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Abstract

Various types of probabilistic proof systems have played a central role
in the development of computer science in the last couple of decades.
These proof systems deviate from the traditional concept of a proof
by introducing randomization and interaction into the verification pro-
cess. Probabilistic proof systems carry an error probability (which is
explicitly bounded and can be decreased by repetitions), but they offer
various advantages over deterministic proof systems.

This primer concentrates on three types of probabilistic proof sys-
tems: interactive proofs, zero-knowledge proofs, and Probabilistically
Checkable Proofs (PCP). Surveying the basic results regarding these
proof systems, we stress the essential role of randomness in each
of them.
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Preface

A proof is whatever convinces me.
— Shimon Even (1935–2004)

The glory attached to the creativity involved in finding proofs makes
us forget that it is the less glorified process of verification that gives
proofs their value. Conceptually speaking, proofs are secondary to the
verification process; whereas technically speaking, proof systems are
defined in terms of their verification procedures.

The notion of a verification procedure presumes the notion of com-
putation and furthermore the notion of efficient computation. This
implicit stipulation is made explicit in the definition of NP, where
efficient computation is associated with deterministic polynomial-time
algorithms. However, as argued next, we can gain a lot if we are willing
to take a somewhat non-traditional step and allow probabilistic verifi-
cation procedures.

In this primer, we shall survey three types of probabilistic proof
systems, called interactive proofs, zero-knowledge proofs, and proba-
bilistic checkable proofs. In each of these three cases, we shall present

ix
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x Preface

fascinating results that cannot be obtained when considering the anal-
ogous deterministic proof systems.

Indeed, the use of probabilistic verification procedures is common
to the three aforementioned types of proof systems. We note that the
association of efficient procedures with deterministic polynomial-time
procedures is the basis for viewing NP-proof systems as the canonical
formulation of proof systems (with efficient verification procedures).
Now, since the notion of efficient computation has been extended
to include probabilistic polynomial-time procedures, it is natural to
allow the use of randomization also in the context of proof verifica-
tion. Furthermore, it is natural to allow also a probability of error,
which means that these probabilistic verification procedures may rule
by (overwhelming) statistical evidence. Needless to say, this probabil-
ity of error is explicitly bounded (and can be reduced by successive
application of the proof system). Let us briefly review the three afore-
mentioned types of probabilistic proof systems.

Interactive Proofs. Randomized and interactive verification proce-
dures, giving rise to interactive proof systems, seem much more power-
ful than their deterministic counterparts. In particular, such interactive
proof systems exist for any set in PSPACE ⊇ coNP (e.g., for the set of
unsatisfied propositional formulae), whereas it is widely believed that
some sets in coNP do not have NP-proof systems (i.e., NP 6= coNP).
We stress that a “proof” in this context is not a fixed and static object,
but rather a randomized (and dynamic) process in which the verifier
interacts with the prover. Intuitively, one may think of this interaction
as consisting of questions asked by the verifier, to which the prover has
to reply convincingly.

Zero-Knowledge. Such randomized and interactive verification pro-
cedures allow for the meaningful conceptualization of zero-knowledge
proofs, which are of great theoretical and practical interest (especially
in cryptography). Loosely speaking, zero-knowledge proofs are inter-
active proofs that yield nothing (to the verifier) beyond the fact that
the assertion is indeed valid. For example, a zero-knowledge proof that
a certain propositional formula is satisfiable does not reveal a satisfy-
ing assignment to the formula nor any partial information regarding
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Preface xi

such an assignment (e.g., whether the first variable can assume the
value true). Thus, the successful verification of a zero-knowledge proof
exhibit an extreme contrast between being convinced of the validity of
a statement and learning nothing else (while receiving such a convinc-
ing proof). It turns out that, under reasonable complexity assumptions
(i.e., assuming the existence of one-way functions), every set in NP
has a zero-knowledge proof system.

Probabilistically Checkable Proofs. NP-proofs can be efficiently trans-
formed into a (redundant) form that offers a trade-off between the
number of locations (randomly) examined in the resulting proof and
the confidence in its validity. In particular, it is known that any set
in NP has an NP-proof system that supports probabilistic verification
such that the error probability decreases exponentially with the num-
ber of bits read from the alleged proof. These redundant NP-proofs are
called probabilistically checkable proofs (or PCPs). In addition to their
conceptually fascinating nature, PCPs are closely related to the study
of the complexity of numerous natural approximation problems.

Full text available at: http://dx.doi.org/10.1561/0400000023



Conventions and Organization

Most results surveyed in this text hold unconditionally. However, these
results are only interesting if NP 6= P.

One Important Convention. When presenting a proof system, we state
all complexity bounds in terms of the length of the assertion to be
proved (which is viewed as an input to the verifier). Namely, when we
say “polynomial-time” we mean time that is polynomial in the length
of this assertion. Indeed, as will become evident, this is the natural
choice in all the cases that we consider. Note that this convention is
consistent with the definition of NP-proof systems.

Notational Conventions. We denote by poly the set of all integer func-
tions that are upper-bounded by a polynomial, and by log the set of
all integer functions bounded by a logarithmic function (i.e., f ∈ log

if and only if f(n) = O(logn)). All complexity measures mentioned in
this section are assumed to be constructible in polynomial-time.

Organization. In Section 1, we present the basic definitions and results
regarding interactive proof systems. The definition of an interactive
proof system is the starting point for a discussion of zero-knowledge
proofs, which is provided in Section 2. Section 3, which presents the

xiii
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xiv Preface

basic definitions and results regarding probabilistically checkable proofs
(PCP), can be read independently of the other sections.
The study of probabilistic proof system is part of complexity theory (cf.
e.g., [27]); in fact, the current text is an abbreviated (and somewhat
revised) version of [27, Sec. 9].
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1

Interactive Proof Systems

In light of the growing acceptability of randomized and interactive com-
putations, it is only natural to associate the notion of efficient computa-
tion with probabilistic and interactive polynomial-time computations.
This leads naturally to the notion of an interactive proof system in
which the verification procedure is interactive and randomized, rather
than being non-interactive and deterministic. Thus, a “proof” in this
context is not a fixed and static object, but rather a randomized
(dynamic) process in which the verifier interacts with the prover. Intu-
itively, one may think of this interaction as consisting of questions asked
by the verifier, to which the prover has to reply convincingly.

