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Abstract

This is a survey of pseudorandomness, the theory of efficiently generat-

ing objects that “look random” despite being constructed using little

or no randomness. This theory has significance for a number of areas

in computer science and mathematics, including computational com-

plexity, algorithms, cryptography, combinatorics, communications, and

additive number theory. Our treatment places particular emphasis on

the intimate connections that have been discovered between a variety

of fundamental “pseudorandom objects” that at first seem very differ-

ent in nature: expander graphs, randomness extractors, list-decodable

error-correcting codes, samplers, and pseudorandom generators. The

structure of the presentation is meant to be suitable for teaching in a

graduate-level course, with exercises accompanying each section.
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1

Introduction

1.1 Overview of this Survey

Over the past few decades, randomization has become one of the most

pervasive paradigms in computer science. Its widespread uses include:

Algorithm Design: For a number of important algorithmic prob-

lems, the most efficient algorithms known are randomized. For example:

• Primality Testing: This was shown to have a randomized

polynomial-time algorithm in 1977. It wasn’t until 2002 that

a deterministic polynomial-time algorithm was discovered.

(We will see this algorithm, but not its proof.)
• Approximate Counting : Many approximate counting prob-

lems (e.g., counting perfect matchings in a bipartite graph)

have randomized polynomial-time algorithms, but the fastest

known deterministic algorithms take exponential time.
• Undirected S-T Connectivity: This was shown to have

a randomized logspace algorithm in 1979. It wasn’t until

2005 that a deterministic logspace algorithm was discovered

— using tools from the theory of pseudorandomness, as we

will see.

1
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2 Introduction

• Perfect Matching: This was shown to have a randomized

polylogarithmic-time parallel algorithm in the late 1970s.

Deterministically, we only know polynomial-time algorithms.

Even in the cases where deterministic algorithms of comparable com-

plexity were eventually found, the randomized algorithms remain con-

siderably simpler and more efficient than the deterministic ones.

Cryptography: Randomization is central to cryptography. Indeed,

cryptography is concerned with protecting secrets, and how can some-

thing be secret if it is deterministically fixed? For example, we assume

that cryptographic keys are chosen at random (e.g., uniformly from

the set of n-bit strings). In addition to the keys, it is known that often

the cryptographic algorithms themselves (e.g., for encryption) must be

randomized to achieve satisfactory notions of security (e.g., that no

partial information about the message is leaked).

Combinatorial Constructions: Randomness is often used to prove

the existence of combinatorial objects with a desired property. Specifi-

cally, if one can show that a randomly chosen object has the property

with nonzero probability, then it follows that such an object must, in

fact, exist. A famous example due to Erdős is the existence of Ramsey

graphs: A randomly chosen n-vertex graph has no clique or indepen-

dent set of size 2 logn with high probability. We will see several other

applications of this “Probabilistic Method” in this survey, such as with

two important objects mentioned below: expander graphs and error-

correcting codes.

Though these applications of randomness are interesting and rich

topics of study in their own right, they are not the focus of this survey.

Rather, we ask the following:

Main Question: Can we reduce or even eliminate the use of ran-

domness in these settings?

We have several motivations for doing this.

• Complexity Theory : We are interested in understanding and

comparing the power of various kinds of computational

resources. Since randomness is such a widely used resource,

Full text available at: http://dx.doi.org/10.1561/0400000010



1.1 Overview of this Survey 3

we want to know how it relates to other resources such as

time, space, and parallelism. In particular, we ask: Can every

randomized algorithm be derandomized with only a small loss

in efficiency?
• Using Physical Random Sources: It is unclear whether the

real world has physical sources of perfect randomness. We

may use sources that seem to have some unpredictability,

like the low order bits of a system clock or thermal noise,

but these sources will generally have biases and, more prob-

lematically, correlations. Thus we ask: What can we do with

a source of biased and correlated bits?
• Explicit Constructions: Probabilistic constructions of combi-

natorial objects often do not provide us with efficient algo-

rithms for using those objects. Indeed, the randomly chosen

object often has a description that is exponential in the rele-

vant parameters. Thus, we look for explicit constructions —

ones that are deterministic and efficient. In addition to their

applications, improvements in explicit constructions serve as

a measure of our progress in understanding the objects at

hand. Indeed, Erdős posed the explicit construction of near-

optimal Ramsey graphs as an open problem, and substantial

progress on this problem was recently made using the theory

of pseudorandomness (namely randomness extractors).
• Unexpected Applications: In addition, the theory of pseudo-

randomness has turned out to have many applications to

problems that seem to have no connection to derandomiza-

tion. These include data structures, distributed computation,

circuit lower bounds and completeness results in complexity

theory, reducing interaction in interactive protocols, sav-

ing memory in streaming algorithms, and more. We will

see some of these applications in this survey (especially the

exercises).

