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Abstract

In the past few years we have seen a surge in the theory of finite
Markov chains, by way of new techniques to bounding the convergence
to stationarity. This includes functional techniques such as logarithmic
Sobolev and Nash inequalities, refined spectral and entropy techniques,
and isoperimetric techniques such as the average and blocking conduc-
tance and the evolving set methodology. We attempt to give a more or
less self-contained treatment of some of these modern techniques, after
reviewing several preliminaries. We also review classical and modern
lower bounds on mixing times. There have been other important con-
tributions to this theory such as variants on coupling techniques and
decomposition methods, which are not included here; our choice was
to keep the analytical methods as the theme of this presentation. We
illustrate the strength of the main techniques by way of simple exam-
ples, a recent result on the Pollard Rho random walk to compute the
discrete logarithm, as well as with an improved analysis of the Thorp
shuffle.
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1

Introduction

Monte Carlo methods have been in use for a long time in statistical
physics and other fields for sampling purposes. However, the computer
scientists’ novel idea [38] of reducing the problem of approximately
counting the size of a large set of combinatorial objects to that of
near-uniform sampling from the same set, gave the study of Markov
chain Monte Carlo (MCMC) algorithms an entirely new purpose, and
promptly spawned an active subtopic of research. We recall here that
the work of [38] shows that in fact, under the technical assumption of
so-called self-reducibility, approximate counting of the size of a set in
polynomial time is feasible if and only if one is able to sample from the
set with nearly uniform distribution, also in polynomial time. In terms
of the finite Markov chain underlying an MCMC algorithm, the latter
problem translates to designing and analyzing a Markov chain with
a prescribed stationary measure, with a view (and hope) to providing
rigorous estimates on the polynomial fastness of the rate of convergence
to stationarity of the chain. Thus the classical subject of finite Markov
chains has received much renewed interest and attention.

To add concreteness to the above story, we briefly mention as exam-
ples of large sets of combinatorial objects, the set of matchings of a given

1
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2 Introduction

(as input) bipartite graph [34, 36], the set of proper colorings of a given
graph using a fixed number of colors [28], the number of matrices hav-
ing non-negative integer entries and with prescribed row and column
sums [16], etc. Albeit combinatorial, a non-discrete estimation prob-
lem which received significant devotion, both by way of algorithms and
analytical techniques, is that of (approximately) computing the volume
of a high-dimensional convex body (see [47, 48] and references therein).
There have already been some very good surveys focusing on such com-
binatorial, computational and statistical physics applications of finite
Markov chains. For an elaboration of the above premise, and a crash
course on several basic techniques, we recommend the excellent article
of Jerrum [32]. Towards the end of this introduction, we provide other
pointers to existing literature on this subject. However, much of the
theory surveyed here is rather recent theoretical (analytical) develop-
ment and is so far unavailable in a unified presentation. The significance
of these new methods is as follows.

The rate of convergence to stationarity of a finite Markov chain is
typically measured by the so-called mixing time, defined as the first
time τ by which the L1 (or more generally, Lp) distance between the
distribution at time τ and the stationary distribution falls below a
small threshold, such as 1/2e. It is classical and elementary to show
that the inverse spectral gap of a lazy reversible Markov chain cap-
tures the mixing time (in L1 and L2) up to a factor of log(1/π∗), where
π∗ = minxπ(x) denotes the smallest entry in the stationary probability
(vector) π of the chain. While the more technical logarithmic Sobolev
constant captures the L2-mixing time up to a factor of log log(1/π∗), it
is typically much harder to bound – to mention a specific example, the
exact constant is open for the 3-point space with arbitrary invariant
measure; also in a few cases, the log-Sobolev constant is known not
to give tight bounds on the L1-mixing time. The main strength of the
spectral profile techniques and the evolving set methodology considered
in this survey seems to be that of avoiding extra penalty factors such
as log log(1/π∗). These extra pesky factors can indeed be non-negligible
when the state space is of exponential (or worse) size in the size of the
input. In the present volume, the above is illustrated with a couple of
simple examples, and with the now-famous Thorp shuffle, for which
an improved O(d29) mixing time is described, building on the proof of
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3

Morris that proved the first polynomial (in d) bound of O(d44) – here
the number of cards in the deck is 2d, and hence the state space has size
2d!, resulting in a log log(1/π∗) factor of only O(d), while a log(1/π∗)
factor would have yielded an all too costly O(d2d).

The approach to L2-mixing time using the spectral profile has the
additional advantage of yielding known (upper) estimates on mixing
time, under a log-Sobolev inequality and/or a Nash-type inequality.
Thus various functional analytic approaches to mixing times can be uni-
fied with the approach of bounding the spectral profile. The one excep-
tion to this is the approach to stationarity using relative entropy; the
corresponding entropy constant capturing the rate of decay of entropy
has also been hard to estimate.

