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Sparse Actuator Control of
Discrete-Time Linear Dynamical
Systems
Geethu Joseph

Delft University of Technology, Netherlands; g.joseph@tudelft.nl

ABSTRACT

This monograph presents some exciting and new results on
the analysis and design of control of discrete-time linear
dynamical systems using sparse actuator control. Sparsity
constraints arise naturally in the inputs of several linear
systems due to limited resources or the underlying physics.
The monograph deals with two types of sparsity constraints:
time-varying and time-invariant supported sparse control
inputs. It first provides a detailed theoretical discussion on
controllability under sparsity constraints, including algebraic
necessary and sufficient conditions for ensuring controlla-
bility. Several related formulations, covering stabilizability,
output controllability, and nonnegative controllability un-
der sparsity constraints, are also presented. Further, for
sparsely controllable systems, the monograph describes two
efficient, systematic, and rigorous approaches to designing
sparse control inputs: compressed sensing algorithms and
spare actuator scheduling algorithms. Overall, the concepts
covered in the monograph provide various sparsity models,
algorithms, and analysis tools that are readily accessible to
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systems and control, signal processing, and applied mathe-
matics readers.
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1
Introduction

This section introduces the notion of sparse actuator control, convinces
the reader of its importance via a few applications, and provides an
overview of the content of the monograph.

1.1 What is Sparse Actuator Control?

Sparse actuator control refers to a control signal that is sparse in
actuator use, i.e., we use a small subset of actuators among the available
ones. In this monograph, we focus on the control of discrete-time linear
dynamical systems using a few actuators.

Linear dynamical systems are well-studied and widely accepted
mathematical models for describing and analyzing various control sys-
tems that evolve over time. The model serves as the core engine in
diverse areas such as control systems, signal processing, communications,
etc. We represent a discrete linear dynamical system using the state
space model,

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 , (1.1)

for discrete-time indices 𝑘 = 1, 2, . . .. Here, 𝒙𝑘 denotes the state vector
at time 𝑘. The temporal evolution of the system state is determined by

3
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4 Introduction

the state (transition) matrix 𝑨 and the input matrix 𝑩. The state 𝒙𝑘+1
at a given time index 𝑘 + 1 depends linearly on the previous state 𝒙𝑘
and is influenced by the input 𝒖𝑘 applied at time 𝑘.

Numerous practical control problems deal with the task of designing
control inputs 𝒖𝑘’s to drive the system to a desired state. Typically,
the design of inputs is constrained by the energy or steady-state error
requirements and the level of control stability. These problems are
generally posed as (convex) optimization problems and solved using
techniques like least squares. This conventional control input design
utilizes all the actuators or input variables (entries of control inputs
𝒖𝑘 ’s). However, several resource-aware control systems demand simpler
designs where only a subset of input variables are used to control the
system. Simplicity is hard to achieve and makes the design problem more
challenging. Mathematically, the simplicity can be encoded using the
notion of sparsity. The research area associated with this phenomenon
is known as sparse actuator control.

A vector is said to be sparse if it contains a lot of zeros entries
compared to its dimension (length). Sparse actuator control of a discrete
linear dynamical system deals with control inputs having very few
nonzeroes entries (or active actuators) compared to their dimension.
The index set of nonzero entries of a vector is defined as its support. In
this monograph, we focus on control inputs whose support set cardinality
is small compared to its dimension.

The sparsity-promoting strategies considered in the literature are
divided into two categories. The first strategy, called the time-varying
support case, allows the use of different subsets of input variables at
different time indices to steer the system state. In the second strategy
called time- invariant support case, the controller identifies a subset
of input variables and uses the same subset at all times to control
the system state. Clearly, the second strategy is more restricted and a
special case of the first strategy. Further, in both cases, it may not be
able to drive the system to a desired state because of the restrictions
on the control inputs. We underscore that the main difficulty here
is the identification of the small subsets of inputs that can drive the
system to the desired state. If the subset is known, one can ignore
the columns of the input matrix corresponding to the zero entries
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1.2. Motivation 5

and reduce the control design problem to the standard control design
problem. The subset identification is a combinatorial problem, and the
sparsity constraint is non-convex. Consequently, the analysis and design
of sparse actuator control are by far not trivial. This monograph is
devoted to the fundamental limits, mathematical tools, and algorithms
for the sparse actuator control of linear dynamical systems.

