
Algorithms and Data

Structures for External

Memory

Full text available at: http://dx.doi.org/10.1561/0400000014



Algorithms and Data
Structures for External

Memory

Jeffrey Scott Vitter

Department of Computer Science
Purdue University

West Lafayette
Indiana, 47907–2107

USA

jsv@purdue.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0400000014



Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. S. Vitter, Algorithms and Data

Structures for External Memory, Foundation and Trends R© in Theoretical Computer
Science, vol 2, no 4, pp 305–474, 2006

ISBN: 978-1-60198-106-6
c© 2008 J. S. Vitter

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc. for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000014



Foundations and Trends R© in
Theoretical Computer Science

Volume 2 Issue 4, 2006

Editorial Board

Editor-in-Chief:
Madhu Sudan
Department of CS and EE
MIT, Stata Center, Room G640
32 Vassar Street,
Cambridge MA 02139,
USA
madhu@mit.edu

Editors
Bernard Chazelle (Princeton)
Oded Goldreich (Weizmann Inst.)
Shafi Goldwasser (MIT and Weizmann Inst.)
Jon Kleinberg (Cornell University)
László Lovász (Microsoft Research)
Christos Papadimitriou (UC. Berkeley)
Prabhakar Raghavan (Yahoo! Research)
Peter Shor (MIT)
Madhu Sudan (MIT)
Éva Tardos (Cornell University)
Avi Wigderson (IAS)

Full text available at: http://dx.doi.org/10.1561/0400000014



Editorial Scope

Foundations and Trends R© in Theoretical Computer Science
will publish survey and tutorial articles in the following topics:

• Algorithmic game theory

• Computational algebra

• Computational aspects of
combinatorics and graph theory

• Computational aspects of
communication

• Computational biology

• Computational complexity

• Computational geometry

• Computational learning

• Computational Models and
Complexity

• Computational Number Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of algorithms

• Distributed computing

• Information retrieval

• Operations Research

• Parallel algorithms

• Quantum Computation

• Randomness in Computation

Information for Librarians
Foundations and Trends R© in Theoretical Computer Science, 2006, Volume 2,
4 issues. ISSN paper version 1551-305X. ISSN online version 1551-3068. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000014



Foundations and TrendsR© in
Theoretical Computer Science

Vol. 2, No. 4 (2006) 305–474
c© 2008 J. S. Vitter
DOI: 10.1561/0400000014

Algorithms and Data Structures
for External Memory

Jeffrey Scott Vitter

Department of Computer Science, Purdue University, West Lafayette,
Indiana, 47907–2107, USA, jsv@purdue.edu

Abstract

Data sets in large applications are often too massive to fit completely
inside the computer’s internal memory. The resulting input/output
communication (or I/O) between fast internal memory and slower
external memory (such as disks) can be a major performance bottle-
neck. In this manuscript, we survey the state of the art in the design
and analysis of algorithms and data structures for external memory (or
EM for short), where the goal is to exploit locality and parallelism in
order to reduce the I/O costs. We consider a variety of EM paradigms
for solving batched and online problems efficiently in external memory.

For the batched problem of sorting and related problems like per-
muting and fast Fourier transform, the key paradigms include distribu-
tion and merging. The paradigm of disk striping offers an elegant way
to use multiple disks in parallel. For sorting, however, disk striping can
be nonoptimal with respect to I/O, so to gain further improvements we
discuss distribution and merging techniques for using the disks inde-
pendently. We also consider useful techniques for batched EM problems
involving matrices, geometric data, and graphs.

Full text available at: http://dx.doi.org/10.1561/0400000014



In the online domain, canonical EM applications include dictionary
lookup and range searching. The two important classes of indexed
data structures are based upon extendible hashing and B-trees. The
paradigms of filtering and bootstrapping provide convenient means in
online data structures to make effective use of the data accessed from
disk. We also re-examine some of the above EM problems in slightly
different settings, such as when the data items are moving, when the
data items are variable-length such as character strings, when the data
structure is compressed to save space, or when the allocated amount of
internal memory can change dynamically.

Programming tools and environments are available for simplifying
the EM programming task. We report on some experiments in the
domain of spatial databases using the TPIE system (Transparent Par-
allel I/O programming Environment). The newly developed EM algo-
rithms and data structures that incorporate the paradigms we discuss
are significantly faster than other methods used in practice.

Full text available at: http://dx.doi.org/10.1561/0400000014



Preface

I first became fascinated about the tradeoffs between computing and
memory usage while a graduate student at Stanford University. Over
the following years, this theme has influenced much of what I have
done professionally, not only in the field of external memory algorithms,
which this manuscript is about, but also on other topics such as data
compression, data mining, databases, prefetching/caching, and random
sampling.

The reality of the computer world is that no matter how fast com-
puters are and no matter how much data storage they provide, there
will always be a desire and need to push the envelope. The solution is
not to wait for the next generation of computers, but rather to examine
the fundamental constraints in order to understand the limits of what
is possible and to translate that understanding into effective solutions.

In this manuscript you will consider a scenario that arises often in
large computing applications, namely, that the relevant data sets are
simply too massive to fit completely inside the computer’s internal
memory and must instead reside on disk. The resulting input/output
communication (or I/O) between fast internal memory and slower
external memory (such as disks) can be a major performance

ix

Full text available at: http://dx.doi.org/10.1561/0400000014



x Preface

bottleneck. This manuscript provides a detailed overview of the design
and analysis of algorithms and data structures for external memory
(or simply EM ), where the goal is to exploit locality and parallelism in
order to reduce the I/O costs. Along the way, you will learn a variety
of EM paradigms for solving batched and online problems efficiently.

For the batched problem of sorting and related problems like per-
muting and fast Fourier transform, the two fundamental paradigms
are distribution and merging. The paradigm of disk striping offers an
elegant way to use multiple disks in parallel. For sorting, however,
disk striping can be nonoptimal with respect to I/O, so to gain fur-
ther improvements we discuss distribution and merging techniques for
using the disks independently, including an elegant duality property
that yields state-of-the-art algorithms. You will encounter other useful
techniques for batched EM problems involving matrices (such as matrix
multiplication and transposition), geometric data (such as finding inter-
sections and constructing convex hulls) and graphs (such as list ranking,
connected components, topological sorting, and shortest paths).

In the online domain, which involves constructing data structures
to answer queries, we discuss two canonical EM search applications:
dictionary lookup and range searching. Two important paradigms
for developing indexed data structures for these problems are hash-
ing (including extendible hashing) and tree-based search (including
B-trees). The paradigms of filtering and bootstrapping provide con-
venient means in online data structures to make effective use of the
data accessed from disk. You will also be exposed to some of the above
EM problems in slightly different settings, such as when the data items
are moving, when the data items are variable-length (e.g., strings of
text), when the data structure is compressed to save space, and when
the allocated amount of internal memory can change dynamically.

Programming tools and environments are available for simplifying
the EM programming task. You will see some experimental results in
the domain of spatial databases using the TPIE system, which stands
for Transparent Parallel I/O programming Environment. The newly
developed EM algorithms and data structures that incorporate the
paradigms discussed in this manuscript are significantly faster than
other methods used in practice.

Full text available at: http://dx.doi.org/10.1561/0400000014



Preface xi

I would like to thank my colleagues for several helpful comments,
especially Pankaj Agarwal, Lars Arge, Ricardo Baeza-Yates, Adam
Buchsbaum, Jeffrey Chase, Michael Goodrich, Wing-Kai Hon, David
Hutchinson, Gonzalo Navarro, Vasilis Samoladas, Peter Sanders, Rahul
Shah, Amin Vahdat, and Norbert Zeh. I also thank the referees and edi-
tors for their help and suggestions, as well as the many wonderful staff
members I’ve had the privilege to work with. Figure 1.1 is a modified
version of a figure by Darren Vengroff, and Figures 2.1 and 5.2 come
from [118, 342]. Figures 5.4–5.8, 8.2–8.3, 10.1, 12.1, 12.2, 12.4, and 14.1
are modified versions of figures in [202, 47, 147, 210, 41, 50, 158], respec-
tively.

This manuscript is an expanded and updated version of the article in
ACM Computing Surveys, Vol. 33, No. 2, June 2001. I am very appre-
ciative for the support provided by the National Science Foundation
through research grants CCR–9522047, EIA–9870734, CCR–9877133,
IIS–0415097, and CCF–0621457; by the Army Research Office through
MURI grant DAAH04–96–1–0013; and by IBM Corporation. Part of
this manuscript was done at Duke University, Durham, North Carolina;
the University of Aarhus, Århus, Denmark; INRIA, Sophia Antipolis,
France; and Purdue University, West Lafayette, Indiana.

I especially want to thank my wife Sharon and our three kids (or
more accurately, young adults) Jillian, Scott, and Audrey for their ever-
present love and support. I most gratefully dedicate this manuscript to
them.

West Lafayette, Indiana — J. S. V.
March 2008

Full text available at: http://dx.doi.org/10.1561/0400000014



Contents

1 Introduction 1

1.1 Overview 4

2 Parallel Disk Model (PDM) 9

2.1 PDM and Problem Parameters 11
2.2 Practical Modeling Considerations 14
2.3 Related Models, Hierarchical Memory,

and Cache-Oblivious Algorithms 16

3 Fundamental I/O Operations and Bounds 21

4 Exploiting Locality and Load Balancing 25

4.1 Locality Issues with a Single Disk 26
4.2 Disk Striping and Parallelism with Multiple Disks 27

5 External Sorting and Related Problems 29

5.1 Sorting by Distribution 31
5.2 Sorting by Merging 38
5.3 Prefetching, Caching, and Applications to Sorting 42
5.4 A General Simulation for Parallel Disks 52
5.5 Handling Duplicates: Bundle Sorting 53
5.6 Permuting 54
5.7 Fast Fourier Transform and Permutation Networks 54

xiii

Full text available at: http://dx.doi.org/10.1561/0400000014



xiv Contents

6 Lower Bounds on I/O 57

6.1 Permuting 57
6.2 Lower Bounds for Sorting and Other Problems 61

7 Matrix and Grid Computations 65

7.1 Matrix Operations 65
7.2 Matrix Transposition 66

8 Batched Problems in Computational Geometry 69

8.1 Distribution Sweep 71
8.2 Other Batched Geometric Problems 76

9 Batched Problems on Graphs 77

9.1 Sparsification 80
9.2 Special Cases 81
9.3 Sequential Simulation of Parallel Algorithms 81

10 External Hashing for Online Dictionary Search 83

10.1 Extendible Hashing 84
10.2 Directoryless Methods 87
10.3 Additional Perspectives 87

11 Multiway Tree Data Structures 89

11.1 B-trees and Variants 89
11.2 Weight-Balanced B-trees 92
11.3 Parent Pointers and Level-Balanced B-trees 93
11.4 Buffer Trees 95

12 Spatial Data Structures and Range Search 99

12.1 Linear-Space Spatial Structures 102
12.2 R-trees 103

Full text available at: http://dx.doi.org/10.1561/0400000014



Contents xv

12.3 Bootstrapping for 2-D Diagonal Corner
and Stabbing Queries 107

12.4 Bootstrapping for Three-Sided Orthogonal
2-D Range Search 110

12.5 General Orthogonal 2-D Range Search 112
12.6 Other Types of Range Search 114
12.7 Lower Bounds for Orthogonal Range Search 116

13 Dynamic and Kinetic Data Structures 119

13.1 Dynamic Methods for Decomposable Search
Problems 119

13.2 Continuously Moving Items 121

14 String Processing 123

14.1 Inverted Files 123
14.2 String B-Trees 124
14.3 Suffix Trees and Suffix Arrays 127
14.4 Sorting Strings 127

15 Compressed Data Structures 129

15.1 Data Representations and Compression Models 130
15.2 External Memory Compressed Data Structures 133

16 Dynamic Memory Allocation 139

17 External Memory Programming
Environments 141

Conclusions 145

Notations and Acronyms 147

References 151

Full text available at: http://dx.doi.org/10.1561/0400000014



1

Introduction

The world is drowning in data! In recent years, we have been deluged by
a torrent of data from a variety of increasingly data-intensive applica-
tions, including databases, scientific computations, graphics, entertain-
ment, multimedia, sensors, web applications, and email. NASA’s Earth
Observing System project, the core part of the Earth Science Enterprise
(formerly Mission to Planet Earth), produces petabytes (1015 bytes)
of raster data per year [148]. A petabyte corresponds roughly to the
amount of information in one billion graphically formatted books. The
online databases of satellite images used by Microsoft TerraServer (part
of MSN Virtual Earth) [325] and Google Earth [180] are multiple ter-
abytes (1012 bytes) in size. Wal-Mart’s sales data warehouse contains
over a half petabyte (500 terabytes) of data. A major challenge is to
develop mechanisms for processing the data, or else much of the data
will be useless.

