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Abstract

Data sets in large applications are often too massive to fit completely
inside the computer’s internal memory. The resulting input/output
communication (or I/O) between fast internal memory and slower
external memory (such as disks) can be a major performance bottle-
neck. In this manuscript, we survey the state of the art in the design
and analysis of algorithms and data structures for external memory (or
EM for short), where the goal is to exploit locality and parallelism in
order to reduce the I/O costs. We consider a variety of EM paradigms
for solving batched and online problems efficiently in external memory.

For the batched problem of sorting and related problems like per-
muting and fast Fourier transform, the key paradigms include distribu-
tion and merging. The paradigm of disk striping offers an elegant way
to use multiple disks in parallel. For sorting, however, disk striping can
be nonoptimal with respect to I/O, so to gain further improvements we
discuss distribution and merging techniques for using the disks inde-
pendently. We also consider useful techniques for batched EM problems
involving matrices, geometric data, and graphs.
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In the online domain, canonical EM applications include dictionary
lookup and range searching. The two important classes of indexed
data structures are based upon extendible hashing and B-trees. The
paradigms of filtering and bootstrapping provide convenient means in
online data structures to make effective use of the data accessed from
disk. We also re-examine some of the above EM problems in slightly
different settings, such as when the data items are moving, when the
data items are variable-length such as character strings, when the data
structure is compressed to save space, or when the allocated amount of
internal memory can change dynamically.

Programming tools and environments are available for simplifying
the EM programming task. We report on some experiments in the
domain of spatial databases using the TPIE system (Transparent Par-
allel I/O programming Environment). The newly developed EM algo-
rithms and data structures that incorporate the paradigms we discuss
are significantly faster than other methods used in practice.
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Preface

I first became fascinated about the tradeoffs between computing and
memory usage while a graduate student at Stanford University. Over
the following years, this theme has influenced much of what I have
done professionally, not only in the field of external memory algorithms,
which this manuscript is about, but also on other topics such as data
compression, data mining, databases, prefetching/caching, and random
sampling.

The reality of the computer world is that no matter how fast com-
puters are and no matter how much data storage they provide, there
will always be a desire and need to push the envelope. The solution is
not to wait for the next generation of computers, but rather to examine
the fundamental constraints in order to understand the limits of what
is possible and to translate that understanding into effective solutions.

In this manuscript you will consider a scenario that arises often in
large computing applications, namely, that the relevant data sets are
simply too massive to fit completely inside the computer’s internal
memory and must instead reside on disk. The resulting input/output
communication (or I/O) between fast internal memory and slower
external memory (such as disks) can be a major performance

ix
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x Preface

bottleneck. This manuscript provides a detailed overview of the design
and analysis of algorithms and data structures for external memory
(or simply EM ), where the goal is to exploit locality and parallelism in
order to reduce the I/O costs. Along the way, you will learn a variety
of EM paradigms for solving batched and online problems efficiently.

For the batched problem of sorting and related problems like per-
muting and fast Fourier transform, the two fundamental paradigms
are distribution and merging. The paradigm of disk striping offers an
elegant way to use multiple disks in parallel. For sorting, however,
disk striping can be nonoptimal with respect to I/O, so to gain fur-
ther improvements we discuss distribution and merging techniques for
using the disks independently, including an elegant duality property
that yields state-of-the-art algorithms. You will encounter other useful
techniques for batched EM problems involving matrices (such as matrix
multiplication and transposition), geometric data (such as finding inter-
sections and constructing convex hulls) and graphs (such as list ranking,
connected components, topological sorting, and shortest paths).

In the online domain, which involves constructing data structures
to answer queries, we discuss two canonical EM search applications:
dictionary lookup and range searching. Two important paradigms
for developing indexed data structures for these problems are hash-
ing (including extendible hashing) and tree-based search (including
B-trees). The paradigms of filtering and bootstrapping provide con-
venient means in online data structures to make effective use of the
data accessed from disk. You will also be exposed to some of the above
EM problems in slightly different settings, such as when the data items
are moving, when the data items are variable-length (e.g., strings of
text), when the data structure is compressed to save space, and when
the allocated amount of internal memory can change dynamically.