The paradigm we will use to study the Main Question is that of

pseudorandomness: efficiently generating objects that “look random”

using little or no randomness.

Full text available at: http://dx.doi.org/10.1561/0400000010



4 Introduction

Specifically, we will study four “pseudorandom” objects:

Pseudorandom Generators: A pseudorandom generator is an

algorithm that takes as input a short, perfectly random seed and then

returns a (much longer) sequence of bits that “looks random.” That

the bits output cannot be perfectly random is clear — the output is

determined by the seed and there are far fewer seeds than possible bit

sequences. Nevertheless, it is possible for the output to “look random”

in a very meaningful and general-purpose sense. Specifically, we will

require that no efficient algorithm can distinguish the output from a

truly random sequence. The study of pseudorandom generators meet-

ing this strong requirement originated in cryptography, where they have

numerous applications. In this survey, we will emphasize their role in

derandomizing algorithms.

Note that asserting that a function is a pseudorandom generator is

a statement about something that efficient algorithms can’t do (in this

case, distinguish two sequences). But proving that efficient algorithms

cannot compute things is typically out of reach for current techniques

in theoretical computer science; indeed this is why the P vs. NP ques-

tion is so hard. Thus, we will settle for conditional statements. An

ideal theorem would be something like: “If P 6= NP, then pseudoran-

dom generators exist.” (The assumptions we make won’t exactly be

P 6= NP, but hypotheses of a similar flavor.)

Randomness Extractors: A randomness extractor takes as input

a source of biased and correlated bits, and then produces a sequence of

almost-uniform bits as output. Their original motivation was the simu-

lation of randomized algorithms with sources of biased and correlated

bits, but they have found numerous other applications in theoretical

computer science. Ideally, extractors would be deterministic, but as we

will see this proves to be impossible for general sources of biased and

correlated bits. Nevertheless, we will get close — constructing extrac-

tors that are only “mildly” probabilistic, in that they use small (loga-

rithmic) number of truly random bits as a seed for the extraction.

Expander Graphs: Expanders are graphs with two seemingly

contradictory properties: they are sparse (e.g., having degree that is

Full text available at: http://dx.doi.org/10.1561/0400000010



1.1 Overview of this Survey 5

a constant, independent of the number of vertices), but also “well-

connected” in some precise sense. For example, the graph cannot be

bisected without cutting a large (say, constant) fraction of the edges.

Expander graphs have numerous applications in theoretical com-

puter science. They were originally studied for their use in designing

fault-tolerant networks (e.g., for telephone lines), ones that maintain

good connectivity even when links or nodes fail. But they also have less

obvious applications, such as an O(logn)-time algorithm for sorting in

parallel.

It is not obvious that expander graphs exist, but in fact it can be

shown, via the Probabilistic Method, that a random graph of degree 3 is

a “good” expander with high probability. However, many applications

of expander graphs need explicit constructions, and these have taken

longer to find. We will see some explicit constructions in this survey, but

even the state-of-the-art does not always match the bounds given by

the probabilistic method (in terms of the degree/expansion tradeoff).

Error-Correcting Codes: Error-correcting codes are tools for com-

municating over noisy channels. Specifically, they specify a way to

encode messages into longer, redundant codewords so that even if the

codeword gets somewhat corrupted along the way, it is still possible

for the receiver to decode the original message. In his landmark paper

that introduced the field of coding theory, Shannon also proved the

existence of good error-correcting codes via the Probabilistic Method.

That is, a random mapping of n-bit messages to O(n)-bit codewords

is a “good” error-correcting code with high probability. Unfortunately,

these probabilistic codes are not feasible to actually use — a random

mapping requires an exponentially long description, and we know of no

way to decode such a mapping efficiently. Again, explicit constructions

are needed.

In this survey, we will focus on the problem of list decoding. Specif-

ically, we will consider scenarios where the number of corruptions is

so large that unique decoding is impossible; at best one can produce a

short list that is guaranteed to contain the correct message.

A Unified Theory: Each of the above objects has been the center of

a large and beautiful body of research, but until recently these corpora

Full text available at: http://dx.doi.org/10.1561/0400000010



6 Introduction

were largely distinct. An exciting development over the past decade has

been the realization that all four of these objects are almost the same

when interpreted appropriately. Their intimate connections will be a

major focus of this survey, tying together the variety of constructions

and applications that we will see.

The surprise and beauty of these connections has to do with

the seemingly different nature of each of these objects. Pseudoran-

dom generators, by asserting what efficient algorithms cannot do, are

objects of complexity theory. Extractors, with their focus on extract-

ing the entropy in a correlated and biased sequence, are information-

theoretic objects. Expander graphs are of course combinatorial objects

(as defined above), though they can also be interpreted algebraically,

as we will see. Error-correcting codes involve a mix of combinatorics,

information theory, and algebra. Because of the connections, we obtain

new perspectives on each of the objects, and make substantial advances

on our understanding of each by translating intuitions and techniques

from the study of the others.