The foregoing discussion, as well as the definition provided in
Section 1.2, makes explicit reference to a prover, whereas a prover is
only implicit in the traditional definitions of proof systems (e.g., NP-
proof systems). Before turning to the actual definition, we highlight
and further discuss this issue as well as some other conceptual issues.

1.1 Motivation and Perspective

We shall discuss the various interpretations given to the notion of
a proof in different human contexts, and the attitudes that underly

1
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2 Interactive Proof Systems

and/or accompany these interpretations. This discussion is aimed at
emphasizing that the motivation for the definition of interactive proof
systems is not replacing the notion of a mathematical proof, but rather
capturing other forms of proofs that are of natural interest. Specifically,
we shall contrast “written proofs” with “interactive proofs,” highlight
the roles of the “prover” and the “verifier” in any proof, and discuss
the notions of completeness and soundness which underlie any proof.
(Some readers may find it useful to return to this section after reading
Section 1.2.)

1.1.1 A Static Object Vs. an Interactive Process

Traditionally in mathematics, a “proof” is a fixed sequence consisting
of statements that are either self-evident or are derived from previ-
ous statements via self-evident rules. Actually, both conceptually and
technically, it is more accurate to substitute the phrase “self-evident”
by the phrase “commonly agreed upon” (because, at the last account,
self-evidence is a matter of common agreement). In fact, in the formal
study of proofs (i.e., logic), the commonly agreed statements are called
axioms, whereas the commonly agreed rules are referred to as deriva-
tion rules. We highlight a key property of mathematical proofs: these
proofs are fixed (static) objects.

In contrast, in other areas of human activity, the notion of a “proof”
has a much wider interpretation. In particular, in many settings, a proof
is not a fixed object but rather a process by which the validity of an
assertion is established. For example, in the context of law, withstand-
ing a cross-examination by an opponent, who may ask tough and/or
tricky questions, is considered a proof of the facts claimed by the wit-
ness. Likewise, various debates that take place in daily life have an anal-
ogous potential of establishing claims and are then perceived as proofs.
This perception is quite common in philosophical and political debates,
and applies even in scientific debates. Needless to say, a key property of
such debates is their interactive (“dynamic”) nature. Interestingly, the
appealing nature of such “interactive proofs” is reflected in the fact that
they are mimicked (in a rigorous manner) in some mathematical proofs
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1.1 Motivation and Perspective 3

by contradiction, which emulate an imaginary debate with a potential
(generic) skeptic.

Another difference between mathematical proofs and various forms
of “daily proofs” is that, while the former aim at certainty, the latter are
intended (“only”) for establishing claims beyond any reasonable doubt.
Arguably, an explicitly bounded error probability (as present in our
definition of interactive proof systems) is an extremely strong form of
establishing a claim beyond any reasonable doubt.

We also note that, in mathematics, proofs are often considered more
important than their consequence (i.e., the theorem). In contrast, in
many daily situations, proofs are considered secondary (in importance)
to their consequence. These conflicting attitudes are well-coupled with
the difference between written proofs and “interactive” proofs: If one
values the proof itself then one may insist on having it archived, whereas
if one only cares about the consequence then the way in which it is
reached is immaterial.

Interestingly, the foregoing set of daily attitudes (rather than the
mathematical ones) will be adequate in the current text, where proofs
are viewed merely as a vehicle for the verification of the validity of
claims. (This attitude gets to an extreme in the case of zero-knowledge
proofs, where we actually require that the proofs themselves be useless
beyond being convincing of the validity of the claimed assertion.)

In general, we will be interested in modeling various forms of proofs
that may occur in the world, focusing on proofs that can be verified by
automated procedures. These verification procedures are designed to
check the validity of potential proofs, and are oblivious to additional
features that may appeal to humans such as beauty, insightfulness, etc.
In the current section, we will consider the most general form of proof
systems that still allow efficient verification.

We note that the proof systems that we study refer to mundane
theorems (e.g., asserting that a specific propositional formula is not
satisfiable or that a party sent a message as instructed by a prede-
termined protocol). We stress that the (meta) theorems that we shall
state regarding these proof systems will be proved in the traditional
mathematical sense.

Full text available at: http://dx.doi.org/10.1561/0400000023



4 Interactive Proof Systems

1.1.2 Prover and Verifier

The wide interpretation of the notion of a proof system, which includes
interactive processes of verification, calls for the explicit introduction of
two interactive players, called the prover and the verifier. The verifier is
the party that employs the verification procedure, which underlies the
definition of any proof system, while the prover is the party that tries
to convince the verifier. In the context of static (or non-interactive)
proofs, the prover is the transcendental entity providing the proof, and
thus in this context the prover is often not mentioned at all (when
discussing the verification of alleged proofs). Still, explicitly mentioning
potential provers may be beneficial even when discussing such static
(non-interactive) proofs.

We highlight the “distrustful attitude” toward the prover, which
underlies any proof system. If the verifier trusts the prover then no
proof is needed. Hence, whenever discussing a proof system, one should
envision a setting in which the verifier is not trusting the prover, and
furthermore is skeptical of anything that the prover says. In such a
setting the prover’s goal is to convince the verifier, while the verifier
should make sure that it is not fooled by the prover. (See further discus-
sion in Section 1.1.3.) Note that the verifier is “trusted” to protect his
own interests by employing the predetermined verification procedure;
indeed, the asymmetry with respect to whom we trust is an artifact of
our focus on the verification process (or task). In general, each party is
trusted to protect his own interests (i.e., the verifier is trusted to pro-
tect its own interests), but no party is trusted to protect the interests
of the other party (i.e., the prover is not trusted to protect the verifier’s
interest of not being fooled by the prover).