Programming tools and environments are available for simplifying
the EM programming task. You will see some experimental results in
the domain of spatial databases using the TPIE system, which stands
for Transparent Parallel I/O programming Environment. The newly
developed EM algorithms and data structures that incorporate the
paradigms discussed in this manuscript are significantly faster than
other methods used in practice.
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1

Introduction

The world is drowning in data! In recent years, we have been deluged by
a torrent of data from a variety of increasingly data-intensive applica-
tions, including databases, scientific computations, graphics, entertain-
ment, multimedia, sensors, web applications, and email. NASA’s Earth
Observing System project, the core part of the Earth Science Enterprise
(formerly Mission to Planet Earth), produces petabytes (1015 bytes)
of raster data per year [148]. A petabyte corresponds roughly to the
amount of information in one billion graphically formatted books. The
online databases of satellite images used by Microsoft TerraServer (part
of MSN Virtual Earth) [325] and Google Earth [180] are multiple ter-
abytes (1012 bytes) in size. Wal-Mart’s sales data warehouse contains
over a half petabyte (500 terabytes) of data. A major challenge is to
develop mechanisms for processing the data, or else much of the data
will be useless.

For reasons of economy, general-purpose computer systems usually
contain a hierarchy of memory levels, each level with its own cost
and performance characteristics. At the lowest level, CPU registers
and caches are built with the fastest but most expensive memory. For
internal main memory, dynamic random access memory (DRAM) is

1
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2 Introduction

Fig. 1.1 The memory hierarchy of a typical uniprocessor system, including registers, instruc-

tion cache, data cache (level 1 cache), level 2 cache, internal memory, and disks. Some sys-

tems have in addition a level 3 cache, not shown here. Memory access latency ranges from
less than one nanosecond (ns, 10−9 seconds) for registers and level 1 cache to several mil-

liseconds (ms, 10−3 seconds) for disks. Typical memory sizes for each level of the hierarchy

are shown at the bottom. Each value of B listed at the top of the figure denotes a typical
block transfer size between two adjacent levels of the hierarchy. All sizes are given in units

of bytes (B), kilobytes (KB, 103 B), megabytes (MB, 106 B), gigabytes (GB, 109 B), and
petabytes (PB, 1015 B). (In the PDM model defined in Chapter 2, we measure the block

size B in units of items rather than in units of bytes.) In this figure, 8KB is the indicated

physical block transfer size between internal memory and the disks. However, in batched
applications we often use a substantially larger logical block transfer size.

typical. At a higher level, inexpensive but slower magnetic disks are
used for external mass storage, and even slower but larger-capacity
devices such as tapes and optical disks are used for archival storage.
These devices can be attached via a network fabric (e.g., Fibre Channel
or iSCSI) to provide substantial external storage capacity. Figure 1.1
depicts a typical memory hierarchy and its characteristics.

Most modern programming languages are based upon a program-
ming model in which memory consists of one uniform address space.
The notion of virtual memory allows the address space to be far larger
than what can fit in the internal memory of the computer. Programmers
have a natural tendency to assume that all memory references require
the same access time. In many cases, such an assumption is reasonable
(or at least does not do harm), especially when the data sets are not
large. The utility and elegance of this programming model are to a
large extent why it has flourished, contributing to the productivity of
the software industry.
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3

However, not all memory references are created equal. Large address
spaces span multiple levels of the memory hierarchy, and accessing the
data in the lowest levels of memory is orders of magnitude faster than
accessing the data at the higher levels. For example, loading a register
can take a fraction of a nanosecond (10−9 seconds), and accessing
internal memory takes several nanoseconds, but the latency of access-
ing data on a disk is multiple milliseconds (10−3 seconds), which is
about one million times slower! In applications that process massive
amounts of data, the Input/Output communication (or simply I/O)
between levels of memory is often the bottleneck.