1.2 Motivation

Sparsity constraints naturally arise in several control systems. In this
section, we point to a selection of control problems that can be modeled
using linear dynamical systems where the input is constrained to be
sparse due to cost and energy depletion issues. The section establishes
the significance of the research topic of sparse actuator control and
motivates the need to study it.

1.2.1 Communication-aware Control

A networked control system refers to a large system where the controlled
object(s) and the controller communicate through a communication net-
work. For example, consider a drone controlled by a centralized ground
controller. The drone sends its sensor data to the ground controller,
and based on this information, the controller sends out new control
commands to the drone to adjust its position, velocity, and acceleration
via the network. Such communication networks are often bandwidth-
limited, which motivates the use of sparse control inputs (Heemels
et al., 2010; Tatikonda and Mitter, 2004; Liu et al., 2020; Nagahara
and Quevedo, 2011). The reason for promoting sparsity is that sparse
signals admit compact representations (Foucart et al., 2013), leading to
a lower communication burden.

1.2.2 Network Opinion Manipulation

Consider a social network where people interact with each other and
influence each other’s opinions on a product or idea. For example, a
social network can be people living in a specific area or social media
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6 Introduction

communities, where a group of people share common interests and ex-
periences. Also, network opinion can refer to a movie rating, inclination
towards a political party, or customer rating of a product. The opinion
evolution over time can be represented using a linear dynamical system
whose state is the network opinion (opinion of all the individuals in the
network), and the state matrix models the influence of each individual’s
opinion on others’ opinions. The network information is manipulated by
external agents such as paid bloggers, social media influencers, market-
ing agents, etc. Their influence can be modeled as an input applied to
the dynamical system that models the opinion evolution. Further, the
agents are often constrained by budget (financial or physical), which can
be represented using sparse inputs, where sparsity denotes the budget
constraints of the agent. As an example, consider a company that sends
a salesperson to market their products by offering free samples. The
number of free samples is limited, and not all the samples reach the
target people at the same time. The influence of such manipulators can
be modeled using sparse inputs whose support denotes the individuals
who receive the free sample at a given time (Joseph et al., 2021).

1.2.3 Malicious Data Injection Attacks

In an electric power network, malfunctioning or compromised devices,
such as power system stabilizers, generator controllers and exciters, and
cyclic loads, can inject forced oscillations (0.1–15 Hz) into the network.
The sources triggering these oscillations are fewer compared to the
potential sources (Anguluri et al., 2023; Anguluri et al., 2022; Siami
et al., 2020). Hence, the effect of anomalous sources can be modeled as
sparse control inputs to the system. Further, sparse inputs can represent
data injection attacks that target a limited number of sensors in the
smart grid (Cárdenas et al., 2008; Hao et al., 2015; Sun and Li, 2022;
Chen et al., 2019). Similarly, sparse inputs can represent malicious
attacks on cyber-physical systems (Ma and Shi, 2022; Tsang et al.,
2020).
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1.3. Overview of the Monograph 7

1.2.4 Efficient Control in Biological Networks

Human metabolism is generally represented by directed networks. Some
example biological networks are motivated by the application of control-
theoretic ideas in the analysis of biological circuits (Marucci et al.,
2009), biochemical reaction networks (Liu et al., 2013), and systems
biology (Rajapakse et al., 2012). Consider a directed network where
the nodes model reactions and/or metabolites. The network can be
externally affected by drugs that act only on a few nodes in the network.
Here, sparse inputs target to reduce the adverse side effects due to drug
administration and it motivates the need to control the system using
sparse inputs.