Another asymmetry between the two parties is that our discussion
focuses on the complexity of the verification task and ignores (as a
first approximation) the complexity of the proving task (which is only
discussed in Section 1.5.1). Note that this asymmetry is reflected in
the definition of NP-proof systems; that is, verification is required to
be efficient, whereas for sets NP\P finding adequate proofs is infeasi-
ble. Thus, as a first approximation, we consider the question of what
can be efficiently verified when interacting with an arbitrary prover
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1.2 Definition 5

(which may be infinitely powerful). Once this question is resolved,
we shall also consider the complexity of the proving task (indeed, see
Section 1.5.1).

1.1.3 Completeness and Soundness

Two fundamental properties of a proof system (i.e., of a verification pro-
cedure) are its soundness (or validity) and completeness. The soundness
property asserts that the verification procedure cannot be “tricked” into
accepting false statements. In other words, soundness captures the ver-
ifier’s ability to protect itself from being convinced of false statements
(no matter what the prover does in order to fool it). On the other hand,
completeness captures the ability of some prover to convince the ver-
ifier of true statements (belonging to some predetermined set of true
statements). Note that both properties are essential to the very notion
of a proof system.

We note that not every set of true statements has a “reasonable”
proof system in which each of these statements can be proved (while
no false statement can be “proved”). This fundamental phenomenon is
given a precise meaning in results such as Gödel’s Incompleteness The-
orem and Turing’s theorem regarding the undecidability of the Halting
Problem. In contrast, recall that NP is defined as the class of sets hav-
ing proof systems that support efficient deterministic verification (of
“written proofs”). This section is devoted to the study of a more liberal
notion of efficient verification procedures (allowing both randomization
and interaction).

1.2 Definition

Loosely speaking, an interactive proof is a “game” between a compu-
tationally bounded verifier and a computationally unbounded prover
whose goal is to convince the verifier of the validity of some asser-
tion. Specifically, the verifier employs a probabilistic polynomial-time
strategy (whereas no computational restrictions apply to the prover’s
strategy). It is required that if the assertion holds then the verifier
always accepts (i.e., when interacting with an appropriate prover strat-
egy). On the other hand, if the assertion is false then the verifier must
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6 Interactive Proof Systems

reject with probability at least 1
2 , no matter what strategy is employed

by the prover. (The error probability can be reduced by running such
a proof system several times.)

We formalize the interaction between parties by referring to the
strategies that the parties employ.1 A strategy for a party is a function
mapping the party’s view of the interaction so far to a description of
this party’s next move; that is, such a strategy describes (or rather pre-
scribes) the party’s next move (i.e., its next message or its final decision)
as a function of the common input (i.e., the aforementioned assertion),
the party’s internal coin tosses, and all messages it has received so
far. Note that this formulation presumes (implicitly) that each party
records the outcomes of its past coin tosses as well as all the messages
it has received, and determines its moves based on these. Thus, an
interaction between two parties, employing strategies A and B, respec-
tively, is determined by the common input, denoted x, and the ran-
domness of both parties, denoted rA and rB. Assuming that A takes
the first move (and B takes the last “interactive move”), the corre-
sponding (t-round) interaction transcript (on common input x and ran-
domness rA and rB) is α1,β1, . . . ,αt,βt, where αi = A(x,rA,β1, . . . ,βi−1)
and βi = B(x,rB,α1, . . . ,αi). The corresponding final decision of A is
defined as A(x,rA,β1, . . . ,βt).

We say that a party employs a probabilistic polynomial-time strategy

if its next move can be computed in a number of steps that is polynomial
in the length of the common input. In particular, this means that, on
common input x, the strategy may only consider a polynomial in |x|
many messages, which are each of poly(|x|) length.2 Intuitively, if the
other party exceeds an a priori (polynomial in |x|) upper bound on
the total length of the messages that it is allowed to send, then the
execution is suspended.

1 An alternative formulation refers to the interactive machines that capture the behavior
of each of the parties (see, e.g., [25, Sec. 4.2.1.1]). Such an interactive machine invokes

the corresponding strategy, while handling the communication with the other party and
keeping a record of all messages received so far.

2 Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must

also be bounded by a polynomial in the length of x.
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1.2 Definition 7

Definition 1.1. (Interactive Proof Systems — IP)3: An interactive
proof system for a set S is a two-party game, between a verifier exe-
cuting a probabilistic polynomial-time strategy, denoted V , and a prover
that executes a (computationally unbounded) strategy, denoted P , sat-
isfying the following two conditions:

• Completeness: For every x ∈ S, the verifier V always accepts
after interacting with the prover P on common input x.
• Soundness: For every x 6∈ S and every strategy P ∗, the ver-

ifier V rejects with probability at least 1
2 after interacting

with P ∗ on common input x.

We denote by IP the class of sets having interactive proof systems.

The error probability (in the soundness condition) can be reduced by
successive applications of the proof system. In particular, repeating the
proving process for k times, reduces the probability that the verifier is
fooled (i.e., accepts a false assertion) to 2−k, and we can afford doing
so for any k = poly(|x|). Variants on the basic definition are discussed
in Section 1.4.

Note that NP-proof systems are obtained as a special case of inter-
active proof systems by eliminating interaction and randomness (i.e.,
restricting the communication to be uni-directional (from the prover
to the verifier) and restricting the verifier to deterministic strategies).
As we shall see next, interaction may be beneficial only if the verifier
is probabilistic.

The Role of Randomness. Randomness is essential to the power of
interactive proofs; that is, restricting the verifier to deterministic strate-
gies yields a class of interactive proof systems that has no advantage
over the class of NP-proof systems. The reason being that, in case
the verifier is deterministic, the prover can predict the verifier’s part

3 We follow the convention of specifying strategies for both the verifier and the prover. An
alternative presentation only specifies the verifier’s strategy, while rephrasing the com-

pleteness condition as follows: There exists a prover strategy P such that, for every x ∈ S,
the verifier V always accepts after interacting with P on common input x.
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8 Interactive Proof Systems

of the interaction. Thus, the prover can just supply its own sequence
of answers to the verifier’s sequence of (predictable) questions, and
the verifier can just check that these answers are convincing. Actually,
soundness error (and not merely randomized verification) is essential
to the power of interactive proof systems (i.e., their ability to reach
beyond NP-proofs).

Proposition 1.2. Suppose that S has an interactive proof system
(P,V ) with no soundness error; that is, for every x 6∈ S and every
potential strategy P ∗, the verifier V rejects with probability one after
interacting with P ∗ on common input x. Then S ∈ NP.