For reasons of economy, general-purpose computer systems usually
contain a hierarchy of memory levels, each level with its own cost
and performance characteristics. At the lowest level, CPU registers
and caches are built with the fastest but most expensive memory. For
internal main memory, dynamic random access memory (DRAM) is

1

Full text available at: http://dx.doi.org/10.1561/0400000014



2 Introduction

Fig. 1.1 The memory hierarchy of a typical uniprocessor system, including registers, instruc-

tion cache, data cache (level 1 cache), level 2 cache, internal memory, and disks. Some sys-

tems have in addition a level 3 cache, not shown here. Memory access latency ranges from
less than one nanosecond (ns, 10−9 seconds) for registers and level 1 cache to several mil-

liseconds (ms, 10−3 seconds) for disks. Typical memory sizes for each level of the hierarchy

are shown at the bottom. Each value of B listed at the top of the figure denotes a typical
block transfer size between two adjacent levels of the hierarchy. All sizes are given in units

of bytes (B), kilobytes (KB, 103 B), megabytes (MB, 106 B), gigabytes (GB, 109 B), and
petabytes (PB, 1015 B). (In the PDM model defined in Chapter 2, we measure the block

size B in units of items rather than in units of bytes.) In this figure, 8KB is the indicated

physical block transfer size between internal memory and the disks. However, in batched
applications we often use a substantially larger logical block transfer size.

typical. At a higher level, inexpensive but slower magnetic disks are
used for external mass storage, and even slower but larger-capacity
devices such as tapes and optical disks are used for archival storage.
These devices can be attached via a network fabric (e.g., Fibre Channel
or iSCSI) to provide substantial external storage capacity. Figure 1.1
depicts a typical memory hierarchy and its characteristics.

Most modern programming languages are based upon a program-
ming model in which memory consists of one uniform address space.
The notion of virtual memory allows the address space to be far larger
than what can fit in the internal memory of the computer. Programmers
have a natural tendency to assume that all memory references require
the same access time. In many cases, such an assumption is reasonable
(or at least does not do harm), especially when the data sets are not
large. The utility and elegance of this programming model are to a
large extent why it has flourished, contributing to the productivity of
the software industry.

Full text available at: http://dx.doi.org/10.1561/0400000014



3

However, not all memory references are created equal. Large address
spaces span multiple levels of the memory hierarchy, and accessing the
data in the lowest levels of memory is orders of magnitude faster than
accessing the data at the higher levels. For example, loading a register
can take a fraction of a nanosecond (10−9 seconds), and accessing
internal memory takes several nanoseconds, but the latency of access-
ing data on a disk is multiple milliseconds (10−3 seconds), which is
about one million times slower! In applications that process massive
amounts of data, the Input/Output communication (or simply I/O)
between levels of memory is often the bottleneck.

Many computer programs exhibit some degree of locality in their
pattern of memory references: Certain data are referenced repeatedly
for a while, and then the program shifts attention to other sets of
data. Modern operating systems take advantage of such access patterns
by tracking the program’s so-called “working set” — a vague notion
that roughly corresponds to the recently referenced data items [139].
If the working set is small, it can be cached in high-speed memory so
that access to it is fast. Caching and prefetching heuristics have been
developed to reduce the number of occurrences of a “fault,” in which
the referenced data item is not in the cache and must be retrieved by
an I/O from a higher level of memory. For example, in a page fault,
an I/O is needed to retrieve a disk page from disk and bring it into
internal memory.

Caching and prefetching methods are typically designed to be
general-purpose, and thus they cannot be expected to take full advan-
tage of the locality present in every computation. Some computations
themselves are inherently nonlocal, and even with omniscient cache
management decisions they are doomed to perform large amounts
of I/O and suffer poor performance. Substantial gains in performance
may be possible by incorporating locality directly into the algorithm
design and by explicit management of the contents of each level of the
memory hierarchy, thereby bypassing the virtual memory system.

We refer to algorithms and data structures that explicitly manage
data placement and movement as external memory (or EM ) algorithms
and data structures. Some authors use the terms I/O algorithms or
out-of-core algorithms. We concentrate in this manuscript on the I/O

Full text available at: http://dx.doi.org/10.1561/0400000014



4 Introduction

communication between the random access internal memory and the
magnetic disk external memory, where the relative difference in access
speeds is most apparent. We therefore use the term I/O to designate
the communication between the internal memory and the disks.

1.1 Overview

In this manuscript, we survey several paradigms for exploiting local-
ity and thereby reducing I/O costs when solving problems in external
memory. The problems we consider fall into two general categories:

(1) Batched problems, in which no preprocessing is done and
the entire file of data items must be processed, often by
streaming the data through the internal memory in one or
more passes.

(2) Online problems, in which computation is done in response
to a continuous series of query operations. A common tech-
nique for online problems is to organize the data items via a
hierarchical index, so that only a very small portion of the
data needs to be examined in response to each query. The
data being queried can be either static, which can be pre-
processed for efficient query processing, or dynamic, where
the queries are intermixed with updates such as insertions
and deletions.

We base our approach upon the parallel disk model (PDM)
described in the next chapter. PDM provides an elegant and reason-
ably accurate model for analyzing the relative performance of EM algo-
rithms and data structures. The three main performance measures of
PDM are the number of (parallel) I/O operations, the disk space usage,
and the (parallel) CPU time. For reasons of brevity, we focus on the first
two measures. Most of the algorithms we consider are also efficient in
terms of CPU time. In Chapter 3, we list four fundamental I/O bounds
that pertain to most of the problems considered in this manuscript.
In Chapter 4, we show why it is crucial for EM algorithms to exploit
locality, and we discuss an automatic load balancing technique called
disk striping for using multiple disks in parallel.

Full text available at: http://dx.doi.org/10.1561/0400000014



1.1 Overview 5

Our general goal is to design optimal algorithms and data struc-
tures, by which we mean that their performance measures are within
a constant factor of the optimum or best possible.1 In Chapter 5, we
look at the canonical batched EM problem of external sorting and the
related problems of permuting and fast Fourier transform. The two
important paradigms of distribution and merging — as well as the
notion of duality that relates the two — account for all well-known
external sorting algorithms. Sorting with a single disk is now well under-
stood, so we concentrate on the more challenging task of using multiple
(or parallel) disks, for which disk striping is not optimal. The challenge
is to guarantee that the data in each I/O are spread evenly across the
disks so that the disks can be used simultaneously. In Chapter 6, we
cover the fundamental lower bounds on the number of I/Os needed to
perform sorting and related batched problems. In Chapter 7, we discuss
grid and linear algebra batched computations.

For most problems, parallel disks can be utilized effectively by
means of disk striping or the parallel disk techniques of Chapter 5,
and hence we restrict ourselves starting in Chapter 8 to the concep-
tually simpler single-disk case. In Chapter 8, we mention several effec-
tive paradigms for batched EM problems in computational geometry.
The paradigms include distribution sweep (for spatial join and find-
ing all nearest neighbors), persistent B-trees (for batched point loca-
tion and visibility), batched filtering (for 3-D convex hulls and batched
point location), external fractional cascading (for red-blue line segment
intersection), external marriage-before-conquest (for output-sensitive
convex hulls), and randomized incremental construction with grada-
tions (for line segment intersections and other geometric problems). In
Chapter 9, we look at EM algorithms for combinatorial problems on
graphs, such as list ranking, connected components, topological sort-
ing, and finding shortest paths. One technique for constructing I/O-
efficient EM algorithms is to simulate parallel algorithms; sorting is
used between parallel steps in order to reblock the data for the simu-
lation of the next parallel step.

1 In this manuscript we generally use the term “optimum” to denote the absolute best
possible and the term “optimal” to mean within a constant factor of the optimum.

Full text available at: http://dx.doi.org/10.1561/0400000014



6 Introduction

In Chapters 10–12, we consider data structures in the online setting.
The dynamic dictionary operations of insert, delete, and lookup can be
implemented by the well-known method of hashing. In Chapter 10,
we examine hashing in external memory, in which extra care must be
taken to pack data into blocks and to allow the number of items to vary
dynamically. Lookups can be done generally with only one or two I/Os.
Chapter 11 begins with a discussion of B-trees, the most widely used
online EM data structure for dictionary operations and one-dimensional
range queries. Weight-balanced B-trees provide a uniform mechanism
for dynamically rebuilding substructures and are useful for a variety
of online data structures. Level-balanced B-trees permit maintenance
of parent pointers and support cut and concatenate operations, which
are used in reachability queries on monotone subdivisions. The buffer
tree is a so-called “batched dynamic” version of the B-tree for efficient
implementation of search trees and priority queues in EM sweep line
applications. In Chapter 12, we discuss spatial data structures for mul-
tidimensional data, especially those that support online range search.
Multidimensional extensions of the B-tree, such as the popular R-tree
and its variants, use a linear amount of disk space and often perform
well in practice, although their worst-case performance is poor. A non-
linear amount of disk space is required to perform 2-D orthogonal range
queries efficiently in the worst case, but several important special cases
of range searching can be done efficiently using only linear space. A use-
ful design paradigm for EM data structures is to “externalize” an effi-
cient data structure designed for internal memory; a key component
of how to make the structure I/O-efficient is to “bootstrap” a static
EM data structure for small-sized problems into a fully dynamic data
structure of arbitrary size. This paradigm provides optimal linear-space
EM data structures for several variants of 2-D orthogonal range search.

In Chapter 13, we discuss some additional EM approaches useful
for dynamic data structures, and we also investigate kinetic data struc-
tures, in which the data items are moving. In Chapter 14, we focus
on EM data structures for manipulating and searching text strings. In
many applications, especially those that operate on text strings, the
data are highly compressible. Chapter 15 discusses ways to develop
data structures that are themselves compressed, but still fast to query.

Full text available at: http://dx.doi.org/10.1561/0400000014



1.1 Overview 7

Table 1.1 Paradigms for I/O efficiency discussed in this manuscript.

Paradigm Section

Batched dynamic processing 11.4

Batched filtering 8

Batched incremental construction 8
Bootstrapping 12

Buffer trees 11.4
B-trees 11, 12

Compression 15

Decomposable search 13.1
Disk striping 4.2

Distribution 5.1

Distribution sweeping 8
Duality 5.3

External hashing 10

Externalization 12.3
Fractional cascading 8

Filtering 12

Lazy updating 11.4
Load balancing 4

Locality 4.1
Marriage before conquest 8

Merging 5.2

Parallel block transfer 4.2
Parallel simulation 9

Persistence 11.1

Random sampling 5.1
R-trees 12.2

Scanning (or streaming) 2.2

Sparsification 9
Time-forward processing 11.4

In Chapter 16, we discuss EM algorithms that adapt optimally to
dynamically changing internal memory allocations.

In Chapter 17, we discuss programming environments and tools that
facilitate high-level development of efficient EM algorithms. We focus
primarily on the TPIE system (Transparent Parallel I/O Environment),
which we use in the various timing experiments in this manuscript. We
conclude with some final remarks and observations in the Conclusions.

Table 1.1 lists several of the EM paradigms discussed in this
manuscript.