Overall, the need for sparse actuator control stems from the system’s
cost constraints or simply from the physics of how the system operates.
Therefore, using a limited number of actuators is desirable without
significantly compromising the control performance, for example, in
terms of the time or energy required to reach a certain desired state.

1.3 Overview of the Monograph

This monograph is organized into five sections (excluding this introduc-
tory section) that provide a detailed study of sparse actuator control.
The problem formulation and associated analysis are readily accessible
to signal processing, control/systems theory, and applied mathematics
communities.

Section ?? formally introduces the notion of sparse actuator control
with time-varying support and defines the notion of controllability
under the sparsity constraint. The central questions of the section are
as follows:

What are necessary and sufficient conditions for ensuring control-
lability under sparse inputs with possibly different supports? Can
we devise a computationally simple test for sparse controllability?
If a system is controllable using sparse inputs, how many control
input vectors are needed to drive the system from a given initial
state to an arbitrary final state?

Full text available at: http://dx.doi.org/10.1561/2600000033



8 Introduction

We show that, for any linear dynamical system controllable under the
sparsity constraint, a sparse actuator schedule independent of the system
state exists, which can drive the system to any desired state. Further,
we derive simple algebraic conditions, which are both necessary and
sufficient for the sparse controllability of the system. We show that
the system is sparse controllable if and only if it is controllable and
the sparsity level exceeds the nullity of the state matrix. Unlike the
more traditional Kalman-type rank tests, the derived conditions can
be verified in polynomial time complexity. Finally, we characterize the
time-to-control or the minimum number of input vectors required to
ensure sparse controllability and show that it is bounded by the state
dimension. These results form a theoretical basis for designing sparse
control inputs, which we discuss in the next section.

?? addresses the design of sparse control with time-varying support
for a given linear dynamical system. This section seeks an answer to
the following question:

Given a controllable linear dynamical system, how do we design
sparse inputs that take the system from a given initial state to a
desired final state?

We formulate the sparse control input design in two ways. In the first
approach, we formulate it as a sparse recovery problem and use the
compressed sensing algorithms to solve the problem. This approach
does not necessarily assume that the system is controllable, but the
corresponding sparse actuator schedule depends on the initial and final
states. In the second approach, we assume that the system is controllable.
We design a global sparse actuator schedule that applies to any pair of
initial and final states and then derive the control inputs based on the
designed schedule.

?? extends the idea of sparse control to other related control theory
notions. The focal question addressed in the section is as follows:

How are the stabilizability, output controllability, and nonnegative
controllability of a linear dynamical system affected by the sparsity
constraints on the input?

Full text available at: http://dx.doi.org/10.1561/2600000033



1.3. Overview of the Monograph 9

We show three key results in this section. The first result, perhaps
surprisingly, shows that sparsity constraints do not have any effect
on the stabilizability. All stabilizable systems are sparse stabilizable.
The second result is on the algebraic characterization of sparse output
controllability. We derive bounds on minimal sparsity levels that ensure
output controllability. Finally, we show that any sparse controllable and
nonnegative controllable systems are sparse nonnegative controllable.
We also briefly discuss three sets of design algorithms: the first estimates
sparse control inputs for system stabilization, the second estimates
sparse control inputs to achieve a desired output, and the third estimates
nonnegative sparse control inputs to reach a desired state.

?? looks at a more stringent sparsity constraint, where all the sparse
inputs have nonzero entries at the same indices. So, the section deals
with the question:

If a linear dynamical system can be controlled using only a few ac-
tuators among the available ones, how do we choose the actuators
and design the corresponding control inputs?

We prove that the problem of finding the minimum sparsity level to make
the system controllable under time-invariant support is an NP hard
problem. Nonetheless, there are several approximate design algorithms
that can choose a small number of actuators to control the system.
There are two design approaches: one is compressed sensing algorithms
that are initial and final state-dependent, and the second approach is
state-independent actuator scheduling-based.

?? summarizes the open problems or questions on the new area of
sparse actuator control, points to the weaknesses that still have to be
strengthened, and offers some concluding remarks.