Reflection. The uselessness of interacting with a deterministic verifier
suggests a general moral by which there is no point to interact with a
party whose moves are easily predictable, because such moves can be
determined without any interaction. This moral represents the prover’s
point of view (regarding interaction with deterministic verifiers). In
contrast, even an infinitely powerful party (e.g., a prover) may gain by
interacting with an unpredictable party (e.g., a randomized verifier),
because this interaction may provide useful information (e.g., informa-
tion regarding the verifier’s questions, which in turn allows the prover to
increase its probability of answering convincingly). Furthermore, from
the verifier’s point of view it is beneficial to interact with the prover,
because the latter is computationally stronger4 (and thus its moves
may not be easily predictable by the verifier even in the case that they
are predictable in an information theoretic sense).

1.3 The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive
proof systems in the sense that without randomness interactive proofs
are not more powerful than NP-proofs. Indeed, the power of interactive
proof arises from the combination of randomization and interaction.
We first demonstrate this point by a simple proof system for a specific

4 Or, just possesses secret information (regarding the common input).
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1.3 The Power of Interactive Proofs 9

coNP-set that is not known to have an NP-proof system, and next
prove the celebrated result IP = PSPACE , which provides stronger
evidence for the belief that interactive proofs are more powerful than
NP-proofs.

1.3.1 A Simple Example

One day on Olympus, bright-eyed Athena claimed that
Nectar poured from the new silver-coated jars tastes less
good than Nectar poured from the older gold-decorated
jars. Mighty Zeus, who was forced to introduce the new
jars by the practically minded Hera, was annoyed at the
claim. He ordered that Athena be served one hundred
glasses of Nectar, each poured at random either from an
old jar or from a new one, and that she tell the source
of the drink in each glass. To everybody’s surprise, wise
Athena correctly identified the source of each serving,
to which the Father of the Gods responded “my child,
you are either right or extremely lucky.” Since all gods
knew that being lucky was not one of the attributes of
Pallas-Athena, they all concluded that the impeccable
goddess was right in her claim.

The foregoing story illustrates the main idea underlying the interac-
tive proof for Graph Non-Isomorphism, presented in Construction 1.3.
Informally, this interactive proof system is designed for proving dis-
similarity of two given objects (in the foregoing story these are the
two brands of Nectar, whereas in Construction 1.3 these are two non-
isomorphic graphs). We note that, typically, proving similarity between
objects is easy, because one can present a mapping (of one object to the
other) that demonstrates this similarity. In contrast, proving dissimilar-
ity seems harder, because in general there seems to be no succinct proof
of dissimilarity (e.g., clearly, showing that a particular mapping fails
does not suffice, while enumerating all possible mappings (and showing
that each fails) does not yield a succinct proof). More generally, it is
typically easy to prove the existence of an easily verifiable structure
in a given object by merely presenting this structure, but proving the
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10 Interactive Proof Systems

non-existence of such a structure seems hard. Formally, membership in
an NP-set is proved by presenting an NP-witness, but it is not clear
how to prove the non-existence of such a witness. Indeed, recall that
the common belief is that coNP 6= NP.

Two graphs, G1 =(V1,E1) and G2 =(V2,E2), are called isomorphic

if there exists a 1-1 and onto mapping, φ, from the vertex set V1 to
the vertex set V2 such that {u,v} ∈ E1 if and only if {φ(v),φ(u)} ∈ E2.
This (“edge preserving”) mapping φ, in case it exists, is called an iso-
morphism between the graphs. The following protocol specifies a way
of proving that two graphs are not isomorphic, while it is not known
whether such a statement can be proved via a non-interactive process
(i.e., via an NP-proof system).

Construction 1.3. (Interactive Proof for Graph Non-Isomorphism):

• Common Input: A pair of graphs, G1 =(V1,E1) and G2 =
(V2,E2).
• Verifier’s First Step (V1): The verifier selects at random one

of the two input graphs, and sends to the prover a random
isomorphic copy of this graph. Namely, the verifier selects
uniformly σ ∈ {1,2}, and a random permutation π from the
set of permutations over the vertex set Vσ. The verifier con-
structs a graph with vertex set Vσ and edge set

E
def= {{π(u),π(v)} : {u,v}∈Eσ}

and sends (Vσ,E) to the prover.
• Motivating Remark: If the input graphs are non-isomorphic,

as the prover claims, then the prover should be able to dis-
tinguish (not necessarily by an efficient algorithm) isomor-
phic copies of one graph from isomorphic copies of the other
graph. However, if the input graphs are isomorphic, then a
random isomorphic copy of one graph is distributed identi-
cally to a random isomorphic copy of the other graph.
• Prover’s Step: Upon receiving a graph, G′ = (V ′,E′), from

the verifier, the prover finds a τ ∈ {1,2} such that the graph
G′ is isomorphic to the input graph Gτ . (If both τ =1,2
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1.3 The Power of Interactive Proofs 11

satisfy the condition then τ is selected arbitrarily. In case no
τ ∈ {1,2} satisfies the condition, τ is set to 0.) The prover
sends τ to the verifier.
• Verifier’s Second Step (V2): If the message, τ , received from

the prover equals σ (chosen in Step V1) then the verifier
outputs 1 (i.e., accepts the common input). Otherwise the
verifier outputs 0 (i.e., rejects the common input).

The verifier’s strategy in Construction 1.3 is easily implemented
in probabilistic polynomial-time. We do not know of a probabilistic
polynomial-time implementation of the prover’s strategy, but this is
not required. The motivating remark justifies the claim that Construc-
tion 1.3 constitutes an interactive proof system for the set of pairs of
non-isomorphic graphs. Recall that the latter set is not known to be
in NP.

1.3.2 The Full Power of Interactive Proofs

The interactive proof system of Construction 1.3 refers to a specific
coNP-set that is not known to be in NP. It turns out that interactive
proof systems are powerful enough to prove membership in any coNP-
set (e.g., prove that a graph is not 3-colorable). Thus, assuming that
NP 6= coNP, this establishes that interactive proof systems are more
powerful than NP-proof systems. Furthermore, the class of sets having
interactive proof systems coincides with the class of sets that can be
decided using a polynomial amount of work-space.