A brief history of the above development can perhaps be summa-
rized as follows. A fundamental contribution, by way of initiating sev-
eral subsequent works, was made by Lovász and Kannan in [46] in
which they introduced the notion of average conductance to bound the
total variation mixing time. This result was further strengthened and
developed by Morris and Peres using the so-called evolving sets, where
they analyze a given chain by relating it to an auxiliary (dual) chain on
subsets of the states of the original chain. While this was introduced in
[61] in a (martingale-based) probabilistic language, it turns out to be,
retrospectively, an independent and alternative view of the notion of a
Doob transform introduced and investigated by Diaconis and Fill [18].
Further refinement and generalization of the evolving sets approach was
done in detail by [56]. The functional analog of some of this is done via
the spectral profile, developed for the present context of finite Markov
chains, in [30], while having its origins in the developments by [4] and
[14] in the context of manifolds.

Besides summarizing much of the above recent developments in this
exciting topic, we address some classical aspects as well. In discrete-
time, much of the literature uses laziness assumptions to avoid annoy-
ing technical difficulties. While laziness is a convenient assumption, it
slows down the chain by a factor of 2, which may not be desirable in
practice. We take a closer look at this issue and report bounds which
reflect the precise dependence on laziness. The notion of modified con-
ductance circumvents laziness altogether, and we discuss this aspect
briefly and compare it to bounds derived from the functional approach.
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4 Introduction

Further details on the modified conductance and its usefulness can be
found in [57]. Another issue is that of the role of reversibility (a.k.a.
detailed balance conditions). We tried to pay particular attention to it,
due to current trend in the direction of analyzing various nonreversible
Markov chains. Although often a convenient assumption, we avoid as
much as possible this additional assumption. In particular, we include
a proof of the lower bound on the total variation mixing time in terms
of the second eigenvalue in the general case. Besides providing upper
and lower bounds for the mixing time of reversible and non-reversible
chains, we report recent successes (with brief analysis) in the analysis
of some non-reversible chains; see for example, the Pollard Rho random
walk for the discrete logarithm problem and the Thorp shuffle.

In Section 2 we introduce notions of mixing times and prove the
basic upper bounds on these notions using Poincaré and logarithmic
Sobolev type functional constants. In Section 3 we move on to recent
results using the spectral profile, as opposed to using simply the sec-
ond eigenvalue. In Section 4 we review the evolving set methods. Our
treatment of lower bounds on mixing times is provided in Section 5.
We consider several examples for illustration in Section 6. In the penul-
timate section, we gather a few recent results together. This includes
recent results on the so-called fastest mixing Markov chain problem,
and a recent theorem [52] from perturbation theory of finite Markov
chains; this theorem relates the stability of a stochastic matrix (sub-
ject to perturbations) to the rate of convergence to equilibrium of the
matrix. We also recall here an old but not so widely known character-
ization of the spectral gap, which seems worth revisiting due to recent
results utilizing this formulation. The Appendix contains a discussion
on the relations between the distances considered in this survey, and
others such as relative pointwise (L∞) distance.

We mention here a few additional sources, by way of survey articles,
for the interested reader. For a good overview of the basic techniques
in estimating the mixing times of finite Markov chains, see [32, 33, 35].
Other updates include the tutorial lectures of [40, 65]. Also a recent
manuscript of Dyer et al. [25] describes several comparison theorems
for reversible as well as nonreversible Markov chains.
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Birkhäuser Verlag, Basel, 2003.

[34] M. Jerrum and A. Sinclair, “Conductance and the rapid mixing property for
Markov chains: the approximation of the permanent resolved,” Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC 1988),
pp. 235–243, 1988.

[35] M. Jerrum and A. Sinclair, “The Markov chain Monte Carlo method: an
approach to approximate counting and integration,” in Approximation Algo-
rithms for NP-hard Problems, (D. Hochbaum, ed.), ch. 12, PWS Publishing,
Boston, 1996.

[36] M. Jerrum, A. Sinclair, and E. Vigoda, “A polynomial-time approximation
algorithm for the permanent of a matrix with non-negative entries,” Journal
of the ACM, vol. 51, pp. 671–697, 2004.

[37] M. Jerrum and J.-B. Son, “Spectral Gap and log-Sobolev constant for bal-
anced matroids,” Proc. of the 43rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2002), pp. 721–729, 2002.

[38] M. Jerrum, L. Valiant, and V. Vazirani, “Random generation of combinatorial
structures from a uniform distribution,” Theoretical Computer Science, vol. 43,
pp. 169–188, 1998.

[39] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz maps into a Hilbert
space,” Contemp. Math., vol. 26, pp. 189–206, 1984.

