
Bayesian Mechanism

Design

Full text available at: http://dx.doi.org/10.1561/0400000045



Bayesian Mechanism
Design

Jason D. Hartline

Northwestern University

Evanston, 60208

USA

hartline@eecs.northwestern.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0400000045



Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. D. Hartline, Bayesian Mechanism

Design, Foundation and Trends R© in Theoretical Computer Science, vol 8, no 3,
pp 143–263, 2012

ISBN: 978-1-60198-670-2
c© 2013 J. D. Hartline

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc. for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000045



Foundations and Trends R© in
Theoretical Computer Science

Volume 8 Issue 3, 2012

Editorial Board

Editor-in-Chief:

Madhu Sudan

Microsoft Research New England

One Memorial Drive

Cambridge, Massachusetts 02142

USA

Editors

Bernard Chazelle (Princeton)

Oded Goldreich (Weizmann Inst.)

Shafi Goldwasser (MIT and Weizmann Inst.)

Sanjeev Khanna (University of Pennsylvania)

Jon Kleinberg (Cornell University)
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Abstract

Systems wherein strategic agents compete for limited resources are

ubiquitous: the economy, computer networks, social networks, conges-

tion networks, nature, etc. Assuming the agents’ preferences are drawn

from a distribution, which is a reasonable assumption for small mecha-

nisms in a large system, Bayesian mechanism design governs the design

and analysis of these systems.

This article surveys the classical economic theory of Bayesian mech-

anism design and recent advances from the perspective of algorithms

and approximation. Classical economics gives simple characterizations

of Bayes-Nash equilibrium and optimal mechanisms when the agents’

preferences are linear and single-dimensional. The mechanisms it

predicts are often complex and overly dependent on details of the

model. Approximation complements this theory and suggests that

simple and less-detail-dependent mechanisms can be nearly optimal.

Furthermore, techniques from approximation and algorithms can be

used to describe good mechanisms beyond the single-dimensional,

linear model of agent preferences.
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1

Introduction

The Bayesian1 approach to optimization assumes that an input to the

optimization problem is drawn from a distribution and requests that

an output be found that is good in expectation. This approach is both

compatible with the standard worst-case approach to algorithm design

and suggests a rich problem space that is relatively unexplored from an

algorithmic perspective. The approach is to partition the optimization

problem into two stages. In the first stage, a distribution is given and

can be preprocessed so as to construct an algorithm tailored to the

distribution. In the second stage inputs to the distribution are drawn

and the algorithm is run on these inputs. For instance, this approach

is similar to data structure problems such as Huffman [64] coding and

search problems such as nearest neighbor, cf., Cover and Hart [36].

1We say “Bayesian” here instead of “stochastic” to connote settings where Bayesian updat-

ing is relevant. As an example, if the distribution over inputs is correlated and an optimiza-

tion algorithm must make decisions before all the input is known, the algorithm should
perform Bayesian updating to refine its beliefs about remaining inputs. That said, many

of the methods and results described in this survey pertain to the special case that the

inputs are independent and the term “Bayesian” is only used for consistency in presenting
the result in the context of the greater literature within which they are contained.

1
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2 Introduction

Furthermore, the algorithm practitioner’s design and analysis

framework can be abstracted as being Bayesian. As a caricature, such

a practitioner will design and test her algorithm on a class of data sets

that she deems relevant. When the attempted improvements to the

algorithm on these data sets fail to significantly increase performance,

she will deploy the final algorithm. Methodologies for the Bayesian

framework for algorithm design can then potentially be applied to this

form of practical algorithm design (see, e.g., the Bayesian reductions

of Section 7).

This survey focuses on a large class of Bayesian optimization

problems that exhibit both algorithmic and economic challenges. In

particular, in a departure from traditional algorithms, we assume that

the desired input to the algorithm is the private information of self-

interested agents. These agents can report this information to the algo-

rithm (if requested) but can equally well misreport if it benefits them

and the algorithm cannot tell the difference. Our abstract question per-

tains to how a designer should structure the rules of a system so that in

the equilibrium of strategic play, the designer’s objective is optimized.