Theorem 1.4. (The IP Theorem): IP = PSPACE .

Recall that it is widely believed that NP is a proper subset of
PSPACE . Thus, under this conjecture, interactive proofs are more
powerful than NP-proofs.

Sketch of the Proof of Theorem 1.4

We first show that coNP ⊆ IP, by presenting an interactive proof
system for the coNP-complete set of unsatisfiable CNF formulae. Next
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we extend this proof system to obtain one for the PSPACE-complete
set of unsatisfiable Quantified Boolean Formulae. Finally, we observe
that IP ⊆ PSPACE .

We show that the set of unsatisfiable CNF formulae has an interac-
tive proof system by using algebraic methods, which are applied to an
arithmetic generalization of the said Boolean problem (rather than to
the problem itself). That is, in order to demonstrate that this Boolean
problem has an interactive proof system, we first introduce an arith-
metic generalization of CNF formulae, and then construct an interac-
tive proof system for the resulting arithmetic assertion (by capitalizing
on the arithmetic formulation of the assertion). Intuitively, we present
an iterative process, which involves interaction between the prover and
the verifier, such that in each iteration the residual claim to be estab-
lished becomes simpler (i.e., contains one variable less). This iterative
process seems to be enabled by the fact that the various claims refer to
the arithmetic problem rather than to the original Boolean problem.
(Actually, one may say that the key point is that these claims refer to
a generalized problem rather than to the original one.)

The Starting Point: We prove that coNP ⊆ IP by presenting an
interactive proof system for the set of unsatisfiable CNF formulae,
which is coNP-complete. Thus, our starting point is a given Boolean
CNF formula, which is claimed to be unsatisfiable.

Arithmetization of Boolean (CNF) Formulae: Given a Boolean (CNF)
formula, we replace the Boolean variables by integer variables, and
replace the logical operations by corresponding arithmetic operations.
In particular, the Boolean values false and true are replaced by the
integer values 0 and 1 (respectively), or-clauses are replaced by sums,
and the top level conjunction is replaced by a product. This transla-
tion is depicted in Figure 1.1. Note that the Boolean formula is sat-
isfied (resp., unsatisfied) by a specific truth assignment if and only
if evaluating the resulting arithmetic expression at the corresponding
0–1 assignment yields a positive (integer) value (resp., yields the value
zero). Thus, the claim that the original Boolean formula is unsatisfiable
translates to the claim that the summation of the resulting arithmetic
expression, over all 0–1 assignments to its variables, yields the value
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Boolean arithmetic

variable values false, true 0, 1
connectives ¬x, ∨ and ∧ 1 − x, + and ·
final values false, true 0, positive

Fig. 1.1 Arithmetization of CNF formulae.

zero. We highlight two additional observations regarding the resulting
arithmetic expression:

1. The arithmetic expression is a low degree polynomial over
the integers; specifically, its (total) degree equals the number
of clauses in the original Boolean formula.

2. For any Boolean formula, the value of the corresponding
arithmetic expression (for any choice of x1, . . . ,xn ∈ {0,1})
resides within the interval [0,vm], where v is the maximum
number of variables in a clause, and m is the number of
clauses. Thus, summing over all 2n possible 0–1 assignments,
where n ≤ vm is the number of variables, yields an integer
value in [0,2nvm].

Moving to a Finite Field: In general, whenever we need to check equal-
ity between two integers in [0,M ], it suffices to check their equality mod
q, where q > M . The benefit is that, if q is prime then the arithmetic
is now in a finite field (mod q), and so certain things are “nicer” (e.g.,
uniformly selecting a value). Thus, proving that a CNF formula is not
satisfiable reduces to proving an equality of the following form:∑

x1=0,1

· · ·
∑

xn=0,1

φ(x1, . . . ,xn) ≡ 0 (mod q), (1.1)

where φ is a low-degree multi-variate polynomial (and q can be repre-
sented using O(|φ|) bits). In the rest of this exposition, all arithmetic
operations refer to the finite field of q elements, denoted GF(q).

Overview of the Actual Protocol; Stripping Summations in Iterations:
Given a formal expression as in Equation (1.1), we strip off summa-
tions in iterations, stripping a single summation at each iteration, and
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instantiate the corresponding free variable as follows. At the begin-
ning of each iteration the prover is supposed to supply the univari-
ate polynomial representing the residual expression as a function of
the (single) currently stripped variable. (By Observation 1, this is a
low degree polynomial and so it has a short description.)5 The verifier
checks that the polynomial (say, p) is of low degree, and that it corre-
sponds to the current value (say, v) being claimed (i.e., it verifies that
p(0) + p(1) ≡ v). Next, the verifier randomly instantiates the currently
free variable (i.e., it selects uniformly r ∈ GF(q)), yielding a new value
to be claimed for the resulting expression (i.e., the verifier computes
v← p(r), and expects a proof that the residual expression equals v).
The verifier sends the uniformly chosen instantiation (i.e., r) to the
prover, and the parties proceed to the next iteration (which refers to
the residual expression and to the new value v). At the end of the last
iteration, the verifier has a closed form expression (i.e., an expression
without formal summations), which can be easily checked against the
claimed value.

A Single Iteration (detailed): The ith iteration is aimed at proving a
claim of the form:∑

xi=0,1

· · ·
∑

xn=0,1

φ(r1, . . . , ri−1,xi,xi+1, . . . ,xn) ≡ vi−1 (mod q), (1.2)

where v0 = 0, and r1, . . . , ri−1 and vi−1 are as determined in previous
iterations. The ith iteration consists of two steps (messages): a prover
step followed by a verifier step. The prover is supposed to provide the
verifier with the univariate polynomial pi that satisfies

pi(z)
def=

∑
xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, . . . , ri−1,z,xi+1, . . . ,xn) mod q . (1.3)

Note that, modulo q, the value pi(0) + pi(1) equals the l.h.s of Equa-
tion (1.2). Denote by p′i the actual polynomial sent by the prover
(i.e., the honest prover sets p′i = pi). Then, the verifier first checks
if p′i(0) + p′i(1) ≡ vi−1 (mod q), and next uniformly selects ri ∈ GF(q)

5 We also use Observation 2, which implies that we may use a finite field with elements

having a description length that is polynomial in the length of the original Boolean formula
(i.e., log2 q = O(vm)).
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1.3 The Power of Interactive Proofs 15

and sends it to the prover. Needless to say, the verifier will reject if the
first check is violated. The claim to be proved in the next iteration is∑

xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, . . . , ri−1, ri,xi+1, . . . ,xn) ≡ vi (mod q), (1.4)

where vi
def= p′i(ri) mod q is computed by each party.

