MPNR, as well as the necessity of the resulting conditions, are dis-

cussed. It is also shown how classical LMI methods for quadratic stabil-

ity are covered as special cases. Hence, alternative LMI conditions for

establishing robust stability of the MPNR in the TI parametric mode

(i.e., when the parametric uncertainty is TI and the nonparametric un-

certainties are absent) are presented based on the use of tables and

determinants.

Section 6 investigates robust performance of the MPNR. Specif-

ically, the worst-case value of the decay rate, L2 gain, dissipation,

impulse response energy and impulse response peak, are investigated,

showing that bounds for these quantities can be established or searched

for via SOS-LMIPs, SOS-SDPs or SOS-GEVPs. A physical system, in

particular, an electric circuit with variable system order and variable

number of uncertainties, is introduced to illustrate the use of these

methods. Lastly, the problem of establishing robust D-stability of the

MPNR in TI parametric mode is considered.

Lastly, Section 7 concludes the monograph with some final remarks.

1.3 Notation

The notation adopted in this monograph is as follows:

• C,R,N: sets of complex numbers, real numbers, nonnegative in-

tegers;

• S
n : set of symmetric matrices in R

n×n;

Full text available at: http://dx.doi.org/10.1561/2600000030
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• 0: null matrix of size specified by the context;

• In, I: identity matrices of size n × n and size specified by the

context;

• Re(x), Im(x), |x|: real part, imaginary part, magnitude of x;

• XT , XH : transpose and conjugate transpose of matrix X;

• He(X): X +XH ;

• det(X), spec(X), tr(X), λmin(X), λmax(X): determinant, spec-

trum, trace, minimum eigenvalue, maximum eigenvalue of matrix

X;

• diag(X1,X2, . . .): block diagonal matrix constructed with ordered

blocks X1,X2, . . .;

• co(X1,X2, . . .): convex hull of X1,X2, . . .;

• X > 0, X ≥ 0, X = 0: entrywise positive, nonnegative, zero

matrix X;

• X ≻ 0, X � 0: positive definite, positive semidefinite matrix X;

• X ⊗ Y : Kronecker product of matrices X,Y ;

• ‖X‖: 2-norm of matrix X;

• ‖x‖p: p-norm of vector x;

• xy (with x, y ∈ R
n): xy1

1 x
y2

2 · · · xyn
n ;

• xz (with x ∈ R
n, z ∈ R): xz

1x
z
2 · · · xz

n;

• sum(x): sum of the entries of vector x;

• vec(X): column vector obtained by stacking the columns of ma-

trix X from the first to the last;

• ver(X ): set of vertices of polytope X ;

• ẋ(t): derivative of x(t) with respect to t;

Full text available at: http://dx.doi.org/10.1561/2600000030
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• ⋆: corresponding block in symmetric matrices;

• s.t.: subject to.

1.4 Acronyms

The following acronyms are used in this monograph:

• ATV: arbitrarily time varying;

• BRTV: bounded rate time varying;

• CT: continuous time;

• DT: discrete time;

• EVP: eigenvalue problem;

• GEVP: generalized eigenvalue problem;

• LMI: linear matrix inequality;

• LMIP: linear matrix inequality problem;

• LTI: linear time invariant;

• LTV: linear time varying;

• MPNR: mixed parametric nonparametric representation;

• NB: norm bounded;

• NLFR: nonparametric linear fractional representation;

• NR: number of rows;

• NV: number of variables;

• OOM: out of memory;

• PDR: parametric direct representation;

• PLFR: parametric linear fractional representation;

Full text available at: http://dx.doi.org/10.1561/2600000030
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• PNS: positive not sum of squares of polynomials;

• PR: positive real;

• SB: sector bounded;

• SDP: semidefinite program;

• SOS: sum of squares of polynomials;

• TI: time invariant.

1.5 Software

The SOS problems mentioned in this monograph (i.e., SOS-LMIP, SOS-

SDP and SOS-GEVP) can be solved with existing SOS program solvers

such as SOSTools, Yalmip, GloptiPoly, etc., which convert the SOS

problems into LMI problems (i.e., LMIP, SDP, GEVP) and pass the

obtained LMI problems to an LMI solver such as the LMI toolbox,

SeDuMi, Sdpt3, Mosek, etc.