Many computer programs exhibit some degree of locality in their
pattern of memory references: Certain data are referenced repeatedly
for a while, and then the program shifts attention to other sets of
data. Modern operating systems take advantage of such access patterns
by tracking the program’s so-called “working set” — a vague notion
that roughly corresponds to the recently referenced data items [139].
If the working set is small, it can be cached in high-speed memory so
that access to it is fast. Caching and prefetching heuristics have been
developed to reduce the number of occurrences of a “fault,” in which
the referenced data item is not in the cache and must be retrieved by
an I/O from a higher level of memory. For example, in a page fault,
an I/O is needed to retrieve a disk page from disk and bring it into
internal memory.

Caching and prefetching methods are typically designed to be
general-purpose, and thus they cannot be expected to take full advan-
tage of the locality present in every computation. Some computations
themselves are inherently nonlocal, and even with omniscient cache
management decisions they are doomed to perform large amounts
of I/O and suffer poor performance. Substantial gains in performance
may be possible by incorporating locality directly into the algorithm
design and by explicit management of the contents of each level of the
memory hierarchy, thereby bypassing the virtual memory system.

We refer to algorithms and data structures that explicitly manage
data placement and movement as external memory (or EM ) algorithms
and data structures. Some authors use the terms I/O algorithms or
out-of-core algorithms. We concentrate in this manuscript on the I/O
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4 Introduction

communication between the random access internal memory and the
magnetic disk external memory, where the relative difference in access
speeds is most apparent. We therefore use the term I/O to designate
the communication between the internal memory and the disks.

1.1 Overview

In this manuscript, we survey several paradigms for exploiting local-
ity and thereby reducing I/O costs when solving problems in external
memory. The problems we consider fall into two general categories:

(1) Batched problems, in which no preprocessing is done and
the entire file of data items must be processed, often by
streaming the data through the internal memory in one or
more passes.

(2) Online problems, in which computation is done in response
to a continuous series of query operations. A common tech-
nique for online problems is to organize the data items via a
hierarchical index, so that only a very small portion of the
data needs to be examined in response to each query. The
data being queried can be either static, which can be pre-
processed for efficient query processing, or dynamic, where
the queries are intermixed with updates such as insertions
and deletions.

We base our approach upon the parallel disk model (PDM)
described in the next chapter. PDM provides an elegant and reason-
ably accurate model for analyzing the relative performance of EM algo-
rithms and data structures. The three main performance measures of
PDM are the number of (parallel) I/O operations, the disk space usage,
and the (parallel) CPU time. For reasons of brevity, we focus on the first
two measures. Most of the algorithms we consider are also efficient in
terms of CPU time. In Chapter 3, we list four fundamental I/O bounds
that pertain to most of the problems considered in this manuscript.
In Chapter 4, we show why it is crucial for EM algorithms to exploit
locality, and we discuss an automatic load balancing technique called
disk striping for using multiple disks in parallel.
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1.1 Overview 5

Our general goal is to design optimal algorithms and data struc-
tures, by which we mean that their performance measures are within
a constant factor of the optimum or best possible.1 In Chapter 5, we
look at the canonical batched EM problem of external sorting and the
related problems of permuting and fast Fourier transform. The two
important paradigms of distribution and merging — as well as the
notion of duality that relates the two — account for all well-known
external sorting algorithms. Sorting with a single disk is now well under-
stood, so we concentrate on the more challenging task of using multiple
(or parallel) disks, for which disk striping is not optimal. The challenge
is to guarantee that the data in each I/O are spread evenly across the
disks so that the disks can be used simultaneously. In Chapter 6, we
cover the fundamental lower bounds on the number of I/Os needed to
perform sorting and related batched problems. In Chapter 7, we discuss
grid and linear algebra batched computations.