Completeness of the Protocol: When the initial claim (i.e., Equa-
tion (1.1)) holds, the prover can supply the correct polynomials (as
determined in Equation (1.3)), and this will lead the verifier to always
accept.

Soundness of the Protocol: It suffices to upper-bound the probability
that, for a particular iteration, the entry claim (i.e., Equation (1.2)) is
false while the ending claim (i.e., Equation (1.4)) is valid. Indeed, let us
focus on the ith iteration, and let vi−1 and pi be as in Equations (1.2)
and (1.3), respectively; that is, vi−1 is the (wrong) value claimed at the
beginning of the ith iteration and pi is the polynomial representing the
expression obtained when stripping the current variable (as in Equa-
tion (1.3)). Let p′i(·) be any potential answer by the prover. We may
assume, without loss of generality, that p′i(0) + p′i(1) ≡ vi−1 (mod q)
and that p′i is of low degree (since otherwise the verifier will definitely
reject). Using our hypothesis (that the entry claim of Equation (1.2)
is false), we know that pi(0) + pi(1) 6≡ vi−1 (mod q). Thus, p′i and pi

are different low-degree polynomials, and so they may agree on very
few points (if at all). Now, if the verifier’s instantiation (i.e., its choice
of a random ri) does not happen to be one of these few points (i.e.,
pi(ri) 6≡ p′i(ri) (mod q)), then the ending claim (i.e., Equation (1.4)) is
false too (because the new value (i.e., vi) is set to p′i(ri) mod q, while
the residual expression evaluates to pi(ri)).

This establishes that the set of unsatisfiable CNF formulae has an
interactive proof system. Actually, a similar proof system can be used
to prove that a given formula has a given number of satisfying assign-
ments, i.e., prove membership in the (“counting”) set

{(φ,k) : |{τ : φ(τ) = 1}| = k} . (1.5)

Using adequate reductions, it follows that every problem in #P has
an interactive proof system (i.e., for every NP-relation R, the set
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{(x,k) : |{y : (x,y)∈R}| = k} is in IP). Proving that PSPACE ⊆ IP
requires a little more work, as outlined next.

Obtaining Interactive Proofs for PSPACE (the basic idea): We present
an interactive proof for the set of satisfied Quantified Boolean Formu-
lae (QBF), which is complete for PSPACE . Recall that the number of
quantifiers in such formulae is unbounded (e.g., it may be polynomi-
ally related to the length of the input), that there are both existential
and universal quantifiers, and furthermore these quantifiers may alter-
nate. In the arithmetization of these formulae, we replace existential
quantifiers by summations and universal quantifiers by products. Two
difficulties arise when considering the application of the foregoing pro-
tocol to the resulting arithmetic expression. First, the (integral) value
of the expression (which may involve a big number of nested formal
products) is only upper-bounded by a double-exponential function (in
the length of the input). Second, when stripping a summation (or a
product), the expression may be a polynomial of high degree (due to
nested formal products that may appear in the remaining expression).
For example, both phenomena occur in the following expression∑

x=0,1

∏
y1=0,1

· · ·
∏

yn=0,1

(x + yn),

which equals
∑

x=0,1x
2n−1 · (1 + x)2

n−1
. The first difficulty is easy to

resolve by using the fact that if two integers in [0,M ] are different
then they must be different modulo most of the primes in the inter-
val [3,poly(logM)]. Thus, we let the verifier select a random prime q
of length that is linear in the length of the original formula, and the
two parties consider the arithmetic expression reduced modulo this q.
The second difficulty is resolved by noting that PSPACE is actually
reducible to a special form of (non-canonical) QBF in which no variable
appears both to the left and to the right of more than one universal
quantifier. It follows that when arithmetizing and stripping summa-
tions (or products) from the resulting arithmetic expression, the cor-
responding univariate polynomial is of low degree (i.e., at most twice
the length of the original formula, where the factor of two is due to the
single universal quantifier that has this variable quantified on its left
and appearing on its right).
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1.4 Variants and Finer Structure: An Overview 17

IP is Contained in PSPACE: We shall show that, for every interac-
tive proof system, there exists an optimal prover strategy that can be
implemented in polynomial-space, where an optimal prover strategy is
one that maximizes the probability that the prescribed verifier accepts
the common input. It follows that IP ⊆ PSPACE , because (for every
S ∈ IP) we can emulate, in polynomial space, all possible interactions
of the prescribed verifier with any fixed polynomial-space prover strat-
egy (e.g., an optimal one), and accept if and only if the majority of
these interactions accept.

Proposition 1.5. Let V be a probabilistic polynomial-time (verifier)
strategy. Then, there exists a polynomial-space computable (prover)
strategy f that, for every x, maximizes the probability that V accepts
x. That is, for every P ∗ and every x it holds that the probability that V
accepts x after interacting with P ∗ is upper-bounded by the probability
that V accepts x after interacting with f .

Proof Idea. The strategy f can be defined recursively. Specifically, for
each partial transcript of the interaction with V , the next message of
f is determined such that the probability that V accepts the common
input (when the subsequent prover messages are determined by f) is
maximized.

1.4 Variants and Finer Structure: An Overview

In this section we consider several variants on the basic definition of
interactive proofs as well as finer complexity measures.