Each section ends with a subsection titled “Notes” where we provide
supplementary facts, additional comments, and some open questions.

Notation is usually introduced when it is used for the first time. The
collection of symbols used in the text can be found on page ??.
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10 Introduction

1.4 Out of the Scope Topics

This monograph is by no means exhaustive but presents some notable
recent research connecting linear dynamical systems and sparse inputs.
Other important problems related to sparsity and control have been
studied in the literature but are outside the scope of this monograph.
We briefly discuss a few of them below.

1.4.1 Sparsity in Time or Maximum Hands-Off

An important and widely studied control paradigm related to sparsity
is known as maximum hands-off control (Nagahara et al., 2015). This
approach is characterized by applying zero control for most of the time,
resulting in minimal active periods or the shortest active duration. Since
actuators remain inactive for extended periods, this method significantly
reduces fuel consumption, power usage, and communication burden. It
is worth noting that this strategy leverages sparsity over time, while
this monograph focuses on sparsity across actuator use.

The concept of time sparsity is modeled using the ℓ0-norm, which
serves as a penalty function to measure the duration of the control
signal’s active support. However, the ℓ0-norm is challenging to optimize
directly and is typically approximated using its convex relaxation, the
ℓ1-norm. Their equivalence holds under an assumption called normality.
Most research in this area centers on continuous-time systems, though
these ideas are also extended to discrete-time models (Mai and Yin,
2023).

Sparsity methods from compressed sensing and their applicability
to systems and control, covering standard sparsity methods in finite-
dimensional vector spaces and optimal control methods in infinite-
dimensional function spaces, has been extensively covered in Nagahara
(2020) and Nagahara (2023). The idea of maximum hands-off control
has been extended to general linear systems (Ikeda and Kashima, 2018;
Chatterjee et al., 2016; Nagahara et al., 2016; Ito et al., 2021), and time-
varying systems (Mai and Yin, 2024). Additionally, when the normality
assumption does not hold, non-convex penalty functions for promoting
sparsity have also been explored in the literature (Ikeda, 2024).
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1.4.2 Sparse Input Estimation From Observations

The design of sparse control inputs is closely related to the problem
of sparse input estimation in linear dynamical systems. In many cases,
the initial state of the system, whether sparse or non-sparse, is also
unknown. By leveraging the sparsity in the system, this problem can
be framed as finding the sparse solution to a linear system of equations.
Various compressed sensing approaches, such as basis pursuit, sparse
Bayesian learning, reweighed-ℓ1, and reweighed ℓ2, have been used to
estimate the sparse control inputs. The algorithms and guarantees for
sparse input estimation from observations, as well as other variants of
the problem, are discussed in Sefati et al. (2015), Kafashan et al. (2016),
Fosson et al. (2019), and Chakraborty et al. (2024) and their references.

Despite similarities and a shared compressed sensing-inspired ap-
proach to the solution, sparse control design and sparse input estimation
differ significantly. In the sparse input estimation problem, the output
trajectory of the system is already known, and the goal is to estimate
the sparsest inputs that can drive the system along a given trajectory.
In contrast, the sparse control problem does not have a predefined
trajectory. Instead, the objective is to find sparse inputs while also
considering system expenditures such as the energy budget, making the
problems distinct.

1.4.3 Sparsity in Feedback

Another area of interest is enforcing sparsity in the controller’s feedback
gain matrix. Some variants of this approach focus on maximizing the
number of nonzero rows in the feedback gain matrix to make the state
feedback vector sparse (Polyak et al., 2014; Arastoo et al., 2016). This
approach helps reduce the bandwidth requirement when feedback is
communicated to the plant via a wireless link. Another variant aims to
minimize the number of nonzero entries in the feedback matrix (Lin et
al., 2013; Fardad and Jovanović, 2014; Babazadeh and Nobakhti, 2016).
This strategy reduces the number of communication links between the
many components of large-scale and networked control systems.
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12 Introduction

1.4.4 Sparse Sensing and Sparse Observability

Since sensing problems are dual counterparts of control problems, sparse
sensing or sensor scheduling represents a related area of study. In such
contexts, the literature often distinguishes between two approaches:
myopic strategies, which prioritize the immediate effects of selected
actuators, and non-myopic strategies, which take a forward-looking
perspective alongside immediate impacts (Hashemi et al., 2020; Ballotta
et al., 2020; Vafaee and Siami, 2024).