This is the question of mechanism design.

Mechanism design has broad applications; however, we will focus

on potential applications to computer systems. In so far as scarce

system resources must be shared amongst parties with diverse and

selfish interests, mechanism design governs the proper working of

computer systems. When incentives are not properly accounted for,

strategic misbehavior is common. A few examples include spam in

email systems (see Dwork et al. [44]), link-spam and Sybil networks

in the ranking of Internet search results (see Dwork et al. [45] and

Gyongyi and Garcia-Molina [55]), and freeloading in file-sharing

networks (see Vishnumurthy et al. [92]).

The literature that melds algorithmic and economic issues in mech-

anism design, a.k.a., algorithmic mechanism design, since its inception

over a decade ago, has predominantly focused on worst-case mecha-

nisms with dominant strategy equilibria. The strategic agents should

have a single best action no matter what the actions of other agents,

and the designed mechanism should be good for any preferences the

agents may have. As a motivating example, the second-price auction

Full text available at: http://dx.doi.org/10.1561/0400000045



3

for selling a single item serves the highest bidder at price equal to the

second highest bid. Truthtelling is a dominant strategy in the second-

price auction; therefore, in dominant strategy equilibrium the bidder

with the highest true value wins and, for any values the bidders might

possess, the auction maximizes social welfare. In this line of worst-

case dominant-strategy mechanism design, Lehmann et al. [70] ini-

tiated the merger of algorithmic complexity and economic incentive

considerations for the objective of social welfare maximization, Nisan

and Ronen [75] initiated the study of mechanisms for non-linear objec-

tives such as makespan in machine scheduling, and Goldberg et al. [50]

initiated the study of objectives that depend on agent payments (e.g.,

revenue). The latter two agendas are related in that, even absent com-

putational constraints, the economic incentives of the agents preclude

a pointwise optimal mechanism. As an example, notice that for the

single-item auction, a seller would could obtain more revenue by set-

ting a reserve price between the highest and second highest value, but

to do so requires knowledge of the agent values. Therefore, for these

problems the worst-case optimization question under consideration is

inherently one of approximation akin to the competitive analysis of

online algorithms (e.g., Borodin and El-Yaniv [16]).

In the classic microeconomic treatment of mechanism design, the

non-pointwise-optimality of mechanisms is resolved by formulating the

problem as one of Bayesian design. A distribution over the preferences

of the agents is given, and the designer seeks to optimize her objective in

expectation over this distribution. For any specific distribution, there

is such an optimal mechanism. The Bayesian assumption also allows

the strategic incentives of the agents to be relaxed. Given that the

agents’ preferences are drawn from a distribution, instead of requiring a

mechanism to have dominant strategies, mechanisms can be considered

where agents’ actions are best responses to the distribution of actions

of other agents.

Both the Bayesian and worse-case (henceforth, prior-free) frame-

works for mechanism design have merits and, recognizing this, a

Bayesian branch of algorithmic mechanism design has emerged.

Paramount of study in Bayesian algorithmic mechanism design are

algorithmic techniques, approximation, and computational issues. The

Full text available at: http://dx.doi.org/10.1561/0400000045



4 Introduction

goal of this survey is to discuss the most fundamental of these results

in the context of classical Bayesian mechanism design.

1.1 Topics Covered

This survey is organized into the following sections. For environments

with agents with linear and single-dimensional preferences, Section 2

characterizes the equilibrium of strategic play in auction-like games,

Section 3 characterizes optimal auctions for welfare and revenue, and

Section 4 describes simple, practical mechanism that are approximately

optimal. For environments where agents have multi-dimensional and

non-linear preferences, Section 5 characterizes optimal auctions

and Section 6 describes simple approximation mechanisms. Finally,

Section 7 gives generic performance-preserving reductions from mech-

anism design to algorithm design for both single-dimensional and

multi-dimensional agent preferences. Mathematical reference is given

in Appendix A.