1.4.1 Arthur–Merlin Games a.k.a Public-Coin Proof
Systems

The verifier’s messages in a general interactive proof system are deter-
mined arbitrarily (but efficiently) based on the verifier’s view of the
interaction so far (which includes its internal coin tosses, which without
loss of generality can take place at the onset of the interaction). Thus,
the verifier’s past coin tosses are not necessarily revealed by the mes-
sages that it sends. In contrast, in public-coin proof systems (a.k.a
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Arthur–Merlin proof systems), the verifier’s messages contain the out-
come of any coin that it tosses at the current round. Thus, these
messages reveal the randomness used toward generating them (i.e.,
this randomness becomes public). Actually, without loss of general-
ity, the verifier’s messages can be identical to the outcome of the coins
tossed at the current round (because any other string that the veri-
fier may compute based on these coin tosses is actually determined by
them).

Note that the proof systems presented in the proof of Theorem 1.4
are of the public-coin type, whereas this is not the case for the Graph
Non-Isomorphism proof system (of Construction 1.3). Thus, although
not all natural proof systems are of the public-coin type, by The-
orem 1.4 every set having an interactive proof system also has a
public-coin interactive proof system. This means that, in the context
of interactive proof systems, asking random questions is as powerful as
asking clever questions. (A stronger statement appears at the end of
Section 1.4.3.)

Indeed, public-coin proof systems are a syntactically restricted type
of interactive proof systems. This restriction may make the design of
such systems more difficult, but potentially facilitates their analysis
(and especially when the analysis refers to a generic system). Another
advantage of public-coin proof systems is that the verifier’s actions
(except for its final decision) are oblivious of the prover’s messages.
This property is used in the proof of Theorem 2.6.

1.4.2 Interactive Proof Systems With Two-sided Error

In Definition 1.1 error probability is allowed in the soundness condition
but not in the completeness condition. In such a case, we say that the
proof system has perfect completeness (or one-sided error probability).
A more general definition allows an error probability (upper-bounded
by, say, 1/3) in both the completeness and the soundness conditions.
Note that sets having such generalized (two-sided error) interactive
proofs are also in PSPACE , and thus (by Theorem 1.4) allowing
two-sided error does not increase the power of interactive proofs. See
further discussion at the end of Section 1.4.3.
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1.4.3 A Hierarchy of Interactive Proof Systems

Definition 1.1 only refers to the total computation time of the verifier,
and thus allows an arbitrary (polynomial) number of messages to be
exchanged. A finer definition refers to the number of messages being
exchanged (also called the number of rounds).6

Definition 1.6. (The Round-Complexity of Interactive Proofs):

• For an integer function m, the complexity class IP(m) con-
sists of sets having an interactive proof system in which, on
common input x, at most m(|x|) messages are exchanged
between the parties.7

• For a set of integer functions, M , we let IP(M) def=⋃
m∈M IP(m). Thus, IP = IP(poly).

For example, interactive proof systems in which the verifier sends a
single message that is answered by a single message of the prover cor-
responds to IP(2). Clearly, NP ⊆ IP(1), yet the inclusion may be
strict because in IP(1) the verifier may toss coins after receiving the
prover’s single message. (Also note that IP(0) = coRP.)

Definition 1.6 gives rise to a natural hierarchy of interactive proof
systems, where different “levels” of this hierarchy correspond to dif-
ferent “growth rates” of the round-complexity of these systems. The
following results are known regarding this hierarchy.

• A linear speed-up (see [6] and [33]): For every integer func-
tion, f , such that f(n) ≥ 2 for all n, the class IP(O(f(·)))
collapses to the class IP(f(·)). In particular, IP(O(1)) col-
lapses to IP(2).

6 An even finer structure emerges when considering also the total length of the messages

sent by the prover (see [31]).
7 We count the total number of messages exchanged, regardless of the direction of commu-
nication. Note that, without loss of generality, the last message is sent by the prover, the
penultimate message is sent by the verifier, etc.
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• The class IP(2) contains sets that are not known to
be in NP, e.g., Graph Non-Isomorphism (see Construc-
tion 1.3). However, under plausible intractability assump-
tions, IP(2) = NP (see [42]).
• If coNP ⊆ IP(2) then the Polynomial-Time Hierarchy col-

lapses (see [15]).

It is conjectured that coNP is not contained in IP(2), and conse-
quently that interactive proofs with an unbounded number of message
exchanges are more powerful than interactive proofs in which only a
bounded (i.e., constant) number of messages are exchanged.8

The class IP(1), also denotedMA, seems to be the “real” random-
ized (and yet non-interactive) version ofNP: Here the prover supplies a
candidate (polynomial-size) “proof,” and the verifier assesses its valid-
ity probabilistically (rather than deterministically).

The IP-hierarchy (i.e., IP(·)) equals an analogous hierarchy,
denoted AM(·), that refers to public-coin (a.k.a Arthur–Merlin) inter-
active proofs. That is, for every integer function f , it holds that
AM(f) = IP(f). For f ≥ 1, it is also the case that AM(2f) =
AM(O(f)); actually, the aforementioned linear speed-up for IP(·) is
established by combining the following two results:

1. Emulating IP(·) by AM(·): IP(f) ⊆ AM(f + 3) [33].
2. Linear speed-up for AM(·): AM(2f + 1) ⊆ AM(f + 1) [6].

In particular, IP(O(1)) = AM(2), even if AM(2) is restricted such
that the verifier tosses no coins after receiving the prover’s message.
(Note that IP(1) = AM(1) and IP(0) = AM(0) are trivial.) We com-
ment that it is common to shorthand AM(2) by AM, which is
indeed inconsistent with the convention of using IP as shorthand of
IP(poly).

The fact that IP(O(f)) = IP(f) is proved by establishing an anal-
ogous result for AM(·) demonstrates the advantage of the public-coin

8 Note that the linear speed-up cannot be applied for an unbounded number of times,
because each application may increase (e.g., square) the time-complexity of verification.
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setting for the study of interactive proofs. A similar phenomenon occurs
when establishing that the IP-hierarchy equals an analogous two-sided
error hierarchy [23].

1.4.4 Something Completely Different

We stress that although we have relaxed the requirements from the
verification procedure (by allowing it to interact with the prover, toss
coins, and risk some (bounded) error probability), we did not restrict
the soundness of its verdict by assumptions concerning the potential
prover(s). This should be contrasted with other notions of proof sys-
tems, such as computationally sound ones (see Section 1.5.2), in which
the soundness of the verifier’s verdict depends on assumptions concern-
ing the potential prover(s).