Full text available at: http://dx.doi.org/10.1561/0400000014



References

[1] D. J. Abel, “A B+-tree structure for large quadtrees,” Computer Vision,
Graphics, and Image Processing, vol. 27, pp. 19–31, July 1984.

[2] J. Abello, A. L. Buchsbaum, and J. Westbrook, “A functional approach to
external graph algorithms,” Algorithmica, vol. 32, no. 3, pp. 437–458, 2002.

[3] J. Abello, P. M. Pardalos, and M. G. Resende, eds., Handbook of Massive Data
Sets. Norwell, Mass.: Kluwer Academic Publishers, 2002.

[4] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming model, algo-
rithms and evaluation,” ACM SIGPLAN Notices, vol. 33, pp. 81–91, November
1998.

[5] M. Adler, “New coding techniques for improved bandwidth utilization,” in
Proceedings of the IEEE Symposium on Foundations of Computer Science,
(Burlington, VT), pp. 173–182, October 1996.

[6] P. K. Agarwal, L. Arge, G. S. Brodal, and J. S. Vitter, “I/O-efficient dynamic
point location in monotone planar subdivisions,” in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, pp. 11–20, ACM Press, 1999.

[7] P. K. Agarwal, L. Arge, and A. Danner, “From LIDAR to GRID DEM: A
scalable approach,” in Proceedings of the International Symposium on Spatial
Data Handling, 2006.

[8] P. K. Agarwal, L. Arge, and J. Erickson, “Indexing moving points,” Journal
of Computer and System Sciences, vol. 66, no. 1, pp. 207–243, 2003.

[9] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter, “Efficient
searching with linear constraints,” Journal of Computer and System Sciences,
vol. 61, pp. 194–216, October 2000.

[10] P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter, “I/O-
efficient algorithms for contour line extraction and planar graph blocking,” in

151

Full text available at: http://dx.doi.org/10.1561/0400000014



152 References

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 117–
126, ACM Press, 1998.

[11] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter, “A framework for
index bulk loading and dynamization,” in Proceedings of the International
Colloquium on Automata, Languages, and Programming, pp. 115–127, Crete,
Greece: Springer-Verlag, 2001.

[12] P. K. Agarwal, L. Arge, and J. Vahrenhold, “Time responsive external data
structures for moving points,” in Proceedings of the Workshop on Algorithms
and Data Structures, pp. 50–61, 2001.

[13] P. K. Agarwal, L. Arge, J. Yang, and K. Yi, “I/O-efficient structures for
orthogonal range-max and stabbing-max queries,” in Proceedings of the Euro-
pean Symposium on Algorithms, pp. 7–18, Springer-Verlag, 2003.

[14] P. K. Agarwal, L. Arge, and K. Yi, “I/O-efficient construction of constrained
delaunay triangulations,” in Proceedings of the European Symposium on Algo-
rithms, pp. 355–366, Springer-Verlag, 2005.

[15] P. K. Agarwal, L. Arge, and K. Yi, “An optimal dynamic interval stabbing-
max data structure?,” in Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 803–812, ACM Press, 2005.

[16] P. K. Agarwal, L. Arge, and K. Yi, “I/O-efficient batched union-find and its
applications to terrain analysis,” in Proceedings of the ACM Symposium on
Computational Geometry, ACM Press, 2006.

[17] P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H. J.
Haverkort, “Box-trees and R-trees with near-optimal query time,” Discrete
and Computational Geometry, vol. 28, no. 3, pp. 291–312, 2002.

[18] P. K. Agarwal and J. Erickson, “Geometric range searching and its relatives,”
in Advances in Discrete and Computational Geometry, (B. Chazelle, J. E.
Goodman, and R. Pollack, eds.), pp. 1–56, Providence, Rhode Island: Ameri-
can Mathematical Society Press, 1999.

[19] P. K. Agarwal and S. Har-Peled, “Maintaining the approximate extent mea-
sures of moving points,” in Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 148–157, Washington, DC: ACM Press, January 2001.

[20] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir, “A model for hierarchi-
cal memory,” in Proceedings of the ACM Symposium on Theory of Computing,
pp. 305–314, New York: ACM Press, 1987.

[21] A. Aggarwal, A. Chandra, and M. Snir, “Hierarchical memory with block
transfer,” in Proceedings of the IEEE Symposium on Foundations of Computer
Science, pp. 204–216, Los Angeles, 1987.

[22] A. Aggarwal and C. G. Plaxton, “Optimal parallel sorting in multi-level stor-
age,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 659–668, ACM Press, 1994.

[23] A. Aggarwal and J. S. Vitter, “The Input/Output complexity of sorting and
related problems,” Communications of the ACM, vol. 31, no. 9, pp. 1116–1127,
1988.

[24] C. Aggarwal, Data Streams: Models and Algorithms. Springer-Verlag, 2007.
[25] M. Ajtai, M. Fredman, and J. Komlós, “Hash functions for priority queues,”

Information and Control, vol. 63, no. 3, pp. 217–225, 1984.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 153

[26] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing the perfor-
mance of flash memory storage devices and its impact on algorithm design,”
in Proceedings of the International Workshop on Experimental Algorithmics,
(Provincetown, Mass.), pp. 208–219, Springer-Verlag, 2008.

[27] D. Ajwani, U. Meyer, and V. Osipov, “Improved external memory BFS imple-
mentation,” in Proceedings of the Workshop on Algorithm Engineering and
Experiments, (New Orleans), pp. 3–12, January 2007.

[28] S. Albers and M. Büttner, “Integrated prefetching and caching in single and
parallel disk systems,” Information and Computation, vol. 198, no. 1, pp. 24–
39, 2005.

[29] B. Alpern, L. Carter, E. Feig, and T. Selker, “The uniform memory hierarchy
model of computation,” Algorithmica, vol. 12, no. 2–3, pp. 72–109, 1994.

[30] L. Arge, “The I/O-complexity of ordered binary-decision diagram manipu-
lation,” in Proceedings of the International Symposium on Algorithms and
Computation, pp. 82–91, Springer-Verlag, 1995.

[31] L. Arge, “External memory data structures,” in Handbook of Massive Data
Sets, (J. Abello, P. M. Pardalos, and M. G. Resende, eds.), ch. 9, pp. 313–358,
Norwell, Mass.: Kluwer Academic Publishers, 2002.

[32] L. Arge, “The buffer tree: A technique for designing batched external data
structures,” Algorithmica, vol. 37, no. 1, pp. 1–24, 2003.

[33] L. Arge, G. Brodal, and R. Fagerberg, “Cache-oblivious data structures,” in
Handbook on Data Structures and Applications, (D. Mehta and S. Sahni, eds.),
CRC Press, 2005.

[34] L. Arge, G. S. Brodal, and L. Toma, “On external-memory MST, SSSP, and
multi-way planar graph separation,” Journal of Algorithms, vol. 53, no. 2,
pp. 186–206, 2004.

[35] L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wick-
remesinghe, “Efficient flow computation on massive grid datasets,” GeoInfor-
matica, vol. 7, pp. 283–313, December 2003.

[36] L. Arge, A. Danner, H. J. Haverkort, and N. Zeh, “I/O-efficient hierarchi-
cal watershed decomposition of grid terrains models,” in Proceedings of the
International Symposium on Spatial Data Handling, 2006.

[37] L. Arge, A. Danner, and S.-H. Teh, “I/O-efficient point location using persis-
tent B-trees,” in Workshop on Algorithm Engineering and Experimentation,
2003.

[38] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi, “The priority R-tree: A
practically efficient and worst-case optimal R-tree,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 347–358,
ACM Press, 2004.

[39] L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter, “On sorting strings in exter-
nal memory,” in Proceedings of the ACM Symposium on Theory of Computing,
pp. 540–548, ACM Press, 1997.

[40] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava, “Fundamental parallel
algorithms for private-cache chip multiprocessors,” in Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, Munich: ACM Press,
June 2008.

Full text available at: http://dx.doi.org/10.1561/0400000014



154 References

[41] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter, “Efficient bulk oper-
ations on dynamic R-trees,” Algorithmica, vol. 33, pp. 104–128, January 2002.

[42] L. Arge, M. Knudsen, and K. Larsen, “A general lower bound on the I/O-
complexity of comparison-based algorithms,” in Proceedings of the Workshop
on Algorithms and Data Structures, pp. 83–94, Springer-Verlag, 1993.

[43] L. Arge, U. Meyer, and L. Toma, “External memory algorithms for diameter
and all-pairs shortest-paths on sparse graphs,” in Proceedings of the Interna-
tional Colloquium on Automata, Languages, and Programming, pp. 146–157,
Springer-Verlag, 2004.

[44] L. Arge, U. Meyer, L. Toma, and N. Zeh, “On external-memory planar depth
first search,” Journal of Graph Algorithms and Applications, vol. 7, no. 2,
pp. 105–129, 2003.

[45] L. Arge and P. Miltersen, “On showing lower bounds for external-memory
computational geometry problems,” in External Memory Algorithms and
Visualization, (J. Abello and J. S. Vitter, eds.), pp. 139–159, Providence,
Rhode Island: American Mathematical Society Press, 1999.

[46] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vit-
ter, “A unified approach for indexed and non-indexed spatial joins,” in Pro-
ceedings of the International Conference on Extending Database Technology,
Konstanz, Germany: ACM Press, March 2000.

[47] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Scalable
sweeping-based spatial join,” in Proceedings of the International Conference
on Very Large Databases, pp. 570–581, New York: Morgan Kaufmann, August
1998.

[48] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Theory and
practice of I/O-efficient algorithms for multidimensional batched searching
problems,” in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 685–694, ACM Press, January 1998.

[49] L. Arge, O. Procopiuc, and J. S. Vitter, “Implementing I/O-efficient data
structures using TPIE,” in Proceedings of the European Symposium on Algo-
rithms, pp. 88–100, Springer-Verlag, 2002.

[50] L. Arge, V. Samoladas, and J. S. Vitter, “Two-dimensional indexability and
optimal range search indexing,” in Proceedings of the ACM Conference on
Principles of Database Systems, pp. 346–357, Philadelphia: ACM Press, May–
June 1999.

[51] L. Arge, V. Samoladas, and K. Yi, “Optimal external memory planar point
enclosure,” in Proceedings of the European Symposium on Algorithms, pp. 40–
52, Springer-Verlag, 2004.

[52] L. Arge and L. Toma, “Simplified external memory algorithms for planar
DAGs,” in Proceedings of the Scandinavian Workshop on Algorithmic Theory,
pp. 493–503, 2004.

[53] L. Arge and L. Toma, “External data structures for shortest path queries
on planar digraphs,” in Proceedings of the International Symposium on Algo-
rithms and Computation, pp. 328–338, Springer-Verlag, 2005.

[54] L. Arge, L. Toma, and J. S. Vitter, “I/O-efficient algorithms for problems on
grid-based terrains,” in Workshop on Algorithm Engineering and Experimen-
tation, San Francisco: Springer-Verlag, January 2000.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 155

[55] L. Arge, L. Toma, and N. Zeh, “I/O-efficient topological sorting of planar
DAGs,” in Proceedings of the ACM Symposium on Parallel Algorithms and
Architectures, pp. 85–93, ACM Press, 2003.

[56] L. Arge and J. Vahrenhold, “I/O-efficient dynamic planar point location,”
Computational Geometry, vol. 29, no. 2, pp. 147–162, 2004.

[57] L. Arge, D. E. Vengroff, and J. S. Vitter, “External-memory algorithms for
processing line segments in geographic information systems,” Algorithmica,
vol. 47, pp. 1–25, January 2007.

[58] L. Arge and J. S. Vitter, “Optimal external memory interval man-
agement,” SIAM Journal on Computing, vol. 32, no. 6, pp. 1488–
1508, 2003.

[59] L. Arge and N. Zeh, “I/O-efficient strong connectivity and depth-first search
for directed planar graphs,” in Proceedings of the IEEE Symposium on Foun-
dations of Computer Science, pp. 261–270, 2003.