[40] R. Kannan, “Markov chains and polynomial time algorithms,” Plenary Talk at
Proc. of 35th Annual IEEE Symp. on the Foundations of Computer Science,
pp. 656–671, 1994.

[41] R. Kannan, L. Lovász, and R. Montenegro, “Blocking conductance and mixing
in random walks,” Combinatorics, Probability and Computing, to appear, 2006.

[42] H. J. Landau and A. M. Odlyzko, “Bounds for eigenvalues of certain stochastic
matrices,” Linear Algebra Appl., vol. 38, pp. 5–15, 1981.

[43] G. Lawler and A. Sokal, “Bounds on the L2 spectrum for Markov chains and
Markov processes: a generalization of Cheeger’s inequality,” Transactions of the
American Mathematical Society, vol. 309, pp. 557–580, 1988.

[44] T.-Y. Lee and H.-T. Yau, “Logarithmic Sobolev inequalities for some models of
random walks,” The Annals of Probability, vol. 26, no. 4, pp. 1855–1873, 1998.
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Appendix

Our main focus has been on bounds for L2 distance. Our bounds on
mixing times in L2 and relative entropy also yield bounds on the total
variation mixing time using the following well-known inequality relating
probability measures ν and µ.

‖ν − µ‖TV =
1
2

∥∥∥∥νµ − 1
∥∥∥∥

1,µ

≤ 1
2

∥∥∥∥νµ − 1
∥∥∥∥

2,µ

. (8.1)

Further assuming that ν is absolutely continuous with respect to µ,
the so-called Pinsker inequality (see Lemma 12.6.1 in [15] for a proof),
asserts that:

‖ν − µ‖2
TV ≤ 1

2
D(ν‖µ) (8.2)

Finally the general inequality (Eµf)Entµ(f) ≤ Varµ(f), valid for all
measurable functions on an arbitrary probability space (since log f

Eµf ≤
f

Eµf − 1), when applied to f = ν/µ implies that,

D(ν‖µ) ≤
∥∥∥∥νµ − 1

∥∥∥∥2

2,µ

. (8.3)
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In a sense the L∞, or relative pointwise distance, is the strongest of
all distances. Our L2 bounds also induce L∞ bounds. Observe that if
t = t1 + t2 then∣∣∣∣Ht(x,y) − π(y)

π(y)

∣∣∣∣ = ∣∣∣∣∑z (Ht1(x,z) − π(z))(Ht2(z,y) − π(y))
π(y)

∣∣∣∣
=

∣∣∣∣∣∑
z

π(z)
(
Ht1(x,z)
π(z)

− 1
)(

H∗
t2(y,z)
π(z)

− 1
)∣∣∣∣∣

≤
∥∥hx

t1 − 1
∥∥

2

∥∥h∗yt2
− 1
∥∥

2
(8.4)

where the inequality follows from Cauchy-Schwartz. Several bounds on
L∞ mixing then follow immediately, including

τ2(ε) ≤ τ∞(ε) ≤ τ2

(
ε

√
π∗

1 − π∗

)
and

τ2(ε) ≤ τ∞(ε) ≤ τP
2 (
√
ε) + τP∗

2 (
√
ε) .

The first of these two is somewhat unappealing because the asymp-
totic portion of τ2(ε) is of the form λ−1 log(1/ε), and so taking
τ2

(
ε
√

π∗
1−π∗

)
adds an extra factor of λ−1 log(1/π∗) to the τ2(ε) bound,

potentially large relative to spectral profile bounds. The second bound
unfortunately requires study of both P and P∗. However, if P is
reversible then this last bound becomes

τ2(ε) ≤ τ∞(ε) ≤ 2τ2(
√
ε) . (8.5)

More generally, most bounds in this survey were the same for P and P∗.
For instance, (8.5) holds for the spectral profile bounds on L2 mixing
in terms of Λ(r). In particular, the Dirichlet form satisfies

EP(f,f) = EP∗(f,f)

and so λ(P) = λ(P∗), ΛP(r) = ΛP∗(r), ρ(P) = ρ(P∗) and ΦP(r) = ΦP∗(r)
(as Q(A,Ac) = E(1A,1A)).

It is not as clear how the f -congestion bounds behave for P∗. How-
ever, if π is uniform then
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Ψ(A) = Ψ(Ac) = min
π(B)=π(A)

Q(Ac,B)

= min
π(B)=π(A)

QP∗(B,Ac) ≥ min
π(B)=π(A)

ΨP∗(B)

and so φ̃(r) ≥ φ̃P∗(r). The converse follows similarly, so φ̃P(r) = φ̃P∗(r)
when π is uniform, and (8.5) holds for modified-conductance bounds.
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