The solutions of the numerical examples reported in this monograph

are computed with Matlab on a standard computer with Windows 11,

Intel Core i7, 3.2 GHz, 16 GB RAM, and approximated to the third

fractional digit unless reported otherwise. The SOS problems are con-

verted into LMI problems by generating the Gram matrices with the

Matlab code reported in Appendix G, and the obtained LMI problems

are solved with the LMI solver SeDuMi (Sturm, 1999). Some exam-

ples on the use of this Matlab code are reported in Appendixes A–F.

The Matlab code reported in Appendixes A–G can be directly used by

simple copy and paste.

Full text available at: http://dx.doi.org/10.1561/2600000030



References

Araki, M. (1976). “Input-output stability of composite feedback

sytems”. IEEE Transactions on Automatic Control. 21: 254–259.

Banjerdpongchai, D. and J. P. How. (1998). “Parametric robust H2

control design with generalized multipliers via LMI synthesis”. In-

ternational Journal of Control. 70(3): 481–503.

Barker, G. P., A. Berman, and R. J. Plemmons. (1978). “Positive diag-

onal solutions to the Lyapunov equations”. Linear and Multilinear

Algebra. 5: 249–256.

Barkin, A. and A. Zelentsovsky. (1983). “Method of power transforma-

tions for analysis and stability of nonlinear control systems”. Sys-

tems and Control Letters. 3: 303–310.

Barmish, B. R. (1993). New Tools for Robustness of Linear Systems.

New York: Mcmillan Publishing Company.

Bellman, R. (1974). Introduction to Matrix Analysis. McGraw-Hill.

Bhattacharyya, S. P. (1987). Robust Stabilization Against Structured

Perturbations. New York: Springer.

Bhattacharyya, S. P., H. Chapellat, and L. H. Keel. (1995). Robust

Control: The Parametric Approach. NJ: Prentice Hall.

Blanchini, F. (1994). “Ultimate boundeness control for uncertain

discrete-time systems via set-induced Lyapunov functions”. IEEE

Transactions on Automatic Control. 39(2): 428–433.

175

Full text available at: http://dx.doi.org/10.1561/2600000030



176 References

Blanchini, F. and S. Miani. (1999). “A new class of universal Lyapunov

functions for the control of uncertain linear systems”. IEEE Trans-

actions on Automatic Control. 44(3): 641–647.

Bliman, P.-A. (2004). “A convex approach to robust stability for lin-

ear systems with uncertain scalar parameters”. SIAM Journal on

Control and Optimization. 42(6): 2016–2042.

Bose, N. and C. Li. (1968). “A quadratic form representation of polyno-

mials of several variables and its applications”. IEEE Transactions

on Automatic Control. 13(8): 447–448.

Boyd, S. (1986). “A note on parametric and nonparametric uncertain-

ties in control systems”. In: American Control Conference. Seattle,

USA. 1847–1849.

Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnan. (1994). Linear

Matrix Inequalities in System and Control Theory. SIAM.

Boyd, S. and Q. Yang. (1989). “Structured and simultaneous Lyapunov

functions for system stability problems”. International Journal of

Control. 49(6): 2215–2240.

Chang, S. and T. Peng. (1972). “Adaptive guaranteed cost control of

systems with uncertain parameters”. IEEE Transactions on Auto-

matic Control. 17: 474–483.

Chesi, G. (2013). “Sufficient and necessary LMI conditions for robust

stability of rationally time-varying uncertain systems”. IEEE Trans-

actions on Automatic Control. 58(6): 1546–1551.

Chesi, G. (2015). “Instability analysis of uncertain systems via determi-

nants and LMIs”. IEEE Transactions on Automatic Control. 60(9):

2548–2563.

Chesi, G. (2018). “On the complexity of SOS programming and appli-

cations in control systems”. Asian Journal of Control. 20(5): 2005–

2013.