1.5 On Computationally Bounded Provers: An Overview

Recall that our definition of interactive proofs (i.e., Definition 1.1)
makes no reference to the computational abilities of the potential
prover. This fact has two opposite consequences:

1. The completeness condition does not provide any upper
bound on the complexity of the corresponding proving strat-
egy (which convinces the verifier to accept valid assertions).

2. The soundness condition guarantees that, regardless of the
computational effort spend by a cheating prover, the verifier
cannot be fooled to accept invalid assertions (with probabil-
ity exceeding the soundness error).

Note that providing an upper-bound on the complexity of the (pre-
scribed) prover strategy P of a specific interactive proof system (P,V )
only strengthens the claim that (P,V ) is an interactive proof system for
the corresponding set (of valid assertions). We stress that the prescribed
prover strategy is referred to only in the completeness condition (and
is irrelevant to the soundness condition). On the other hand, relaxing
the definition of interactive proofs such that soundness holds only for a
specific class of cheating prover strategies (rather than for all cheating
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prover strategies) weakens the corresponding claim. In this advanced
section we consider both possibilities.

1.5.1 How Powerful Should The Prover Be?

Suppose that a set S is in IP. This means that there exists a verifier
V that can be convinced to accept any input in S but cannot be fooled
to accept any input not in S (except with small probability). One may
ask how powerful should a prover be such that it can convince the
verifier V to accept any input in S. Note that Proposition 1.5 asserts
that an optimal prover strategy (for convincing any fixed verifier V )
can be implemented in polynomial-space, and we cannot expect any
better for a generic set in PSPACE = IP. Still, we may seek better
upper-bounds on the complexity of some prover strategy that convinces
a specific verifier, which in turn corresponds to a specific set S. More
interestingly, considering all possible verifiers that give rise to interac-
tive proof systems for S, we wish to upper-bound the computational
power that suffices for convincing any of these verifiers (to accept any
input in S).

We stress that, unlike the case of computationally sound proof sys-
tems (see Section 1.5.2), we do not restrict the power of the prover
in the soundness condition, but rather consider the minimum com-
plexity of provers meeting the completeness condition. Specifically, we
are interested in relatively efficient provers that meet the completeness
condition. The term “relatively efficient prover” has been given three
different interpretations, which are briefly surveyed next.

1. A prover is considered relatively efficient if, when given an
auxiliary input (in addition to the common input in S),
it works in (probabilistic) polynomial-time. Specifically, in
case S ∈ NP, the auxiliary input maybe an NP-proof that
the common input is in the set. Still, even in this case the
interactive proof need not consist of the prover sending the
auxiliary input to the verifier, for example, an alternative
procedure may allow the prover to be zero-knowledge (see
Construction 2.4).
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This interpretation is adequate and in fact crucial for
applications in which such an auxiliary input is available
to the otherwise polynomial-time parties. Typically, such
auxiliary input is available in cryptographic applications in
which parties wish to prove in (zero-knowledge) that they
have correctly conducted some computation. In these cases,
the NP-proof is just the transcript of the computation by
which the claimed result has been generated, and thus the
auxiliary input is available to the party that plays the role
of the prover.

2. A prover is considered relatively efficient if it can be imple-
mented by a probabilistic polynomial-time oracle machine
with oracle access to the set S itself. Note that the prover in
Construction 1.3 has this property.

This interpretation generalizes the notion of self-
reducibility of NP-proof systems. Recall that by self-
reducibility of an NP-set (or rather of the corresponding
NP-proof system) we mean that the search problem of
finding an NP-witness is polynomial-time reducible to
deciding membership in the set. Here we require that
implementing the prover strategy (in the relevant interactive
proof) be polynomial-time reducible to deciding membership
in the set.

3. A prover is considered relatively efficient if it can be imple-
mented by a probabilistic machine that runs in time that
is polynomial in the deterministic complexity of the set.
This interpretation relates the time-complexity of convinc-
ing a “lazy person” (i.e., a verifier) to the time-complexity
of determining the truth (i.e., deciding membership in
the set).

Hence, in contrast to the first interpretation, which is ade-
quate in settings where assertions are generated along with
their NP-proofs, the current interpretation is adequate in
settings in which the prover is given only the assertion and
has to test its validity by itself (before trying to convince a
lazy verifier of this claim).
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1.5.2 Computational Soundness

Relaxing the soundness condition such that it only refers to relatively
efficient ways of trying to fool the verifier (rather than to all possible
ways) yields a fundamentally different notion of a proof system. The
verifier’s verdict in such a system is not absolutely sound, but is rather
sound provided that the potential cheating prover does not exceed the
presumed complexity limits. As in Section 1.5.1, the notion of “rela-
tive efficiency” can be given different interpretations, the most popular
one being that the cheating prover strategy can be implemented by a
(non-uniform) family of polynomial-size circuits. The latter interpreta-
tion coincides with the first interpretation used in Section 1.5.1 (i.e., a
probabilistic polynomial-time strategy that is given an auxiliary input
(of polynomial length)). Specifically, in this case, the soundness con-
dition is replaced by the following computational soundness condition
that asserts that it is infeasible to fool the verifier into accepting false
statements. Formally:

For every prover strategy that is implementable by a
family of polynomial-size circuits {Cn}, and every suf-
ficiently long x ∈ {0,1}∗ \ S, the probability that V

accepts x when interacting with C|x| is less than 1/2.

As in case of standard soundness, the computational-soundness error
can be reduced by repetitions. We warn, however, that unlike in the case
of standard soundness (where both sequential and parallel repetitions
will do), the computational-soundness error cannot always be reduced
by parallel repetitions (see [9, 45]).

It is common and natural to consider proof systems in which the
prover strategies considered both in the completeness and soundness
conditions satisfy the same notion of relative efficiency. Protocols that
satisfy these conditions with respect to the foregoing interpretation are
called arguments. We mention that argument systems may be more
efficient (e.g., in terms of their communication complexity) than inter-
active proof systems (see [39] vs. [31]).
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