1.2 Background Required and Teaching Tips

The presentation assumes a good undergraduate background in the

theory of computation, and general mathematical maturity. Specifi-

cally, it is assumed that the reader is familiar with basic algorithms

and discrete mathematics as covered in [109], including some exposure

to randomized algorithms; and with basic computational complexity

including P, NP, and reductions, as covered in [366]. Experience with

elementary abstract algebra, particularly finite fields, is helpful; recom-

mended texts are [36, 263].

Most of the material in the survey is covered in a one-semester

graduate course that the author teaches at Harvard University, which

consists of 24 lectures of 1.5 hours each. Most of the students in that

course take at least one graduate-level course in theoretical computer

science before this one.

The exercises are an important part of the survey, as they include

proofs of some key facts, introduce some concepts that will be used in

later sections, and illustrate applications of the material to other topics.

Full text available at: http://dx.doi.org/10.1561/0400000010



1.3 Notational Conventions 7

Problems that are particularly challenging or require more creativity

than most are marked with a star.

1.3 Notational Conventions

We denote the set of numbers {1, . . . ,n} by [n]. We write N for the set

of nonnegative integers (so we consider 0 to be a natural number). We

write S ⊂ T to mean that S is a subset of T (not necessarily strict),

and S ( T for S being a strict subset of T . An inequality we use often

is
(
n
k

)
≤ (ne/k)k. All logarithms are base 2 unless otherwise specified.

We often use the convention that lowercase letters are the logarithm

(base 2) of the corresponding capital letter (e.g., N = 2n).

Throughout, we consider random variables that can take values in

arbitrary discrete sets (as well as real-valued random variables). We

generally use capital letters, e.g., X, to denote random variables and

lowercase letters, e.g., x, to denote specific values. We write x
R← X

to indicate that x is sampled according to X. For a set S, we write

x
R← S to mean that x is selected uniformly at random from S. We

use the convention that multiple occurrences of a random variable in

an expression refer to the same instantiation, e.g., Pr[X = X] = 1. The

support of a random variable X is denoted by Supp(X)
def
= {x : Pr[X =

x] > 0}. For an event E, we write X|E to denote the random variable

X conditioned on the event E. For a set S, we write US to denote

a random variable distributed uniformly over S. For n ∈ N, Un is a

random variable distributed uniformly over {0,1}n.

1.4 Chapter Notes and References

In this section, we only provide pointers to general surveys and

textbooks on the topics covered, plus citations for specific results

mentioned.

General introductions to the theory of pseudorandomness (other

than this survey) include [162, 288, 393].

Recommended textbooks focused on randomized algorithms are

[290, 291]. The specific randomized and deterministic algorithms

Full text available at: http://dx.doi.org/10.1561/0400000010



8 Introduction

mentioned are due to [6, 13, 220, 236, 237, 267, 287, 314, 327, 369];

for more details see Section 2.6.

Recommended textbooks on cryptography are [157, 158, 238]. The

idea that encryption should be randomized is due to Goldwasser and

Micali [176].

The Probabilistic Method for combinatorial constructions is the

subject of the book [25]. Erdős used this method to prove the existence

of Ramsey graphs in [132]. Major recent progress on explicit construc-

tions of Ramsey graphs was recently obtained by Barak, Rao, Shaltiel,

and Widgerson [48] via the theory of randomness extractors.

The modern notion of a pseudorandom generator was formulated in

the works of Blum and Micali [72] and Yao [421], motivated by cryp-

tographic applications. We will spend most of our time on a variant of

the Blum–Micali–Yao notion, proposed by Nisan and Wigderson [302],

where the generator is allowed more running time than the algorithms

it fools. A detailed treatment of the Blum–Micali–Yao notion can be

found in [157].

Surveys on randomness extractors are [301, 352, 354]. The notion

of extractor that we will focus on is the one due to Nisan and

Zuckerman [303].

A detailed survey of expander graphs is [207]. The probabilistic

construction of expander graphs is due to Pinsker [309]. The applica-

tion of expanders to sorting in parallel is due to Ajtai, Komlós, and

Szemerédi [10].

A classic text on coding theory is [282]. For a modern, computer

science-oriented treatment, we recommend Sudan’s lecture notes [380].

Shannon started this field with the paper [361]. The notion of list decod-

ing was proposed by Elias [129] and Wozencraft [420], and was reinvig-

orated in the work of Sudan [378]. Recent progress on list decoding is

covered in [184].
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