Chesi, G. and P. Colaneri. (2017). “Homogeneous rational Lyapunov

functions for performance analysis of switched systems with arbi-

trary switching and dwell-time constraints”. IEEE Transactions on

Automatic Control. 62(10): 5124–5137.

Chesi, G., A. Garulli, A. Tesi, and A. Vicino. (2003). “Homogeneous

Lyapunov functions for systems with structured uncertainties”. Au-

tomatica. 39(6): 1027–1035.

Full text available at: http://dx.doi.org/10.1561/2600000030



References 177

Chesi, G., A. Garulli, A. Tesi, and A. Vicino. (2005a). “Polynomially

parameter-dependent Lyapunov functions for robust H∞ perfor-

mance analysis”. In: IFAC World Congress on Automatic Control.

Prague, Czech Republic.

Chesi, G., A. Garulli, A. Tesi, and A. Vicino. (2005b). “Polynomi-

ally parameter-dependent Lyapunov functions for robust stability

of polytopic systems: an LMI approach”. IEEE Transactions on

Automatic Control. 50(3): 365–370.

Chesi, G., A. Garulli, A. Tesi, and A. Vicino. (2007). “Robust stability

of time-varying polytopic systems via parameter-dependent homo-

geneous Lyapunov functions”. Automatica. 43(2): 309–316.

Chesi, G., A. Garulli, A. Tesi, and A. Vicino. (2009). Homogeneous

Polynomial Forms for Robustness Analysis of Uncertain Systems.

Lecture Notes in Control and Information Sciences. Springer.

Chesi, G. and T. Shen. (2020). “Convergent upper bounds of peak

response of LTI and polytopic LTV systems through LMIs”. Auto-

matica. 122(109260): 1–12.

Chesi, G. and T. Shen. (2023). “LMI-based determination of the peak of

the response of structured polytopic linear systems”. IEEE Trans-

actions on Circuits and Systems I: Regular Papers. 70(1): 435–446.

Chesi, G., A. Tesi, A. Vicino, and R. Genesio. (1999). “On convexifi-

cation of some minimum distance problems”. In: European Control

Conference. Karlsruhe, Germany. 1446–1451.

Chilali, M. and P. Gahinet. (1996). “H∞ design with pole placement

constraints: an LMI approach”. IEEE Transactions on Automatic

Control. 41(3): 358–367.

Choi, M., T. Lam, and B. Reznick. (1995). “Sums of squares of real

polynomials”. In: Symposia in Pure Mathematics. 103–126.

Cockburn, J. C. (1998). “Linear fractional representations of systems

with rational uncertainty”. In: American Control Conference. Phil-

adelphia, USA. 1008–1012.

Daafouz, J. and J. Bernussou. (2001). “Parameter dependent Lyapunov

functions for discrete time systems with time varying parametric

uncertainties”. Systems and Control Letters. 43(5): 355–359.

Full text available at: http://dx.doi.org/10.1561/2600000030



178 References

Dasgupta, S., G. Chockalingam, B. D. O. Anderson, and M. Fu. (1994).

“Lyapunov functions for uncertain systems with applications to the

stability of time varying systems”. IEEE Transactions on Circuits

and Systems I: Fundamental Theory and Applications. 41(2): 93–

106.

Dettori, M. and C. W. Scherer. (2000). “New robust stability and per-

formance conditions based on parameter dependent multipliers”. In:

IEEE Conference on Decision and Control. Sydney, Australia. 4187–

4192.

Doyle, J. C. (1978). “Robustness of multiloop linear feedback systems”.

In: IEEE Conference on Decision and Control. San Diego, USA.

12–18.

Doyle, J. C. (1982). “Analysis of feedback systems with structured un-

certainties”. IEE Proceedings D. 129(6): 242–250.

Ebihara, Y. and T. Hagiwara. (2005). “A dilated LMI approach to

robust performance analysis of linear time-invariant uncertain sys-

tems”. Automatica. 41(11): 1933–1941.

Ebihara, Y., K. Maeda, and T. Hagiwara. (2005). “Robust D-stability

analysis of uncertain polynomial matrices via polynomial-type mul-

tipliers”. In: IFAC World Congress. Prague, Czech Republic. 191–

196.