[60] C. Armen, “Bounds on the separation of two parallel disk models,” in Proceed-
ings of the Workshop on Input/Output in Parallel and Distributed Systems,
pp. 122–127, May 1996.

[61] D. Arroyuelo and G. Navarro, “A Lempel–Ziv text index on secondary stor-
age,” in Proceedings of the Symposium on Combinatorial Pattern Matching,
pp. 83–94, Springer-Verlag, 2007.

[62] M. J. Atallah and S. Prabhakar, “(Almost) optimal parallel block access for
range queries,” Information Sciences, vol. 157, pp. 21–31, 2003.

[63] R. A. Baeza-Yates, “Expected behaviour of B+-trees under random inser-
tions,” Acta Informatica, vol. 26, no. 5, pp. 439–472, 1989.

[64] R. A. Baeza-Yates, “Bounded disorder: The effect of the index,” Theoretical
Computer Science, vol. 168, pp. 21–38, 1996.

[65] R. A. Baeza-Yates and P.-A. Larson, “Performance of B+-trees with partial
expansions,” IEEE Transactions on Knowledge and Data Engineering, vol. 1,
pp. 248–257, June 1989.

[66] R. A. Baeza-Yates and B. Ribeiro-Neto, eds., Modern Information Retrieval.
Addison Wesley Longman, 1999.

[67] R. A. Baeza-Yates and H. Soza-Pollman, “Analysis of linear hashing revis-
ited,” Nordic Journal of Computing, vol. 5, pp. 70–85, 1998.

[68] R. D. Barve, E. F. Grove, and J. S. Vitter, “Simple randomized mergesort on
parallel disks,” Parallel Computing, vol. 23, no. 4, pp. 601–631, 1997.

[69] R. D. Barve, M. Kallahalla, P. J. Varman, and J. S. Vitter, “Competitive
analysis of buffer management algorithms,” Journal of Algorithms, vol. 36,
pp. 152–181, August 2000.

[70] R. D. Barve, E. A. M. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and
J. S. Vitter, “Modeling and optimizing I/O throughput of multiple disks on a
bus,” in Procedings of ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 83–92, Atlanta: ACM
Press, May 1999.

[71] R. D. Barve and J. S. Vitter, “A theoretical framework for memory-adaptive
algorithms,” in Proceedings of the IEEE Symposium on Foundations of

Full text available at: http://dx.doi.org/10.1561/0400000014



156 References

Computer Science, pp. 273–284, New York: IEEE Computer Society Press,
October 1999.

[72] R. D. Barve and J. S. Vitter, “A simple and efficient parallel disk mergesort,”
ACM Trans. Computer Systems, vol. 35, pp. 189–215, March/April 2002.

[73] J. Basch, L. J. Guibas, and J. Hershberger, “Data structures for mobile data,”
Journal of Algorithms, vol. 31, pp. 1–28, 1999.

[74] R. Bayer and E. McCreight, “Organization of large ordered indexes,” Acta
Informatica, vol. 1, pp. 173–189, 1972.

[75] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on Database
Systems, vol. 2, pp. 11–26, March 1977.

[76] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An asymp-
totically optimal multiversion B-tree,” VLDB Journal, vol. 5, pp. 264–275,
December 1996.

[77] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: An
efficient and robust access method for points and rectangles,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
pp. 322–331, ACM Press, 1990.

[78] A. L. Belady, “A study of replacement algorithms for virtual storage comput-
ers,” IBM Systems Journal, vol. 5, pp. 78–101, 1966.

[79] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious B-
trees,” SIAM Journal on Computing, vol. 35, no. 2, pp. 341–358, 2005.

[80] M. A. Bender, M. Farach-Colton, and B. Kuszmaul, “Cache-oblivious string
B-trees,” in Proceedings of the ACM Conference on Principles of Database
Systems, pp. 233–242, ACM Press, 2006.

[81] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul, “Concurrent
cache-oblivious B-trees,” in Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pp. 228–237, ACM Press, 2005.

[82] J. L. Bentley, “Multidimensional divide and conquer,” Communications of the
ACM, vol. 23, no. 6, pp. 214–229, 1980.

[83] J. L. Bentley and J. B. Saxe, “Decomposable searching problems I: Static-to-
dynamic transformations,” Journal of Algorithms, vol. 1, pp. 301–358, Decem-
ber 1980.

[84] S. Berchtold, C. Böhm, and H.-P. Kriegel, “Improving the query performance
of high-dimensional index structures by bulk load operations,” in Proceedings
of the International Conference on Extending Database Technology, pp. 216–
230, Springer-Verlag, 1998.

[85] M. Berger, E. R. Hansen, R. Pagh, M. Pǎtraşcu, M. Ružić, and P. Tiedemann,
“Deterministic load balancing and dictionaries in the parallel disk model,” in
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,
ACM Press, 2006.

[86] R. Bhatia, R. K. Sinha, and C.-M. Chen, “A hierarchical technique for con-
structing efficient declustering schemes for range queries,” The Computer
Journal, vol. 46, no. 4, pp. 358–377, 2003.

[87] N. Blum and K. Mehlhorn, “On the average number of rebalancing operations
in weight-balanced trees,” Theoretical Computer Science, vol. 11, pp. 303–320,
July 1980.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 157

[88] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communi-
cations of the ACM, vol. 20, pp. 762–772, October 1977.

[89] C. Breimann and J. Vahrenhold, “External memory computational geometry
revisited,” in Algorithms for Memory Hierarchies, pp. 110–148, 2002.

[90] K. Brengel, A. Crauser, P. Ferragina, and U. Meyer, “An experimental study
of priority queues in external memory,” ACM Journal of Experimental Algo-
rithmics, vol. 5, p. 17, 2000.

[91] G. S. Brodal and R. Fagerberg, “Lower bounds for external memory dictio-
naries,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 546–554, ACM Press, 2003.

[92] G. S. Brodal and J. Katajainen, “Worst-case efficient external-memory priority
queues,” in Proceedings of the Scandinavian Workshop on Algorithmic Theory,
pp. 107–118, Stockholm: Springer-Verlag, July 1998.

[93] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R.
Westbrook, “On external memory graph traversal,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 859–860, ACM Press,
January 2000.

[94] P. Callahan, M. T. Goodrich, and K. Ramaiyer, “Topology B-trees and their
applications,” in Proceedings of the Workshop on Algorithms and Data Struc-
tures, pp. 381–392, Springer-Verlag, 1995.

[95] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “Implementation and perfor-
mance of integrated application-controlled file caching, prefetching and disk
scheduling,” ACM Transactions on Computer Systems, vol. 14, pp. 311–343,
November 1996.

[96] L. Carter and K. S. Gatlin, “Towards an optimal bit-reversal permutation pro-
gram,” in Proceedings of the IEEE Symposium on Foundations of Computer
Science, pp. 544–553, November 1998.

[97] G. Chaudhry and T. H. Cormen, “Oblivious vs. distribution-based sorting:
An experimental evaluation,” in Proceedings of the European Symposium on
Algorithms, pp. 317–328, Springer-Verlag, 2005.

[98] B. Chazelle, “Filtering search: A new approach to query-answering,” SIAM
Journal on Computing, vol. 15, pp. 703–724, 1986.

[99] B. Chazelle, “Lower bounds for orthogonal range searching: I. The reporting
case,” Journal of the ACM, vol. 37, pp. 200–212, April 1990.

[100] B. Chazelle and H. Edelsbrunner, “Linear space data structures for two types
of range search,” Discrete and Computational Geometry, vol. 2, pp. 113–126,
1987.

[101] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Computing Sur-
veys, vol. 26, pp. 145–185, June 1994.

[102] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient index-
ing methods for probabilistic threshold queries over uncertain data,” in Pro-
ceedings of the International Conference on Very Large Databases, Toronto:
Morgan Kaufmann, August 2004.

[103] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient join pro-
cessing over uncertain-valued attributes,” in Proceedings of the International

Full text available at: http://dx.doi.org/10.1561/0400000014



158 References

ACM Conference on Information and Knowledge Management, Arlington,
Va.: ACM Press, November 2006.

[104] Y.-J. Chiang, “Experiments on the practical I/O efficiency of geometric algo-
rithms: Distribution sweep vs. plane sweep,” Computational Geometry: Theory
and Applications, vol. 8, no. 4, pp. 211–236, 1998.

[105] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff,
and J. S. Vitter, “External-memory graph algorithms,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 139–149, ACM Press,
January 1995.

[106] Y.-J. Chiang and C. T. Silva, “External memory techniques for isosurface
extraction in scientific visualization,” in External Memory Algorithms and
Visualization, (J. Abello and J. S. Vitter, eds.), pp. 247–277, Providence,
Rhode Island: American Mathematical Society Press, 1999.

[107] Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter, “Geometric Burrows–
Wheeler transform: Linking range searching and text indexing,” in Proceed-
ings of the Data Compression Conference, Snowbird, Utah: IEEE Computer
Society Press, March 2008.

[108] R. A. Chowdhury and V. Ramachandran, “External-memory exact and
approximate all-pairs shortest-paths in undirected graphs,” in Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, pp. 735–744, ACM Press,
2005.

[109] V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan, “Static optimal-
ity theorem for external memory string access,” in Proceedings of the IEEE
Symposium on Foundations of Computer Science, pp. 219–227, 2002.

[110] D. R. Clark and J. I. Munro, “Efficient suffix trees on secondary storage,” in
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 383–
391, Atlanta: ACM Press, June 1996.

[111] K. L. Clarkson and P. W. Shor, “Applications of random sampling in compu-
tational geometry, II,” Discrete and Computational Geometry, vol. 4, pp. 387–
421, 1989.

[112] F. Claude and G. Navarro, “A fast and compact Web graph representation,”
in Proceedings of the International Symposium on String Processing and Infor-
mation Retrieval, pp. 105–116, Springer-Verlag, 2007.

[113] A. Colvin and T. H. Cormen, “ViC*: A compiler for virtual-memory C*,” in
Proceedings of the International Workshop on High-Level Programming Models
and Supportive Environments, pp. 23–33, 1998.

[114] D. Comer, “The ubiquitous B-Tree,” ACM Computing Surveys, vol. 11, no. 2,
pp. 121–137, 1979.

[115] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snir,
B. Traversat, and P. Wong, “Overview of the MPI-IO parallel I/O interface,”
in Input/Output in Parallel and Distributed Computer Systems, (R. Jain,
J. Werth, and J. C. Browne, eds.), ch. 5, pp. 127–146, Kluwer Academic Pub-
lishers, 1996.

[116] P. F. Corbett and D. G. Feitelson, “The Vesta parallel file system,” ACM
Transactions on Computer Systems, vol. 14, pp. 225–264, August 1996.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 159

[117] T. H. Cormen and E. R. Davidson, “FG: A framework generator for hid-
ing latency in parallel programs running on clusters,” in Proceedings of the
17th International Conference on Parallel and Distributed Computing Sys-
tems, pp. 137–144, Sep. 2004.

[118] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, Mass.: MIT Press, 2nd ed., September 2001.

[119] T. H. Cormen and D. M. Nicol, “Performing out-of-core FFTs on parallel disk
systems,” Parallel Computing, vol. 24, pp. 5–20, January 1998.

[120] T. H. Cormen, T. Sundquist, and L. F. Wisniewski, “Asymptotically tight
bounds for performing BMMC permutations on parallel disk systems,” SIAM
Journal on Computing, vol. 28, no. 1, pp. 105–136, 1999.

[121] A. Crauser and P. Ferragina, “A theoretical and experimental study on the
construction of suffix arrays in external memory,” Algorithmica, vol. 32, no. 1,
pp. 1–35, 2002.

[122] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos, “I/O-
optimal computation of segment intersections,” in External Memory Algo-
rithms and Visualization, (J. Abello and J. S. Vitter, eds.), pp. 131–138,
Providence, Rhode Island: American Mathematical Society Press, 1999.