Section 2: Equilibrium. In Bayesian games an agent’s strategy

maps her private information to an action in the game; the distribution

of private information and strategies induce a distribution of actions

in the game; and a profile of strategies is in equilibrium if the strategy

of each agent is a best response to this distribution of actions. The

classical Bayesian approach to mechanism design starts with a char-

acterization of equilibrium. For single-dimensional environments, i.e.,

when an agent’s private preference is given by a single number denoting

her value for a single abstract service, Myerson [74] characterized all

possible equilibria. This characterization states that an agent’s prob-

ability of service should be monotonically non-decreasing in her value

and it gives a formula for her expected payment. This payment identity

implies the revenue equivalence of auctions with the same equilibrium

outcome. Moreover, it suggests a method for solving for equilibrium.

Section 3: Optimal Mechanisms. For welfare maximization, the

well known Vickrey-Clarke-Groves (VCG) mechanism is pointwise

optimal [91, 35, 53]. For revenue maximization in single-dimensional

Full text available at: http://dx.doi.org/10.1561/0400000045



1.1 Topics Covered 5

environments, Myerson [74] gives a reduction from the non-pointwise

problem of maximizing revenue in expectation over the distribution,

to the problem of optimizing a pointwise virtual welfare. The reduc-

tion works by transforming the agent values to virtual values, and then

optimizing in the transformed space. In the special case where values

are i.i.d. from a distribution from a sufficiently well-behaved class, this

optimal mechanism is simply the second-price auction with a suitably

chosen reserve price. Bulow and Roberts [20] give a microeconomic rein-

terpretation Myerson’s virtual values as the derivative of an appropri-

ate revenue curve, a.k.a., as a marginal revenue. Alaei et al. [5] observe

that this characterization is based on the “revenue linearity” of optimal

mechanisms for single-dimensional agents.

Section 4: Approximation Mechanisms. While the optimal

mechanism is often complex and impractical, there is often a simple

and practical mechanism that is approximately optimal. For example,

the second-price auction with reserve is widely prevalent even though it

is not optimal beyond the ideal setting of symmetric agents with values

drawn from a well-behaved distribution. Of course, even more preva-

lent are simple posted-pricing mechanisms, e.g., most stores sell goods

by posting take-it-or-leave-it while-supplies-last prices on the goods for

sale. Approximation can resolve this disconnect between theory and

practice. Chawla et al. [29, 30] and Hartline and Roughgarden [62] show

that reserve pricing is approximately optimal in many environments.

Similarly, Chawla et al. [30], Yan [94], and Chakraborty et al. [27] show

that posted pricings (take-it-or-leave-it while-supplies-last prices) are

approximately optimal quite broadly.

As discussed previously, for many mechanism design problems

there is not a single optimal mechanism. For a given prior distribution,

the optimal mechanism generally depends on the prior distribution.

Nonetheless, there may still be a single prior-independent mecha-

nism that is approximately optimal. I.e., for any distribution, the

prior-independent mechanism approximates the optimal mechanism

for that distribution. Dhangwatnotai et al. [41] show that a single

sample from the distribution gives a sufficient market analysis for

obtaining a two approximation to the revenue-optimal auction in

Full text available at: http://dx.doi.org/10.1561/0400000045



6 Introduction

many single-dimensional environments; moreover, a single sample can

be easily attained on-the-fly as the mechanism is being run. Hartline

and Roughgarden [61] provide a post hoc Bayesian justification of the

preceding literature on prior-free revenue approximation (e.g., Gold-

berg et al. [49]) and show that prior-free approximation with respect

to an appropriate prior-free benchmark implies prior-independent

approximation.

Section 5: Multi-dimensional and Non-linear Preferences.

Revenue maximization in multi-dimensional environments is much

more complex than in single-dimensional environments. Nonetheless,

a series of recent papers has given an algorithmic generalization of

the single-dimensional reduction to virtual welfare maximization of

Myerson [74] to multi-dimensional preferences. Cai et al. [22] and

Alaei et al. [4] do so for environments where welfare is optimized by a

greedy algorithm; and Cai et al. [23] extend these results to general

environments with additive preferences. These results tie the theory of

optimal mechanism design to a natural convex optimization problem.