Ebihara, Y., Y. Onishi, and T. Hagiwara. (2009). “Robust performance

analysis of uncertain LTI systems: dual LMI approach and verifi-

cations for exactness”. IEEE Transactions on Automatic Control.

54(5): 938–951.

Fan, M. K. H., A. L. Tits, and J. C. Doyle. (1991). “Robustness in the

presence of mixed parametric uncertainty and unmodeled dynam-

ics”. IEEE Transactions on Automatic Control. 36(1): 25–38.

Feron, E. (1997). “Analysis of robust H2 performance using multiplier

theory”. SIAM Journal on Control and Optimization. 35(1): 160–

177.

Francis, B. A., M. C. Smith, and J. C. Willems, eds. (2006). Control

of Uncertain Systems: Modelling, Approximation, and Design: A

Workshop on the Occasion of Keith Glover’s 60th Birthday. Lecture

Notes in Control and Information Sciences. No. 329. Springer.

Full text available at: http://dx.doi.org/10.1561/2600000030



References 179

Fukumoto, H. and Y. Fujisaki. (2007). “Exact robust H2 performance

analysis for linear single-parameter dependent systems”. In: IEEE

Conference on Decision and Control. New Orleans, USA. 2743–

2748.

Fuller, A. T. (1968). “Conditions for a matrix to have only charac-

teristic roots with negative real parts”. Journal of Mathematical

Analysis and Applications. 23: 71–98.

Gahinet, P., P. Apkarian, and M. Chilali. (1996). “Affine parameter-

dependent Lyapunov functions and real parametric uncertainty”.

IEEE Transactions on Automatic Control. 41(3): 436–442.

Genesio, R. and A. Tesi. (1988). “Results on the stability robustness

of systems with state space perturbations”. Systems and Control

Letters. 11: 39–47.

Geromel, J. C. and P. Colaneri. (2006). “Robust stability of time vary-

ing polytopic systems”. Systems and Control Letters. 55(1): 81–85.

Geromel, J. C., P. L. D. Peres, and J. Bernussou. (1991). “On a con-

vex parameter space method for linear control design of uncertain

systems”. SIAM Journal on Control and Optimization. 29(2): 381–

402.

Geromel, J. C., P. L. D. Peres, and S. R. Souza. (1995). “A convex

approach to the mixed H2/H∞ control problem for discrete-time

uncertain systems”. SIAM Journal on Control and Optimization.

33(6): 1816–1833.

Ghaoui, L. E. (1994). “State-feedback control of rational systems using

linear-fractional representations and LMIs”. In: American Control

Conference. Baltimore, USA. 3563–3567.

Ghaoui, L. E. and G. Scorletti. (1994). “Performance control of ratio-

nal systems unsing linear-fractional represetantions and LMIs”. In:

IEEE Conference on Decision and Control. Lake Buena Vista, USA.

2792–2797.

Goebel, R., A. R. Teel, T. Hu, and Z. Lin. (2004). “Dissipativity for dual

linear differential inclusions through conjugate storage functions”.

In: IEEE Conference on Decision and Control. Paradise Island, Ba-

hamas.

Full text available at: http://dx.doi.org/10.1561/2600000030



180 References

Goebel, R., A. R. Teel, T. Hu, and Z. Lin. (2006). “Conjugate convex

Lyapunov functions for dual linear differential inclusions”. IEEE

Transactions on Automatic Control. 51(4): 661–666.

Goncalves, E. N., R. M. Palhares, R. H. C. Takahashi, and R. C.

Mesquita. (2006). “New approach to robust D-stability analysis of

linear time-invariant systems with polytope-bounded uncertainty”.

IEEE Transactions on Automatic Control. 51(10): 1709–1714.

Henrion, D., D. Arzelier, D. Peaucelle, and J.-B. Lasserre. (2004). “On

parameter-dependent Lyapunov functions for robust stability of lin-

ear systems”. In: IEEE Conference on Decision and Control. Par-

adise Island, Bahamas. 887–892.