[123] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos, “Ran-
domized external-memory algorithms for line segment intersection and other
geometric problems,” International Journal of Computational Geometry and
Applications, vol. 11, no. 3, pp. 305–337, 2001.

[124] A. Crauser and K. Mehlhorn, “LEDA-SM: Extending LEDA to secondary
memory,” in Proceedings of the Workshop on Algorithm Engineering, (J. S.
Vitter and C. Zaroliagis, eds.), pp. 228–242, London: Springer-Verlag, July
1999.

[125] K. Curewitz, P. Krishnan, and J. S. Vitter, “Practical Prefetching Via Data
Compression,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 257–266, Washington, DC: ACM Press, May
1993.

[126] R. Cypher and G. Plaxton, “Deterministic sorting in nearly logarithmic time
on the hypercube and related computers,” Journal of Computer and System
Sciences, vol. 47, no. 3, pp. 501–548, 1993.

[127] E. R. Davidson, FG: Improving Parallel Programs and Parallel Programming
Since 2003. PhD thesis, Dartmouth College Department of Computer Science,
Aug. 2006.

[128] M. de Berg, J. Gudmundsson, M. Hammar, and M. H. Overmars, “On R-
trees with low query complexity,” Computational Geometry, vol. 24, no. 3,
pp. 179–195, 2003.

[129] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computa-
tional Geometry Algorithms and Applications. Berlin: Springer-Verlag, 1997.

[130] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” in Proceedings of the Symposium on Operating Systems Design and
Implementation, pp. 137–150, USENIX, December 2004.

[131] F. K. H. A. Dehne, W. Dittrich, and D. A. Hutchinson, “Efficient Exter-
nal Memory Algorithms by Simulating Coarse-Grained Parallel Algorithms,”
Algorithmica, vol. 36, no. 2, pp. 97–122, 2003.

Full text available at: http://dx.doi.org/10.1561/0400000014



160 References

[132] F. K. H. A. Dehne, W. Dittrich, D. A. Hutchinson, and A. Maheshwari, “Bulk
synchronous parallel algorithms for the external memory model,” Theory of
Computing Systems, vol. 35, no. 6, pp. 567–597, 2002.

[133] R. Dementiev, Algorithm Engineering for Large Data Sets. PhD thesis, Saar-
land University, 2006.

[134] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders, “Better external
memory suffix array construction,” ACM Journal of Experimental Algorith-
mics, in press.

[135] R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard Template
Library for XXL Data Sets,” Software — Practice and Experience, vol. 38,
no. 6, pp. 589–637, 2008.

[136] R. Dementiev and P. Sanders, “Asynchronous parallel disk sorting,” in Pro-
ceedings of the ACM Symposium on Parallel Algorithms and Architectures,
pp. 138–148, ACM Press, 2003.

[137] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn, “Engineering an exter-
nal memory minimum spanning tree algorithm,” in Proceedings of IFIP Inter-
national Conference on Theoretical Computer Science, Toulouse: Kluwer Aca-
demic Publishers, 2004.

[138] H. B. Demuth, Electronic data sorting. PhD thesis, Stanford University, 1956.
[139] P. J. Denning, “Working sets past and present,” IEEE Transactions on Soft-

ware Engineering, vol. SE-6, pp. 64–84, 1980.
[140] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “Parallel sorting on

a shared-nothing architecture using probabilistic splitting,” in Proceedings of
the International Conference on Parallel and Distributed Information Systems,
pp. 280–291, December 1991.

[141] W. Dittrich, D. A. Hutchinson, and A. Maheshwari, “Blocking in parallel
multisearch problems,” Theory of Computing Systems, vol. 34, no. 2, pp. 145–
189, 2001.

[142] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” Journal of Computer and System Sciences, vol. 38,
pp. 86–124, 1989.

[143] M. C. Easton, “Key-sequence data sets on indelible storage,” IBM Journal of
Research and Development, vol. 30, pp. 230–241, 1986.

[144] H. Edelsbrunner, “A new approach to rectangle intersections, Part I,” Inter-
national Journal of Computer Mathematics, vol. 13, pp. 209–219, 1983.

[145] H. Edelsbrunner, “A New approach to rectangle intersections, Part II,” Inter-
national Journal of Computer Mathematics, vol. 13, pp. 221–229, 1983.

[146] M. Y. Eltabakh, W.-K. Hon, R. Shah, W. Aref, and J. S. Vitter, “The SBC-
tree: An index for run-length compressed sequences,” in Proceedings of the
International Conference on Extending Database Technology, Nantes, France:
Springer-Verlag, March 2008.

[147] R. J. Enbody and H. C. Du, “Dynamic hashing schemes,” ACM Computing
Surveys, vol. 20, pp. 85–113, June 1988.

[148] “NASA’s Earth Observing System (EOS) web page, NASA Goddard Space
Flight Center,” http://eospso.gsfc.nasa.gov/.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 161

[149] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, “Sparsification — a
technique for speeding up dynamic graph algorithms,” Journal of the ACM,
vol. 44, no. 5, pp. 669–696, 1997.

[150] J. Erickson, “Lower bounds for external algebraic decision trees,” in Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 755–761,
ACM Press, 2005.

[151] G. Evangelidis, D. B. Lomet, and B. Salzberg, “The hBΠ-tree: A multi-
attribute index supporting concurrency, recovery and node consolidation,”
VLDB Journal, vol. 6, pp. 1–25, 1997.

[152] R. Fagerberg, A. Pagh, and R. Pagh, “External string sorting: Faster and
cache oblivious,” in Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pp. 68–79, Springer-Verlag, 2006.

[153] R. Fagin, J. Nievergelt, N. Pippinger, and H. R. Strong, “Extendible hash-
ing — a fast access method for dynamic files,” ACM Transactions on Database
Systems, vol. 4, no. 3, pp. 315–344, 1979.

[154] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan, “On the sorting-
complexity of suffix tree construction,” Journal of the ACM, vol. 47, no. 6,
pp. 987–1011, 2000.

[155] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, “An approx-
imate L1-difference algorithm for massive data streams,” SIAM Journal on
Computing, vol. 32, no. 1, pp. 131–151, 2002.

[156] W. Feller, An Introduction to Probability Theory and its Applications. Vol. 1,
New York: John Wiley & Sons, 3rd ed., 1968.

[157] P. Ferragina and R. Grossi, “Fast string searching in secondary storage: The-
oretical developments and experimental results,” in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, pp. 373–382, Atlanta: ACM Press,
June 1996.

[158] P. Ferragina and R. Grossi, “The String B-tree: A new data structure for
string search in external memory and its applications,” Journal of the ACM,
vol. 46, pp. 236–280, March 1999.

[159] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter, “On searching
compressed string collections cache-obliviously,” in Proceedings of the ACM
Conference on Principles of Database Systems, Vancouver: ACM Press, June
2008.

[160] P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava, “Two-
dimensional substring indexing,” Journal of Computer and System Sciences,
vol. 66, no. 4, pp. 763–774, 2003.

[161] P. Ferragina and F. Luccio, “Dynamic dictionary matching in external mem-
ory,” Information and Computation, vol. 146, pp. 85–99, November 1998.

[162] P. Ferragina and G. Manzini, “Indexing compressed texts,” Journal of the
ACM, vol. 52, no. 4, pp. 552–581, 2005.

[163] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro, “Compressed represen-
tations of sequences and full-text indexes,” ACM Transaction on Algorithms,
vol. 3, p. 20, May 2007.

[164] P. Flajolet, “On the performance evaluation of extendible hashing and trie
searching,” Acta Informatica, vol. 20, no. 4, pp. 345–369, 1983.

Full text available at: http://dx.doi.org/10.1561/0400000014



162 References

[165] R. W. Floyd, “Permuting information in idealized two-level storage,” in Com-
plexity of Computer Computations, (R. Miller and J. Thatcher, eds.), pp. 105–
109, Plenum, 1972.

[166] W. Frakes and R. A. Baeza-Yates, eds., Information Retrieval: Data Structures
and Algorithms. Prentice-Hall, 1992.

[167] G. Franceschini, R. Grossi, J. I. Munro, and L. Pagli, “Implicit B-Trees: A new
data structure for the dictionary problem,” Journal of Computer and System
Sciences, vol. 68, no. 4, pp. 788–807, 2004.

[168] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” in Proceedings of the IEEE Symposium on Foundations of Com-
puter Science, pp. 285–298, 1999.

[169] T. A. Funkhouser, C. H. Sequin, and S. J. Teller, “Management of large
amounts of data in interactive building walkthroughs,” in Proceedings of the
ACM Symposium on Interactive 3D Graphics, pp. 11–20, Boston: ACM Press,
March 1992.

[170] V. Gaede and O. Günther, “Multidimensional access methods,” ACM Com-
puting Surveys, vol. 30, pp. 170–231, June 1998.

[171] G. R. Ganger, “Generating representative synthetic workloads: An unsolved
problem,” in Proceedings of the Computer Measurement Group Conference,
pp. 1263–1269, December 1995.

[172] M. Gardner, ch. 7, Magic Show. New York: Knopf, 1977.
[173] I. Gargantini, “An effective way to represent quadtrees,” Communications of

the ACM, vol. 25, pp. 905–910, December 1982.
[174] T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, and J. S. Vitter, “Bulk

operations for space-partitioning trees,” in Proceedings of IEEE International
Conference on Data Engineering, Boston: IEEE Computer Society Press, April
2004.

[175] G. A. Gibson, J. S. Vitter, and J. Wilkes, “Report of the working group
on storage I/O issues in large-scale computing,” ACM Computing Surveys,
vol. 28, pp. 779–793, December 1996.

[176] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions
via hashing,” in Proceedings of the International Conference on Very Large
Databases, pp. 78–89, Edinburgh, Scotland: Morgan Kaufmann, 1999.

[177] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina,
“Proximity search in databases,” in Proceedings of the International Confer-
ence on Very Large Databases, pp. 26–37, August 1998.

[178] R. González and G. Navarro, “A compressed text index on secondary mem-
ory,” in Proceedings of the International Workshop on Combinatorial Algo-
rithms, (Newcastle, Australia), pp. 80–91, College Publications, 2007.

[179] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-memory
computational geometry,” in Proceedings of the IEEE Symposium on Founda-
tions of Computer Science, pp. 714–723, Palo Alto: IEEE Computer Society
Press, November 1993.

[180] “Google Earth online database of satellite images,” Available on the World-
Wide Web at http://earth.google.com/.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 163

[181] S. Govindarajan, P. K. Agarwal, and L. Arge, “CRB-tree: An efficient index-
ing scheme for range-aggregate queries,” in Proceedings of the International
Conference on Database Theory, pp. 143–157, Springer-Verlag, 2003.

[182] S. Govindarajan, T. Lukovszki, A. Maheshwari, and N. Zeh, “I/O-efficient
well-separated pair decomposition and its applications,” Algorithmica, vol. 45,
pp. 385–614, August 2006.

[183] D. Greene, “An implementation and performance analysis of spatial data
access methods,” in Proceedings of IEEE International Conference on Data
Engineering, pp. 606–615, 1989.

[184] J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Nagle, “Modeling
and performance of MEMS-based storage devices,” in Procedings of ACM
SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems, pp. 56–65, Santa Clara, Cal.: ACM Press, June 2000.

[185] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text
indexes,” in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, ACM Press, January 2003.

[186] R. Grossi and G. F. Italiano, “Efficient cross-trees for external memory,” in
External Memory Algorithms and Visualization, (J. Abello and J. S. Vitter,
eds.), pp. 87–106, Providence, Rhode Island: American Mathematical Society
Press, 1999.

[187] R. Grossi and G. F. Italiano, “Efficient splitting and merging algorithms for
order decomposable problems,” Information and Computation, vol. 154, no. 1,
pp. 1–33, 1999.

[188] S. K. S. Gupta, Z. Li, and J. H. Reif, “Generating efficient programs for two-
level memories from tensor-products,” in Proceedings of the IASTED/ISMM
International Conference on Parallel and Distributed Computing and Systems,
pp. 510–513, October 1995.