Sensor scheduling differs significantly, as its performance metrics
typically include estimation error, computational constraints, and trans-
mission delay (especially in networked systems). In contrast, control
design primarily focuses on minimizing energy usage and adhering
to time-to-control constraints. Some studies have also explored joint
actuator-sensor selection (Ye et al., 2022), which is also not the focus
here.

Another related topic includes the observability of linear systems
when the initial state is sparse (Dai and Yüksel, 2013; Sanandaji et al.,
2014; Joseph and Murthy, 2018; Joseph and Murthy, 2019). However,
sparse actuator controllability assumes a general initial state and sparse
control inputs, demanding distinct analyses.

1.4.5 Minimal Input Set for Structured Systems

Certain studies have explored minimal input selection for structured
systems. The primary objective is to identify a minimal cardinality set
of inputs that ensures a structurally controllable network (Chapman
and Mesbahi, 2013; Trefois and Delvenne, 2015). Additionally, other
research has investigated methods to adjust the system configuration
in order to reduce the size of the minimal input set (Abbas et al., 2023;
Joseph et al., 2023).

While these studies address sparsity, they require graph theory-
based analysis and the concept of zero-forcing sets specific to structural
systems, which are not directly related to the topic of this monograph.

Interested readers are referred to the above works and references
therein for extensive treatment of the topics.
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1.5 Notes

Linear dynamical systems are extensively applied across numerous fields,
including control systems (Zhou et al., 1996), signal processing (An-
derson and Moore, 2005), communications (Prasad et al., 2014), eco-
nomics (Brockwell et al., 2002), mechanical and civil engineering (Pope
III et al., 2002; Shao et al., 2006), and healthcare (Neumann et al., 2009;
Hvistendahl et al., 2013). The study of linear dynamical systems with
sparsity constraints dates back to 1972 (Athans, 1972). Recent research
has focused on the problem of identifying sequences of sparse control
inputs, for both fixed and time-varying sets of control nodes, as well
as other related challenges, all of which are explored in detail in this
monograph.

Several sparse control design algorithms covered in this monograph
are inspired by the field of compressed sensing, particularly in ????.
Compressed sensing, also known as compressive sensing, compressive
sampling, sparse sampling, or sparse signal recovery, is a signal process-
ing technique that allows for efficient acquisition and reconstruction
of signals by solving an underdetermined linear system. This method
makes use of the principle of sparsity, enabling the recovery of signals
from significantly fewer samples than traditionally required by the
Nyquist-Shannon sampling theorem through optimization techniques.

Since the advent of compressed sensing theory in the early 2000s, the
field has introduced a plethora of computationally efficient algorithms
and sophisticated analytical tools to handle sparsity. The initial steps
in this field were marked by seminal papers that combined ℓ1-norm
minimization with randomness in the measurement matrices (Candès
et al., 2006; Donoho, 2006). These foundational works paved the way for
a robust framework that has significantly influenced various applications
in signal processing and beyond. For thorough overviews of compressed
sensing, refer to the works of Baraniuk (2007), Wakin et al. (2008),
Kutyniok (2013), Fornasier and Rauhut (2015), and Foucart et al.
(2013).

Moreover, as discussed in ??, sparse control offers compact repre-
sentations. The advances in compressed sensing have made it possible
to represent sparse vectors with fewer samples compared to non-sparse
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vectors, thereby reducing the communication burden. This advantage
is particularly significant in systems where communication efficiency
and bandwidth are critical. By minimizing the amount of data required
for accurate signal representation and transmission, compressed sens-
ing facilitates more efficient and effective control strategies in various
cyber-physical applications.
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