Horisberger, H. P. and P. R. Belanger. (1976). “Regulators for linear

time invariant plants with uncertain parameters”. IEEE Transac-

tions on Automatic Control. 21(5): 705–708.

Iwasaki, T. and S. Hara. (2005). “Generalized KYP lemma: unified fre-

quency domain inequalities with design applications”. IEEE Trans-

actions on Automatic Control. 50(1): 41–59.

Jarvis-Wloszek, Z. and A. K. Packard. (2002). “An LMI method to

demonstrate simultaneous stability using non-quadratic polynomial

Lyapunov functions”. In: IEEE Conference on Decision and Con-

trol. Las Vegas, USA. 287–292.

Jennawasin, T. and Y. Oishi. (2009). “A region-dividing technique for

constructing the sum-of-squares approximations to robust semidef-

inite programs”. IEEE Transactions on Automatic Control. 54(5):

1029–1035.

Jury, E. I. (1978). “Stability of multidimensional scalar and matrix

polynomial”. Proceeding of the IEEE. 66: 1018–1047.

Jury, E. I. and J. Blanchard. (1961). “A stability test for linear discrete

systems in table form”. Proceeding of the IRE. 44: 1947–1948.

Khalil, H. K. and P. V. Kokotovic. (1979). “D-stability and multipa-

rameter singular perturbation”. SIAM Journal on Control and Op-

timization. 17: 56–65.

Lasserre, J.-B. (2001). “Global optimization with polynomials and the

problem of moments”. SIAM Journal of Optimization. 11(3): 796–

817.

Full text available at: http://dx.doi.org/10.1561/2600000030



References 181

Lavaei, J. and A. G. Aghdam. (2008). “Robust stability of LTI systems

over semi-algebraic sets using sum-of-squares matrix polynomials”.

IEEE Transactions on Automatic Control. 53(1): 417–423.

Leite, V. J. S. and P. L. D. Peres. (2003). “An improved LMI condi-

tion for robust D-stability of uncertain polytopic systems”. IEEE

Transactions on Automatic Control. 48(3): 500–504.

Megretski, A. and A. Rantzer. (1997). “System analysis via integral

quadratic constraints”. IEEE Transactions on Automatic Control.

42: 819–830.

Miller, J., D. Henrion, M. Sznaier, and M. Korda. (2021). “Peak esti-

mation for uncertain and switched systems”. In: IEEE Conference

on Decision and Control. Austin, USA. 3222–3228.

Montagner, V. F. and P. L. D. Peres. (2003). “A new LMI condition

for the robust stability of linear time-varying systems”. In: IEEE

Conference on Decision and Control. Maui, USA. 6133–6138.

Montagner, V. F. and P. L. D. Peres. (2004). “Robust stability and H∞

performance of linear time-varying systems in polytopic domains”.

International Journal of Control. 77(15): 1343–1352.

Moylan, P. J. and D. J. Hill. (1978). “Stability criteria for large-scale

systems”. IEEE Transactions on Automatic Control. 23: 143–149.

Nemirovski, A. (1993). “Several NP-hard problems arising in robust

stability analysis”. Mathemathics of Control Signal and Systems. 6:

99–105.

Neto, A. T. (1999). “Parameter dependent Lyapunov functions for a

class of uncertain linear systems: an LMI approach”. In: IEEE Con-

ference on Decision and Control. Phoenix, USA. 2341–2346.

Oishi, Y. (2006). “A matrix-dilation approach to robust semidefinite

programming and its error bound”. In: American Control Confer-

ence. Minneapolis, USA. 123–129.

Oishi, Y. (2007). “Asymptotic exactness of parameter-dependent Lya-

punov functions: an error bound and exactness verification”. In:

IEEE Conference on Decision and Control. New Orleans, USA.

5666–5671.

Oliveira, M. C. de, J. Bernussou, and J. C. Geromel. (1999). “A new

discrete-time robust stability condition”. Systems and Control Let-

ters. 37: 261–265.