[189] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge, UK:
Cambridge University Press, 1997.

[190] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in
Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 47–57, ACM Press, 1984.

[191] H. J. Haverkort and L. Toma, “I/O-efficient algorithms on near-planar
graphs,” in Proceedings of the Latin American Theoretical Informatics Sym-
posium, pp. 580–591, 2006.

[192] T. Hazel, L. Toma, R. Wickremesinghe, and J. Vahrenhold, “Terracost: A ver-
satile and scalable approach to computing least-cost-path surfaces for massive
grid-based terrains,” in Proceedings of the ACM Symposium on Applied Com-
puting, pp. 52–57, ACM Press, 2006.

[193] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou, “On the analysis
of indexing schemes,” in Proceedings of the ACM Symposium on Principles of
Database Systems, pp. 249–256, Tucson: ACM Press, May 1997.

[194] L. Hellerstein, G. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson,
“Coding techniques for handling failures in large disk arrays,” Algorithmica,
vol. 12, no. 2–3, pp. 182–208, 1994.

Full text available at: http://dx.doi.org/10.1561/0400000014



164 References

[195] M. R. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on data
streams,” in External Memory Algorithms and Visualization, (J. Abello and
J. S. Vitter, eds.), pp. 107–118, Providence, Rhode Island: American Mathe-
matical Society Press, 1999.

[196] K. Hinrichs, “Implementation of the grid file: Design concepts and experience,”
BIT, vol. 25, no. 4, pp. 569–592, 1985.

[197] W.-K. Hon, T.-W. Lam, R. Shah, S.-L. Tam, and J. S. Vitter, “Cache-oblivious
index for approximate string matching,” in Proceedings of the Symposium
on Combinatorial Pattern Matching, pp. 40–51, London, Ontario, Canada:
Springer-Verlag, July 2007.

[198] W.-K. Hon, R. Shah, P. J. Varman, and J. S. Vitter, “Tight competitive
ratios for parallel disk prefetching and caching,” in Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, Munich: ACM Press,
June 2008.

[199] J. W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble game,”
in Proceedings of the ACM Symposium on Theory of Computing, pp. 326–333,
ACM Press, May 1981.

[200] D. Hutchinson, A. Maheshwari, J.-R. Sack, and R. Velicescu, “Early expe-
riences in implementing the buffer tree,” in Proceedings of the Workshop on
Algorithm Engineering, Springer-Verlag, 1997.

[201] D. A. Hutchinson, A. Maheshwari, and N. Zeh, “An external memory data
structure for shortest path queries,” Discrete Applied Mathematics, vol. 126,
no. 1, pp. 55–82, 2003.

[202] D. A. Hutchinson, P. Sanders, and J. S. Vitter, “Duality between prefetching
and queued writing with parallel disks,” SIAM Journal on Computing, vol. 34,
no. 6, pp. 1443–1463, 2005.

[203] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, “Locality-preserving
hashing in multidimensional spaces,” in Proceedings of the ACM Symposium
on Theory of Computing, pp. 618–625, El Paso: ACM Press, May 1997.

[204] M. Kallahalla and P. J. Varman, “Optimal prefetching and caching for parallel
I/O systems,” in Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures, Crete, Greece: ACM Press, July 2001.

[205] M. Kallahalla and P. J. Varman, “Optimal read-once parallel disk scheduling,”
Algorithmica, vol. 43, no. 4, pp. 309–343, 2005.

[206] I. Kamel and C. Faloutsos, “On packing R-trees,” in Proceedings of the
International ACM Conference on Information and Knowledge Management,
pp. 490–499, 1993.

[207] I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved R-tree using frac-
tals,” in Proceedings of the International Conference on Very Large Databases,
pp. 500–509, 1994.

[208] I. Kamel, M. Khalil, and V. Kouramajian, “Bulk insertion in dynamic R-
trees,” in Proceedings of the International Symposium on Spatial Data Han-
dling, pp. 3B, 31–42, 1996.

[209] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, “Constraint query lan-
guages,” Journal of Computer and System Sciences, vol. 51, no. 1, pp. 26–52,
1995.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 165

[210] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter, “Indexing for
data models with constraints and classes,” Journal of Computer and System
Sciences, vol. 52, no. 3, pp. 589–612, 1996.

[211] K. V. R. Kanth and A. K. Singh, “Optimal dynamic range searching in non-
replicating index structures,” in Proceedings of the International Conference
on Database Theory, pp. 257–276, Springer-Verlag, January 1999.

[212] J. Kärkkäinen and S. S. Rao, “Full-text indexes in external memory,” in Algo-
rithms for Memory Hierarchies, (U. Meyer, P. Sanders, and J. Sibeyn, eds.),
ch. 7, pp. 149–170, Berlin: Springer-Verlag, 2003.

[213] I. Katriel and U. Meyer, “Elementary graph algorithms in external memory,”
in Algorithms for Memory Hierarchies, (U. Meyer, P. Sanders, and J. Sibeyn,
eds.), ch. 4, pp. 62–84, Berlin: Springer-Verlag, 2003.

[214] R. Khandekar and V. Pandit, “Offline Sorting Buffers On Line,” in Proceedings
of the International Symposium on Algorithms and Computation, pp. 81–89,
Springer-Verlag, December 2006.

[215] S. Khuller, Y. A. Kim, and Y.-C. J. Wan, “Algorithms for data migration with
cloning,” SIAM Journal on Computing, vol. 33, no. 2, pp. 448–461, 2004.

[216] M. Y. Kim, “Synchronized disk interleaving,” IEEE Transactions on Comput-
ers, vol. 35, pp. 978–988, November 1986.

[217] T. Kimbrel and A. R. Karlin, “Near-optimal parallel prefetching and caching,”
SIAM Journal on Computing, vol. 29, no. 4, pp. 1051–1082, 2000.

[218] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algo-
rithm?,” SIAM Journal on Computing, vol. 15, pp. 287–299, 1986.

[219] S. T. Klein and D. Shapira, “Searching in compressed dictionaries,” in Proceed-
ings of the Data Compression Conference, Snowbird, Utah: IEEE Computer
Society Press, 2002.

[220] D. E. Knuth, Sorting and Searching. Vol. 3 of The Art of Computer Program-
ming, Reading, MA: Addison-Wesley, 2nd ed., 1998.

[221] D. E. Knuth, MMIXware. Berlin: Springer-Verlag, 1999.
[222] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,”

SIAM Journal on Computing, vol. 6, pp. 323–350, 1977.
[223] G. Kollios, D. Gunopulos, and V. J. Tsotras, “On indexing mobile objects,”

in Proceedings of the ACM Symposium on Principles of Database Systems,
pp. 261–272, ACM Press, 1999.

[224] E. Koutsoupias and D. S. Taylor, “Tight bounds for 2-dimensional indexing
schemes,” in Proceedings of the ACM Symposium on Principles of Database
Systems, pp. 52–58, Seattle: ACM Press, June 1998.

[225] M. Kowarschik and C. Weiß, “An overview of cache optimizaiton techniques
and cache-aware numerical algorithms,” in Algorithms for Memory Hierar-
chies, (U. Meyer, P. Sanders, and J. Sibeyn, eds.), ch. 10, pp. 213–232, Berlin:
Springer-Verlag, 2003.

[226] P. Krishnan and J. S. Vitter, “Optimal prediction for prefetching in the worst
case,” SIAM Journal on Computing, vol. 27, pp. 1617–1636, December 1998.

[227] V. Kumar and E. Schwabe, “Improved algorithms and data structures for
solving graph problems in external memory,” in Proceedings of the IEEE Sym-
posium on Parallel and Distributed Processing, pp. 169–176, October 1996.

Full text available at: http://dx.doi.org/10.1561/0400000014



166 References

[228] K. Küspert, “Storage utilization in B*-trees with a generalized overflow tech-
nique,” Acta Informatica, vol. 19, pp. 35–55, 1983.

[229] P.-A. Larson, “Performance analysis of linear hashing with partial expan-
sions,” ACM Transactions on Database Systems, vol. 7, pp. 566–587, Decem-
ber 1982.

[230] R. Laurini and D. Thompson, Fundamentals of Spatial Information Systems,.
Academic Press, 1992.

[231] P. L. Lehman and S. B. Yao, “Efficient locking for concurrent operations
on B-trees,” ACM Transactions on Database Systems, vol. 6, pp. 650–570,
December 1981.

[232] F. T. Leighton, “Tight bounds on the complexity of parallel sorting,” IEEE
Transactions on Computers, vol. C-34, pp. 344–354, Special issue on sorting,
E. E. Lindstrom, C. K. Wong, and J. S. Vitter, eds., April 1985.

[233] C. E. Leiserson, S. Rao, and S. Toledo, “Efficient out-of-core algorithms for
linear relaxation using blocking covers,” Journal of Computer and System
Sciences, vol. 54, no. 2, pp. 332–344, 1997.

[234] Z. Li, P. H. Mills, and J. H. Reif, “Models and resource metrics for parallel
and distributed computation,” Parallel Algorithms and Applications, vol. 8,
pp. 35–59, 1996.

[235] W. Litwin, “Linear hashing: A new tool for files and tables addressing,” in
Proceedings of the International Conference on Very Large Databases, pp. 212–
223, October 1980.

[236] W. Litwin and D. Lomet, “A new method for fast data searches with keys,”
IEEE Software, vol. 4, pp. 16–24, March 1987.

[237] D. Lomet, “A simple bounded disorder file organization with good perfor-
mance,” ACM Transactions on Database Systems, vol. 13, no. 4, pp. 525–551,
1988.

[238] D. B. Lomet and B. Salzberg, “The hB-tree: A multiattribute indexing method
with good guaranteed performance,” ACM Transactions on Database Systems,
vol. 15, no. 4, pp. 625–658, 1990.

[239] D. B. Lomet and B. Salzberg, “Concurrency and recovery for index trees,”
VLDB Journal, vol. 6, no. 3, pp. 224–240, 1997.

[240] T. Lukovszki, A. Maheshwari, and N. Zeh, “I/O-efficient batched range count-
ing and its applications to proximity problems,” Foundations of Software Tech-
nology and Theoretical Computer Science, pp. 244–255, 2001.

[241] A. Maheshwari and N. Zeh, “I/O-efficient algorithms for graphs of bounded
treewidth,” in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 89–90, Washington, DC: ACM Press, January 2001.

[242] A. Maheshwari and N. Zeh, “I/O-Optimal Algorithms for Planar Graphs
Using Separators,” in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pp. 372–381, ACM Press, 2002.

[243] A. Maheshwari and N. Zeh, “A survey of techniques for designing I/O-efficient
algorithms,” in Algorithms for Memory Hierarchies, (U. Meyer, P. Sanders,
and J. Sibeyn, eds.), ch. 3, pp. 36–61, Berlin: Springer-Verlag, 2003.

[244] A. Maheshwari and N. Zeh, “I/O-optimal algorithms for outerplanar graphs,”
Journal of Graph Algorithms and Applications, vol. 8, pp. 47–87, 2004.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 167

[245] V. Mäkinen, G. Navarro, and K. Sadakane, “Advantages of backward search-
ing — efficient secondary memory and distributed implementation of com-
pressed suffix arrays,” in Proceedings of the International Symposium on Algo-
rithms and Computation, pp. 681–692, Springer-Verlag, 2004.

[246] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string
searches,” SIAM Journal on Computing, vol. 22, pp. 935–948, October
1993.

[247] U. Manber and S. Wu, “GLIMPSE: A tool to search through entire file sys-
tems,” in Proceedings of the Winter USENIX Conference, (USENIX Associa-
tion, ed.), pp. 23–32, San Francisco: USENIX, January 1994.

[248] G. N. N. Martin, “Spiral storage: Incrementally augmentable hash addressed
storage,” Technical Report CS-RR-027, University of Warwick, March 1979.

[249] Y. Matias, E. Segal, and J. S. Vitter, “Efficient bundle sorting,” in Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 839–848, San
Francisco: ACM Press, January 2000.