While these approaches result in mechanisms that have polynomial

complexity in the number of agents, they rely on brute-force solutions

to single-agent pricing problems.

An important special case of multi-dimensional mechanism design is

single-agent pricing; the unit-demand pricing problem is a paradigmatic

challenge problem. Consider a single agent who desires one of a set of

items. This agent is multi-dimensional in that she may have a distinct

value for each item. The agent’s multi-dimensional preference is drawn

from a distribution and, given this distribution, we would like to price

items to maximize revenue. Briest et al. [18] show that this problem

can be solved in time polynomial in the number of distinct agent types.

Unfortunately, when the agent’s values for the items are independent,

the type space is exponentially big in the number of items.

Section 6: Approximation for Multi-dimensional and Non-

linear Preferences. The aforementioned unit-demand pricing prob-

lem with independently distributed values can be simplified with

approximation. Chawla et al. [29, 30] show that there is a simple two

Full text available at: http://dx.doi.org/10.1561/0400000045



1.1 Topics Covered 7

approximation to the optimal item pricing. Moreover, Chawla et al. [32]

show that this two approximation to the optimal item pricing is in

fact also a four approximation to the optimal mechanism which, in

addition to pricing items, may also price lotteries over items. Chawla

et al. [30, 32], Bhattacharya et al. [11], Chakraborty et al. [27], and

Alaei [2] extend these results quite broadly to show that often for unit-

demand auction problems simple to find posted-pricing-based mecha-

nisms are approximately optimal.

As described above, in both single-dimensional and multi-

dimensional revenue maximization, the (non-pointwise) Bayesian

mechanism design problem reduces to a (pointwise) virtual welfare

maximization problem. It should be noted, however, that the single-

dimensional case and multi-dimensional case have rather different

structure. In the single-dimensional case, the transformation from

value space to virtual value space is deterministic and separates across

agents; whereas, in the multi-dimensional case, the transformation

requires solving a convex optimization problem on all the agents

together and it may be stochastic. Alaei et al. [5] show that, in fact,

there is a transformation for the multi-dimensional case, with similar

structure and economic intuition as in the single-dimensional case,

that is approximately optimal.

Section 7: Computation and Approximation Algorithms. It

is standard (from the prior-free mechanism design literature) that

there is a reduction from exact welfare maximization with incentives

to exact welfare maximization without incentives. I.e., if we have an

optimal algorithm for maximizing welfare, we can convert that algo-

rithm into an optimal mechanism that, in the dominant-strategy equi-

librium of strategic play, maximizes welfare. The resulting mechanism

is known as the Vickrey-Clarke-Groves (VCG) mechanism [35, 53, 91].

Lehmann et al. [70] point out, however, this reduction is incompatible

with generic approximation algorithms. I.e., from a generic approxima-

tion algorithm we cannot instantiate the reduction to obtain a generic

approximation mechanism which has an equilibrium with performance

comparable to the original algorithm.

Full text available at: http://dx.doi.org/10.1561/0400000045
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While mounting evidence suggests that such generic approximation-

compatible reductions (see Chawla et al. [31] and Dobzinski and

Vondrák [42]) do not exist for prior-free mechanisms, they do for

Bayesian mechanisms. For welfare maximization in single-dimensional

environments, Hartline and Lucier [60] give a generic approximation-

preserving reduction from Bayesian mechanism design to Bayesian algo-

rithm design. (Notice that, of course, a worst-case algorithm is also a

Bayesian algorithm.) Via the reduction from revenue to welfare max-

imization of Myerson [74], this reduction can be adapted to the rev-

enue objective. Hartline et al. [59] and Bei and Huang [9] generalize

the above single-dimensional reduction to multi-dimensional environ-

ments. The multi-dimensional approach is brute-force in each agent’s

type space and it is an open question as to whether a similar reduction

exists for large but succinctly represented type spaces.