Full text available at: http://dx.doi.org/10.1561/2600000030



182 References

Oliveira, M. C. de, J. C. Geromel, and J. Bernussou. (2002). “Extended

H2 and H∞ norm characterizations and controller parametrizations

for discrete-time systems”. International Journal of Control. 75(9):

666–679.

Oliveira, P. J. de, R. C. L. F. Oliveira, V. J. S. Leite, V. F. Montagner,

and P. L. D. Peres. (2004). “H∞ guaranteed cost computation by

means of parameter-dependent Lyapunov functions”. Automatica.

40(6): 1053–1061.

Oliveira, R. C. L. F., M. C. de Oliveira, and P. L. D. Peres. (2008).

“Convergent LMI relaxations for robust analysis of uncertain lin-

ear systems using lifted polynomial parameter-dependent Lyapunov

functions”. Systems and Control Letters. 57(8): 680–689.

Oliveira, R. C. L. F. and P. L. D. Peres. (2007). “Parameter-dependent

LMIs in robust analysis: characterization of homogeneous polyno-

mially parameter-dependent solutions via LMI relaxations”. IEEE

Transactions on Automatic Control. 52(7): 1334–1340.

Papachristodoulou, A. and S. Prajna. (2002). “On the construction

of Lyapunov functions using the sum of squares decomposition”.

In: IEEE Conference on Decision and Control. Las Vegas, Nevada.

3482–3487.

Parrilo, P. A. (2000). “Structured semidefinite programs and semial-

gebraic geometry methods in robustness and optimization”. PhD

thesis. California Institute of Technology.

Peaucelle, D. and D. Arzelier. (2001). “Robust performance analy-

sis with LMI-based methods for real parametric uncertainty via

parameter-dependent Lyapunov functions”. IEEE Transactions on

Automatic Control. 46: 624–630.

Peaucelle, D., D. Arzelier, O. Bachelier, and J. Bernussou. (2000). “A

new robust D-stability condition for real convex polytopic uncer-

tainty”. Systems and Control Letters. 40: 21–30.

Peaucelle, D., Y. Ebihara, D. Arzelier, and T. Hagiwara. (2006). “Gen-

eral polynomial parameter-dependent Lyapunov functions for poly-

topic uncertain systems”. In: International Symposium on Mathe-

matical Theory of Networks and Systems. Kyoto, Japan. 2238–2242.

Full text available at: http://dx.doi.org/10.1561/2600000030



References 183

Peres, P. L. D., S. R. Souza, and J. C. Geromel. (1992). “Optimal H2

control for uncertain systems”. In: American Control Conference.

2916–2920.

Petersen, I. R. and R. Tempo. (2014). “Robust control of uncertain sys-

tems: classical results and recent developments”. Automatica. 50(5):

1315–1335.

Putinar, M. (1993). “Positive polynomials on compact semi-algebraic

sets”. Indian Univeristy Mathematics Journal. 42(3): 969–984.

Ramos, D. C. W. and P. L. D. Peres. (2001). “A less conservative

LMI condition for the robust stability of discrete-time uncertain

systems”. Systems and Control Letters. 43: 371–378.

Ramos, D. C. W. and P. L. D. Peres. (2002). “An LMI condition for

the robust stability of uncertain continuous-time linear systems”.

IEEE Transactions on Automatic Control. 47(4): 675–678.

Rantzer, A. (1996). “On the Kalman-Yakubovich-Popov lemma”. Sys-

tems and Control Letters. 28(1): 7–10.

Reznick, B. (1978). “Extremal PSD forms with few terms”. Duke Math-

ematical Journal. 45(2): 363–374.

Reznick, B. (2000). “Some concrete aspects of Hilbert’s 17th problem”.

Contemporary Mathematics. 253: 251–272.

Routh, E. J. (1877). A Treatise on the Stability of a Given State of

Motion. Macmillan.

Routh, E. J. (1905). The Advanced Part of a Treatise on the Dynamics

of a Rigid Body. Macmillan.

Sakuwa, R. and Y. Fujisaki. (2005). “Robust stability analysis of single-

parameter dependent descriptor systems”. In: IEEE Conference on

Decision and Control and European Control Conference. Seville,

Spain. 2933–2938.