[250] E. M. McCreight, “A space-economical suffix tree construction algorithm,”
Journal of the ACM, vol. 23, no. 2, pp. 262–272, 1976.

[251] E. M. McCreight, “Priority Search Trees,” SIAM Journal on Computing,
vol. 14, pp. 257–276, May 1985.

[252] K. Mehlhorn and U. Meyer, “External-memory breadth-first search with
sublinear I/O,” in Proceedings of the European Symposium on Algorithms,
pp. 723–735, Springer-Verlag, 2002.

[253] H. Mendelson, “Analysis of extendible hashing,” IEEE Transactions on Soft-
ware Engineering, vol. SE-8, pp. 611–619, November 1982.

[254] U. Meyer, “External memory BFS on undirected graphs with bounded
degree,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 87–88, Washington, DC: ACM Press, January 2001.

[255] U. Meyer, “On dynamic breadth-first search in external-memory,” in Pro-
ceedings of the Symposium on Theoretical Aspects of Computer Science,
(Schloss Dagstuhl, Germany), pp. 551–560, Internationales Begegnungs- und
Forschungszentrum für Informatik, 2008.

[256] U. Meyer, “On trade-offs in external-memory diameter approximation,” in
Proceedings of the Scandinavian Workshop on Algorithm Theory, (Gothen-
burg, Sweden), Springer-Verlag, July 2008.

[257] U. Meyer, P. Sanders, and J. Sibeyn, eds., Algorithms for Memory Hierarchies.
Berlin: Springer-Verlag, 2003.

[258] U. Meyer and N. Zeh, “I/O-efficient undirected shortest paths,” in Proceed-
ings of the European Symposium on Algorithms, pp. 435–445, Springer-Verlag,
2003.

[259] U. Meyer and N. Zeh, “I/O-efficient undirected shortest paths with unbounded
weights,” in Proceedings of the European Symposium on Algorithms, Springer-
Verlag, 2006.

[260] C. Mohan, “ARIES/KVL: A key-value locking method for concurrency control
of multiaction transactions on B-tree indices,” in Proceedings of the Interna-
tional Conference on Very Large Databases, pp. 392–405, August 1990.

Full text available at: http://dx.doi.org/10.1561/0400000014



168 References

[261] D. R. Morrison, “Patricia: Practical algorithm to retrieve information coded
in alphanumeric,” Journal of the ACM, vol. 15, pp. 514–534, 1968.

[262] S. A. Moyer and V. Sunderam, “Characterizing concurrency control perfor-
mance for the PIOUS parallel file system,” Journal of Parallel and Distributed
Computing, vol. 38, pp. 81–91, October 1996.

[263] J. K. Mullin, “Spiral storage: Efficient dynamic hashing with constant perfor-
mance,” The Computer Journal, vol. 28, pp. 330–334, July 1985.

[264] K. Munagala and A. Ranade, “I/O-complexity of graph algorithms,” in Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 687–694,
Baltimore: ACM Press, January 1999.

[265] S. Muthukrishnan, Data Streams: Algorithms and Applications. Vol. 1, issue 2
of Foundations and Trends in Theoretical Computer Science, Hanover, Mass.:
now Publishers, 2005.

[266] G. Navarro, “Indexing text using the Ziv–Lempel trie,” Journal of Discrete
Algorithms, vol. 2, no. 1, pp. 87–114, 2004.

[267] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM Computing
Surveys, vol. 39, no. 1, p. 2, 2007.

[268] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An adaptable,
symmetric multi-key file structure,” ACM Transactions on Database Systems,
vol. 9, pp. 38–71, 1984.

[269] J. Nievergelt and E. M. Reingold, “Binary search tree of bounded balance,”
SIAM Journal on Computing, vol. 2, pp. 33–43, March 1973.

[270] J. Nievergelt and P. Widmayer, “Spatial data structures: Concepts and design
choices,” in Algorithmic Foundations of GIS, (M. van Kreveld, J. Nievergelt,
T. Roos, and P. Widmayer, eds.), pp. 153–197, Springer-Verlag, 1997.

[271] M. H. Nodine, M. T. Goodrich, and J. S. Vitter, “Blocking for external graph
searching,” Algorithmica, vol. 16, pp. 181–214, August 1996.

[272] M. H. Nodine, D. P. Lopresti, and J. S. Vitter, “I/O overhead and parallel
VLSI architectures for lattice computations,” IEEE Transactions on Commu-
nications, vol. 40, pp. 843–852, July 1991.

[273] M. H. Nodine and J. S. Vitter, “Deterministic distribution sort in shared and
distributed memory multiprocessors,” in Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, pp. 120–129, Velen, Germany: ACM
Press, June–July 1993.

[274] M. H. Nodine and J. S. Vitter, “Greed Sort: An optimal sorting algo-
rithm for multiple disks,” Journal of the ACM, vol. 42, pp. 919–933, July
1995.

[275] P. E. O’Neil, “The SB-tree. An index-sequential structure for high-
performance sequential access,” Acta Informatica, vol. 29, pp. 241–265, June
1992.

[276] J. A. Orenstein, “Redundancy in spatial databases,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp. 294–
305, Portland: ACM Press, June 1989.

[277] J. A. Orenstein and T. H. Merrett, “A class of data structures for associative
searching,” in Proceedings of the ACM Conference on Principles of Database
Systems, pp. 181–190, ACM Press, 1984.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 169

[278] M. H. Overmars, The design of dynamic data structures. 1983. Springer-
Verlag.

[279] H. Pang, M. Carey, and M. Livny, “Memory-adaptive external sorts,” in Pro-
ceedings of the International Conference on Very Large Databases, pp. 618–
629, 1993.

[280] H. Pang, M. J. Carey, and M. Livny, “Partially preemptive hash joins,” in
Proceedings of the ACM SIGMOD International Conference on Management
of Data, (P. Buneman and S. Jajodia, eds.), pp. 59–68, Washington, DC: ACM
Press, May 1993.

[281] I. Parsons, R. Unrau, J. Schaeffer, and D. Szafron, “PI/OT: Parallel I/O
templates,” Parallel Computing, vol. 23, pp. 543–570, June 1997.

[282] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” in Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 259–270, ACM Press, June 1996.

[283] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches to the indexing
of moving object trajectories,” in Proceedings of the International Conference
on Very Large Databases, pp. 395–406, 2000.

[284] F. P. Preparata and M. I. Shamos, Computational Geometry. Berlin: Springer-
Verlag, 1985.

[285] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter, “Bkd-tree: A dynamic
scalable kd-tree,” in Proceedings of the International Symposium on Spatial
and Temporal Databases, Santorini, Greece: Springer-Verlag, July 2003.

[286] S. J. Puglisi, W. F. Smyth, and A. Turpin, “Inverted files versus suffix arrays
for locating patterns in primary memory,” in Proceedings of the International
Symposium on String Processing Information Retrieval, pp. 122–133, Springer-
Verlag, 2006.

[287] N. Rahman and R. Raman, “Adapting radix sort to the memory hierarchy,”
in Workshop on Algorithm Engineering and Experimentation, Springer-Verlag,
January 2000.

[288] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 233–242, ACM Press,
2002.

[289] S. Ramaswamy and S. Subramanian, “Path caching: A technique for optimal
external searching,” in Proceedings of the ACM Conference on Principles of
Database Systems, pp. 25–35, Minneapolis: ACM Press, 1994.

[290] J. Rao and K. Ross, “Cache conscious indexing for decision-support in
main memory,” in Proceedings of the International Conference on Very Large
Databases, (M. Atkinson et al., eds.), pp. 78–89, Los Altos, Cal.: Morgan
Kaufmann, 1999.

[291] J. Rao and K. A. Ross, “Making B+-trees cache conscious in main memory,” in
Proceedings of the ACM SIGMOD International Conference on Management
of Data, (W. Chen, J. Naughton, and P. A. Bernstein, eds.), pp. 475–486,
Dallas: ACM Press, 2000.

[292] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-scale
data mining and multimedia,” in Proceedings of the International Conference
on Very Large Databases, pp. 62–73, August 1998.

Full text available at: http://dx.doi.org/10.1561/0400000014



170 References

[293] J. T. Robinson, “The k-d-b-tree: A search structure for large multidimensional
dynamic indexes,” in Proceedings of the ACM Conference on Principles of
Database Systems, pp. 10–18, ACM Press, 1981.

[294] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the SimOS
machine simulator to study complex computer systems,” ACM Transactions
on Modeling and Computer Simulation, vol. 7, pp. 78–103, January 1997.

[295] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,” IEEE
Computer, pp. 17–28, March 1994.

[296] K. Salem and H. Garcia-Molina, “Disk striping,” in Proceedings of IEEE Inter-
national Conference on Data Engineering, pp. 336–242, Los Angeles, 1986.

[297] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Index-
ing the positions of continuously moving objects,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, (W. Chen,
J. Naughton, and P. A. Bernstein, eds.), pp. 331–342, Dallas: ACM Press,
2000.

[298] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-
evolving data,” ACM Computing Surveys, vol. 31, pp. 158–221, June
1999.

[299] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, 1989.

[300] H. Samet, The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1989.

[301] V. Samoladas and D. Miranker, “A lower bound theorem for indexing schemes
and its application to multidimensional range queries,” in Proceedings of the
ACM Symposium on Principles of Database Systems, pp. 44–51, Seattle: ACM
Press, June 1998.

[302] P. Sanders, “Fast priority queues for cached memory,” ACM Journal of Exper-
imental Algorithmics, vol. 5, no. 7, pp. 1–25, 2000.

[303] P. Sanders, “Reconciling simplicity and realism in parallel disk models,” Par-
allel Computing, vol. 28, no. 5, pp. 705–723, 2002.

[304] P. Sanders, S. Egner, and J. Korst, “Fast concurrent access to parallel disks,”
Algorithmica, vol. 35, no. 1, pp. 21–55, 2002.

[305] J. E. Savage, “Extending the Hong-Kung model to memory hierarchies,” in
Proceedings of the International Conference on Computing and Combinatorics,
pp. 270–281, Springer-Verlag, August 1995.

[306] J. E. Savage and J. S. Vitter, “Parallelism in space-time tradeoffs,” in Advances
in Computing Research, (F. P. Preparata, ed.), pp. 117–146, JAI Press, 1987.

[307] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger, “Designing
computer systems with MEMS-based storage,” in Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 1–12, November 2000.

[308] K. E. Seamons and M. Winslett, “Multidimensional array I/O in Panda 1.0,”
Journal of Supercomputing, vol. 10, no. 2, pp. 191–211, 1996.

[309] B. Seeger and H.-P. Kriegel, “The buddy-tree: An efficient and robust access
method for spatial data base systems,” in Proceedings of the International
Conference on Very Large Databases, pp. 590–601, 1990.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 171

[310] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and
V. Padmanabhan, “File system logging versus clustering: A performance
comparison,” in Proceedings of the Annual USENIX Technical Conference,
pp. 249–264, New Orleans, 1995.

[311] S. Sen, S. Chatterjee, and N. Dumir, “Towards a theory of cache-efficient
algorithms,” Journal of the ACM, vol. 49, no. 6, pp. 828–858, 2002.

[312] R. Shah, P. J. Varman, and J. S. Vitter, “Online algorithms for prefetching
and caching on parallel disks,” in Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, pp. 255–264, ACM Press, 2004.

[313] R. Shah, P. J. Varman, and J. S. Vitter, “On competitive online read-many
parallel disks scheduling,” in Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, p. 217, ACM Press, 2005.

[314] E. A. M. Shriver, A. Merchant, and J. Wilkes, “An analytic behavior model
for disk drives with readahead caches and request reordering,” in Procedings
of ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, pp. 182–191, Madison, Wisc.: ACM Press,
June 1998.

[315] E. A. M. Shriver and M. H. Nodine, “An introduction to parallel I/O models
and algorithms,” in Input/Output in Parallel and Distributed Computer Sys-
tems, (R. Jain, J. Werth, and J. C. Browne, eds.), ch. 2, pp. 31–68, Kluwer
Academic Publishers, 1996.