For most problems, parallel disks can be utilized effectively by
means of disk striping or the parallel disk techniques of Chapter 5,
and hence we restrict ourselves starting in Chapter 8 to the concep-
tually simpler single-disk case. In Chapter 8, we mention several effec-
tive paradigms for batched EM problems in computational geometry.
The paradigms include distribution sweep (for spatial join and find-
ing all nearest neighbors), persistent B-trees (for batched point loca-
tion and visibility), batched filtering (for 3-D convex hulls and batched
point location), external fractional cascading (for red-blue line segment
intersection), external marriage-before-conquest (for output-sensitive
convex hulls), and randomized incremental construction with grada-
tions (for line segment intersections and other geometric problems). In
Chapter 9, we look at EM algorithms for combinatorial problems on
graphs, such as list ranking, connected components, topological sort-
ing, and finding shortest paths. One technique for constructing I/O-
efficient EM algorithms is to simulate parallel algorithms; sorting is
used between parallel steps in order to reblock the data for the simu-
lation of the next parallel step.

1 In this manuscript we generally use the term “optimum” to denote the absolute best
possible and the term “optimal” to mean within a constant factor of the optimum.
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6 Introduction

In Chapters 10–12, we consider data structures in the online setting.
The dynamic dictionary operations of insert, delete, and lookup can be
implemented by the well-known method of hashing. In Chapter 10,
we examine hashing in external memory, in which extra care must be
taken to pack data into blocks and to allow the number of items to vary
dynamically. Lookups can be done generally with only one or two I/Os.
Chapter 11 begins with a discussion of B-trees, the most widely used
online EM data structure for dictionary operations and one-dimensional
range queries. Weight-balanced B-trees provide a uniform mechanism
for dynamically rebuilding substructures and are useful for a variety
of online data structures. Level-balanced B-trees permit maintenance
of parent pointers and support cut and concatenate operations, which
are used in reachability queries on monotone subdivisions. The buffer
tree is a so-called “batched dynamic” version of the B-tree for efficient
implementation of search trees and priority queues in EM sweep line
applications. In Chapter 12, we discuss spatial data structures for mul-
tidimensional data, especially those that support online range search.
Multidimensional extensions of the B-tree, such as the popular R-tree
and its variants, use a linear amount of disk space and often perform
well in practice, although their worst-case performance is poor. A non-
linear amount of disk space is required to perform 2-D orthogonal range
queries efficiently in the worst case, but several important special cases
of range searching can be done efficiently using only linear space. A use-
ful design paradigm for EM data structures is to “externalize” an effi-
cient data structure designed for internal memory; a key component
of how to make the structure I/O-efficient is to “bootstrap” a static
EM data structure for small-sized problems into a fully dynamic data
structure of arbitrary size. This paradigm provides optimal linear-space
EM data structures for several variants of 2-D orthogonal range search.

In Chapter 13, we discuss some additional EM approaches useful
for dynamic data structures, and we also investigate kinetic data struc-
tures, in which the data items are moving. In Chapter 14, we focus
on EM data structures for manipulating and searching text strings. In
many applications, especially those that operate on text strings, the
data are highly compressible. Chapter 15 discusses ways to develop
data structures that are themselves compressed, but still fast to query.
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1.1 Overview 7

Table 1.1 Paradigms for I/O efficiency discussed in this manuscript.

Paradigm Section

Batched dynamic processing 11.4

Batched filtering 8

Batched incremental construction 8
Bootstrapping 12

Buffer trees 11.4
B-trees 11, 12

Compression 15

Decomposable search 13.1
Disk striping 4.2

Distribution 5.1

Distribution sweeping 8
Duality 5.3

External hashing 10

Externalization 12.3
Fractional cascading 8

Filtering 12

Lazy updating 11.4
Load balancing 4

Locality 4.1
Marriage before conquest 8

Merging 5.2

Parallel block transfer 4.2
Parallel simulation 9

Persistence 11.1

Random sampling 5.1
R-trees 12.2

Scanning (or streaming) 2.2

Sparsification 9
Time-forward processing 11.4

In Chapter 16, we discuss EM algorithms that adapt optimally to
dynamically changing internal memory allocations.

In Chapter 17, we discuss programming environments and tools that
facilitate high-level development of efficient EM algorithms. We focus
primarily on the TPIE system (Transparent Parallel I/O Environment),
which we use in the various timing experiments in this manuscript. We
conclude with some final remarks and observations in the Conclusions.

Table 1.1 lists several of the EM paradigms discussed in this
manuscript.
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