Sato, M. and D. Peaucelle. (2006). “Robust stability/performance anal-

ysis for linear time-invariant polynomially parameter dependent

systems using polynomially parameter-dependent Lyapunov func-

tions”. In: IEEE Conference on Decision and Control. San Diego,

USA. 5807–5813.

Full text available at: http://dx.doi.org/10.1561/2600000030



184 References

Scheiderer, C. (2009). “Positivity and sums of squares: A guide to some

recent results”. In: Emerging Applications of Algebraic Geometry,

Vol. 149 of IMA Volumes in Mathematics and its Applications. Ed.

by M. Putinar and S. Sullivant. Springer. 271–324.

Scherer, C. W. (2006). “LMI relaxations in robust control”. European

Journal of Control. 12(1): 3–29.

Scherer, C. W. and C. W. J. Hol. (2006). “Matrix sum-of-squares relax-

ations for robust semi-definite programs”. Mathematical Program-

ming Series B. 107(1-2): 189–211.

Siljak, D. D. (1989). “Parameter space methods for robust control de-

sign: a guided tour”. IEEE Transactions on Automatic Control.

34(7): 674–688.

Stengle, G. (1974). “A Nullstellensatz and a Positivstellensatz in semi-

algebraic geometry”. Mathematische Annalen. 207: 87–97.

Sturm, J. F. (1999). “Using SeDuMi 1.02, a MATLAB toolbox for op-

timization over symmetric cones”. Optimization Methods and Soft-

ware. 11-12: 625–653.

Tesi, A. and A. Vicino. (1990). “Robust stability of state space models

with structured uncertainties”. IEEE Transactions on Automatic

Control. 35: 191–195.

Tesi, A., F. Villoresi, and R. Genesio. (1996). “On the stability domain

estimation via a quadratic Lyapunov function: convexity and opti-

mality properties for polynomial systems”. IEEE Transactions on

Automatic Control. 41(11): 1650–1657.

Wang, F. and V. Balakrishnan. (2002). “Improved stability analysis

and gain-scheduled controller synthesis for parameter-dependent

systems”. IEEE Transactions on Automatic Control. 47(5): 720–

734.

Wu, F. and S. Prajna. (2005). “SOS-based solution approach to polyno-

mial LPV system analysis and synthesis problems”. International

Journal of Control. 78(8): 600–611.

Xie, L., S. Shishkin, and M. Fu. (1997). “Piecewise Lyapunov functions

for robust stability of linear time-varying systems”. Systems and

Control Letters. 31: 165–171.

Full text available at: http://dx.doi.org/10.1561/2600000030



References 185

Xu, J. and L. Xie. (2007). “An improved approach to robust H2 and

H∞ filter design for uncertain linear systems with time-varying pa-

rameters”. In: Chinese Control Conference. Zhangjiajie, China. 668–

672.

Zelentsovsky, A. L. (1994). “Nonquadratic Lyapunov functions for ro-

bust stability analysis of linear uncertain systems”. IEEE Transac-

tions on Automatic Control. 39(1): 135–138.

Zhang, X., P. Tsiotras, and T. Iwasaki. (2003). “Parameter-dependent

Lyapunov functions for exact stability analysis of single parameter

dependent LTI systems”. In: IEEE Conference on Decision and

Control. Maui, USA. 5168–5173.

Zhou, K. and P. P. Khargonekar. (1987). “Stability robustness bounds

for linear state-space models with structured uncertainties”. IEEE

Transactions on Automatic Control. 32: 621–623.

Full text available at: http://dx.doi.org/10.1561/2600000030


	Introduction
	Optimization with LMIs
	Positive Matrix Polynomials
	Models for Uncertain Systems
	Robust Stability
	Robust Performance
	Conclusion
	Acknowledgements
	Appendices
	Example 3.1 (continued)
	Example 3.2 (continued)
	Example 3.3 (continued)
	Example 3.4 (continued)
	Example 3.5 (continued)
	Example 3.6 (continued)
	Algorithms
	References