[316] E. A. M. Shriver and L. F. Wisniewski, “An API for choreographing data
accesses,” Tech. Rep. PCS-TR95-267, Dept. of Computer Science, Dartmouth
College, November 1995.

[317] J. F. Sibeyn, “From parallel to external list ranking,” Technical Report MPI–
I–97–1–021, Max-Planck-Institut, September 1997.

[318] J. F. Sibeyn, “External selection,” Journal of Algorithms, vol. 58, no. 2,
pp. 104–117, 2006.

[319] J. F. Sibeyn and M. Kaufmann, “BSP-like external-memory computation,” in
Proceedings of the Italian Conference on Algorithms and Complexity, pp. 229–
240, 1997.

[320] R. Sinha, S. Puglisi, A. Moffat, and A. Turpin, “Improving suffix array local-
ity for fast pattern matching on disk,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, Vancouver: ACM Press,
June 2008.

[321] B. Srinivasan, “An adaptive overflow technique to defer splitting in B-trees,”
The Computer Journal, vol. 34, no. 5, pp. 397–405, 1991.

[322] A. Srivastava and A. Eustace, “ATOM: A system for building customized
program analysis tools,” ACM SIGPLAN Notices, vol. 29, pp. 196–205, June
1994.

[323] S. Subramanian and S. Ramaswamy, “The P-range tree: A new data structure
for range searching in secondary memory,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pp. 378–387, ACM Press, 1995.

[324] R. Tamassia and J. S. Vitter, “Optimal cooperative search in fractional cas-
caded data structures,” Algorithmica, vol. 15, pp. 154–171, February 1996.

Full text available at: http://dx.doi.org/10.1561/0400000014



172 References

[325] “TerraServer-USA: Microsoft’s online database of satellite images,” Available
on the World-Wide Web at http://terraserver.microsoft.com/.

[326] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi,
“Passion: Optimized I/O for parallel applications,” IEEE Computer, vol. 29,
pp. 70–78, June 1996.

[327] “Topologically Integrated Geographic Encoding and Referencing system,
TIGER/Line 1992 datafiles,” Available on the World-Wide Web at
http://www.census.gov/geo/www/tiger/, 1992.

[328] S. Toledo, “A survey of out-of-core algorithms in numerical linear algebra,” in
External Memory Algorithms and Visualization, (J. Abello and J. S. Vitter,
eds.), pp. 161–179, Providence, Rhode Island: American Mathematical Society
Press, 1999.

[329] L. Toma and N. Zeh, “I/O-efficient algorithms for sparse graphs,” in Algo-
rithms for Memory Hierarchies, (U. Meyer, P. Sanders, and J. Sibeyn, eds.),
ch. 5, pp. 85–109, Berlin: Springer-Verlag, 2003.

[330] TPIE User Manual and Reference, “The manual and software distribution,”
available on the web at http://www.cs.duke.edu/TPIE/, 1999.

[331] J. D. Ullman and M. Yannakakis, “The input/output complexity of transitive
closure,” Annals of Mathematics and Artificial Intelligence, vol. 3, pp. 331–
360, 1991.

[332] J. Vahrenhold and K. Hinrichs, “Planar point location for large data sets: To
seek or not to seek,” ACM Journal of Experimental Algorithmics, vol. 7, p. 8,
August 2002.

[333] J. van den Bercken, B. Seeger, and P. Widmayer, “A generic approach to bulk
loading multidimensional index structures,” in Proceedings of the International
Conference on Very Large Databases, pp. 406–415, 1997.

[334] M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, eds., Algorithmic
foundations of GIS. Vol. 1340 of Lecture Notes in Computer Science, Springer-
Verlag, 1997.

[335] P. J. Varman and R. M. Verma, “An efficient multiversion access structure,”
IEEE Transactions on Knowledge and Data Engineering, vol. 9, pp. 391–409,
May–June 1997.

[336] D. E. Vengroff and J. S. Vitter, “Efficient 3-D range searching in external
memory,” in Proceedings of the ACM Symposium on Theory of Computing,
pp. 192–201, Philadelphia: ACM Press, May 1996.

[337] D. E. Vengroff and J. S. Vitter, “I/O-efficient scientific computation using
TPIE,” in Proceedings of NASA Goddard Conference on Mass Storage Sys-
tems, pp. II, 553–570, September 1996.

[338] P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche,
E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, “The ‘Millipede’ —
more than one thousand tips for future AFM data storage,” IBM Journal of
Research and Development, vol. 44, no. 3, pp. 323–340, 2000.

[339] J. S. Vitter, “Efficient memory access in large-scale computation,” in Proceed-
ings of the Symposium on Theoretical Aspects of Computer Science, pp. 26–41,
Springer-Verlag, 1991. Invited paper.

[340] J. S. Vitter, Notes. 1999.

Full text available at: http://dx.doi.org/10.1561/0400000014



References 173

[341] J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data
structures,” in Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complexity, (J. van Leeuwen, ed.), ch. 9, pp. 431–524, Elsevier and
MIT Press, 1990.

[342] J. S. Vitter and D. A. Hutchinson, “Distribution sort with randomized
cycling,” Journal of the ACM, vol. 53, pp. 656–680, July 2006.

[343] J. S. Vitter and P. Krishnan, “Optimal prefetching via data compression,”
Journal of the ACM, vol. 43, pp. 771–793, September 1996.

[344] J. S. Vitter and M. H. Nodine, “Large-scale sorting in uniform memory hier-
archies,” Journal of Parallel and Distributed Computing, vol. 17, pp. 107–114,
1993.

[345] J. S. Vitter and E. A. M. Shriver, “Algorithms for parallel memory I: Two-level
memories,” Algorithmica, vol. 12, no. 2–3, pp. 110–147, 1994.

[346] J. S. Vitter and E. A. M. Shriver, “Algorithms for parallel memory II: Hier-
archical multilevel memories,” Algorithmica, vol. 12, no. 2–3, pp. 148–169,
1994.

[347] J. S. Vitter and M. Wang, “Approximate computation of multidimensional
aggregates of sparse data using wavelets,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 193–204, Philadelphia:
ACM Press, June 1999.

[348] J. S. Vitter, M. Wang, and B. Iyer, “Data cube approximation and his-
tograms via wavelets,” in Proceedings of the International ACM Conference
on Information and Knowledge Management, pp. 96–104, Washington, DC:
ACM Press, November 1998.

[349] M. Wang, B. Iyer, and J. S. Vitter, “Scalable mining for classification rules in
relational databases,” in Herman Rubin Festschrift, Hayward, CA: Institute
of Mathematical Statistics, Fall 2004.

[350] M. Wang, J. S. Vitter, L. Lim, and S. Padmanabhan, “Wavelet-based cost
estimation for spatial queries,” in Proceedings of the International Sympo-
sium on Spatial and Temporal Databases, pp. 175–196, Redondo Beach, Cal.:
Springer-Verlag, July 2001.

[351] R. W. Watson and R. A. Coyne, “The parallel I/O architecture of the high-
performance storage system (HPSS),” in Proceedings of the IEEE Symposium
on Mass Storage Systems, pp. 27–44, September 1995.

[352] P. Weiner, “Linear pattern matching algorithm,” in Proceedings of the IEEE
Symposium on Switching and Automata Theory, pp. 1–11, 1973.

[353] K.-Y. Whang and R. Krishnamurthy, “Multilevel grid files — a dynamic hier-
archical multidimensional file structure,” in Proceedings of the International
Symposium on Database Systems for Advanced Applications, pp. 449–459,
World Scientific Press, 1992.

[354] D. E. Willard and G. S. Lueker, “Adding range restriction capability to
dynamic data structures,” Journal of the ACM, vol. 32, no. 3, pp. 597–617,
1985.

[355] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing
and Indexing Documents and Images. Los Altos, Cal.: Morgan Kaufmann,
2nd ed., 1999.

Full text available at: http://dx.doi.org/10.1561/0400000014



174 References

[356] O. Wolfson, P. Sistla, B. Xu, J. Zhou, and S. Chamberlain, “DOMINO:
Databases for moving objects tracking,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 547–549, Philadelphia:
ACM Press, June 1999.

[357] D. Womble, D. Greenberg, S. Wheat, and R. Riesen, “Beyond core: Making
parallel computer I/O practical,” in Proceedings of the DAGS Symposium on
Parallel Computation, pp. 56–63, June 1993.

[358] C. Wu and T. Feng, “The universality of the shuffle-exchange network,” IEEE
Transactions on Computers, vol. C-30, pp. 324–332, May 1981.

[359] Y. Xia, S. Prabhakar, S. Lei, R. Cheng, and R. Shah, “Indexing continuously
changing data with mean-variance tree,” in Proceedings of the ACM Sympo-
sium on Applied Computing, pp. 52–57, ACM Press, March 2005.

[360] A. C. Yao, “On random 2-3 trees,” Acta Informatica, vol. 9, pp. 159–170,
1978.

[361] S. B. Zdonik and D. Maier, eds., Readings in object-oriented database systems.
Morgan Kauffman, 1990.

[362] N. Zeh, I/O-Efficient Algorithms for Shortest Path Related Problems. PhD
thesis, School of Computer Science, Carleton University, 2002.

[363] W. Zhang and P.-A. Larson, “Dynamic memory adjustment for external
mergesort,” in Proceedings of the International Conference on Very Large
Databases, pp. 376–385, 1997.

[364] B. Zhu, “Further computational geometry in secondary memory,” in Proceed-
ings of the International Symposium on Algorithms and Computation, pp. 514–
522, Springer-Verlag, 1994.

[365] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate
coding,” IEEE Transactions on Information Theory, vol. 24, pp. 530–536,
September 1978.

Full text available at: http://dx.doi.org/10.1561/0400000014


	Introduction
	Overview

	Parallel Disk Model (PDM)
	PDM and Problem Parameters
	Practical Modeling Considerations
	Related Models, Hierarchical Memory,and Cache-Oblivious Algorithms

	Fundamental I/O Operations and Bounds
	Exploiting Locality and Load Balancing
	Locality Issues with a Single Disk
	Disk Striping and Parallelism with Multiple Disks

	External Sorting and Related Problems
	Sorting by Distribution
	Sorting by Merging
	Prefetching, Caching, and Applications to Sorting
	A General Simulation for Parallel Disks
	Handling Duplicates: Bundle Sorting
	Permuting
	Fast Fourier Transform and Permutation Networks

	Lower Bounds on I/O
	Permuting
	Lower Bounds for Sorting and Other Problems

	Matrix and Grid Computations
	Matrix Operations
	Matrix Transposition

	Batched Problems in Computational Geometry
	Distribution Sweep
	Other Batched Geometric Problems

	Batched Problems on Graphs
	Sparsification
	Special Cases
	Sequential Simulation of Parallel Algorithms

	External Hashing for Online Dictionary Search
	Extendible Hashing
	Directoryless Methods
	Additional Perspectives

	Multiway Tree Data Structures
	B-trees and Variants
	Weight-Balanced B-trees
	Parent Pointers and Level-Balanced B-trees
	Buffer Trees

	Spatial Data Structures and Range Search
	Linear-Space Spatial Structures
	R-trees
	Bootstrapping for 2-D Diagonal Cornerand Stabbing Queries
	Bootstrapping for Three-Sided Orthogonal 2-D Range Search
	General Orthogonal 2-D Range Search
	Other Types of Range Search
	Lower Bounds for Orthogonal Range Search

	Dynamic and Kinetic Data Structures
	Dynamic Methods for Decomposable Search Problems
	Continuously Moving Items

	String Processing
	Inverted Files
	String B-Trees
	Suffix Trees and Suffix Arrays
	Sorting Strings

	Compressed Data Structures
	Data Representations and Compression Models
	External Memory Compressed Data Structures

	Dynamic Memory Allocation
	External Memory Programming Environments
	Conclusions
	Notations and Acronyms
	References