Appendix A: Mathematical Reference. A number of mathemat-

ical constructs play a prominent role in our treatment of Bayesian

mechanism design. These are submodular set functions which cap-

ture the concept of diminishing returns, matroid set systems which

represent substitutability (e.g., Oxley [76]), and convex optimization

within which most questions in Bayesian mechanism design reside (e.g.,

Schrijver [86]).

1.2 Topics Omitted

Having described above the material covered by this survey, we now

turn to related material that is not covered. We have omitted discussion

of almost all of the literature on prior-free mechanism design. Prior-

free mechanism design and recent results relating to computational

tractability and approximation are a topic warranting a survey of their

own, which to cover adequately, would be even longer than this survey.

Also notably absent from this survey is discussion of non-revelation

mechanisms, i.e., mechanisms that do not have truthtelling or otherwise

easy-to-find equilibria. The big challenge of analyzing non-revelation

mechanisms is that almost any departure from simple symmetric

environments renders solving for equilibrium analytically intractable

Full text available at: http://dx.doi.org/10.1561/0400000045



1.2 Topics Omitted 9

(cf. Section 2.4). To address this challenge, methodologies from the

literature on quantifying the price of anarchy, i.e., the suboptimality

of performance that results from strategic behavior, can be employed.

Instead of explicitly solving for equilibrium, a price-of-anarchy analysis

considers minimal necessary properties of equilibria to argue that any

equilibrium must be pretty good. Of course, this would be a problem-

atic exercise if we believed that, just as we cannot solve for equilibrium,

neither can the agents. Fortunately, because the analysis employs only

minimal assumptions, a frequent corollary of a price-of-anarchy anal-

ysis is that best-response dynamics and no-regret learning algorithms

have good performance even if they never reach an equilibrium.

To illustrate the power of the price-of-anarchy approach, we will

describe a few recent results. Consider the welfare objective in multi-

agent multi-item environment (which we consider in Section 5 and Sec-

tion 6 for the revenue objective). Suppose instead of running a simul-

taneous auction that coordinates the sale of the items, we run indepen-

dent first- or second-price auctions either simultaneously or sequen-

tially. These auctions are strategically complex, e.g., because there is

an exposure problem where an agent may win multiple items even if she

only wants one. A series of papers, Bikhchandani [13], Christodoulou

et al. [34], Bhawalkar and Roughgarden [12], Hassidim et al. [63], Paes

Leme and Tardos [78], Paes Leme et al. [79], Roughgarden [83], and

Syrgkanis and Tardos [88, 89] showed that in various configurations

the price of anarchy of independent auctions for multiple items is often

a constant like two. Paes Leme et al. [77] give a short survey of these

results.

Price of anarchy approaches have also been applied to an auction

known as the generalized second-price auction which is used by Internet

search engines to sell advertisements that are displayed alongside search

results (see, e.g., Fain and Pedersen [46]). In this auction, bidders are

ranked by bid and each bidder is charged the bid of her successor. This

auction does not have simple equilibria as does the second-price auc-

tion. Gomes and Sweeney [51] show that even in symmetric Bayesian

settings the generalized-second-price auction may not have any effi-

cient equilibria; subsequent work of Caragiannis et al. [25] bounded the

potential inefficiency of its equilibria by a factor of slightly under three.
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A final class of results looks at non-revelation mechanisms based

on approximation algorithms (because, as mentioned above, there are

no general approaches for converting approximation algorithms into

mechanisms without Bayesian assumptions). Lucier and Borodin [71]

consider multi-dimensional combinatorial auctions based on greedy

approximation algorithms. They show that in equilibrium, a mecha-

nism based on a greedy β approximation algorithm is at worst a (β + 1)

approximation in equilibrium.

The results described above are primarily for the welfare objective,

and methodologies from the price of anarchy have seen relatively less

success for the revenue objective. One exception is by Lucier et al. [72]

who give revenue bounds for the previously discussed generalized-

second-price auction.
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