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Abstract

In the age of Big Data, efficient algorithms are now in higher demand
more than ever before. While Big Data takes us into the asymptotic
world envisioned by our pioneers, it also challenges the classical notion
of efficient algorithms: Algorithms that used to be considered efficient,
according to polynomial-time characterization, may no longer be ade-
quate for solving today’s problems. It is not just desirable, but essential,
that efficient algorithms should be scalable. In other words, their com-
plexity should be nearly linear or sub-linear with respect to the problem
size. Thus, scalability, not just polynomial-time computability, should
be elevated as the central complexity notion for characterizing efficient
computation.

In this tutorial, I will survey a family of algorithmic techniques for
the design of provably-good scalable algorithms. These techniques in-
clude local network exploration, advanced sampling, sparsification, and
geometric partitioning. They also include spectral graph-theoretical
methods, such as those used for computing electrical flows and sam-
pling from Gaussian Markov random fields. These methods exemplify
the fusion of combinatorial, numerical, and statistical thinking in net-
work analysis. I will illustrate the use of these techniques by a few basic
problems that are fundamental in network analysis, particularly for the
identification of significant nodes and coherent clusters/communities in
social and information networks. I also take this opportunity to discuss
some frameworks beyond graph-theoretical models for studying con-
ceptual questions to understand multifaceted network data that arise
in social influence, network dynamics, and Internet economics.

S.-H. Teng. Scalable Algorithms for Data and Network Analysis. Foundations and
TrendsR© in Theoretical Computer Science, vol. 12, no. 1-2, pp. 1–274, 2016.
DOI: 10.1561/0400000051.

Full text available at: http://dx.doi.org/10.1561/0400000051



Preface

In 1997, I attended an invited talk given by Shafi Goldwasser at the
38th Annual Symposium on Foundations of Computer Science. It was
a very special talk. The title of her talk, printed in the conference pro-
gram, “New Directions in Cryptography: Twenty Some Years Later,”
was modest. However, the talk was beautiful and poetic. In particular,
the talk’s subtitle, “Cryptography and Complexity Theory: a Match
Made in Heaven,” has stayed with me after all these years.

The rise of the Internet, digital media, and social networks has
introduced another wonderful match in the world of computing. The
match between Big Data and Scalable Computing may not be as po-
etic as the match between Cryptography and Complexity Theory: Big
Data is messier than cryptography and scalable computing uses more
heuristics than complexity theory. Nevertheless, this match — although
practical — is no less important: “Big Data and Scalable Computing:
a Pragmatic Match Made on Earth.”

Reasons to Write and People to Thank

I would like start by thanking Madhu Sudan and James Finlay for
inviting me to write a survey for Foundations and Trends in Theoretical
Computer Science, and for their patience, support, and guidance during
this long process.

When Madhu and James first reached out to me in the February of
2012 to write a survey on graph sparsification, I was noncommittal and

2
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Preface 3

used my busy schedule as the chair of a large department as my excuse.
When they came back to me in the Fall of 2012 — knowing that I had
successfully become a former chair — I did not reply until the June
of 2013, when I had received the confirmation that the USC Daycare
finally accepted my 8 month-old daughter Sonia off the wait-list. But
during the span of these 16 months, many things happened that were
relevant to their initial invitation.

• Nisheeth Vishnoi completed a wonderful and comprehensive sur-
vey, titled, Lx = b [344], that appeared in the May issue of
Foundations and Trends in Theoretical Computer Science.

• Joshua Batson, Dan Spielman, Nikhil Srivastava, and I com-
pleted our long overdue 8-page article, “Spectral Sparsification
of Graphs: Theory and Algorithms,” [43] for the Research High-
lights of Communications of the ACM. That article appeared in
August 2013.

• Several exciting new results emerged in spectral graph theory that
were enabled or inspired by spectral sparsification and scalable
Laplacian solvers.

These developments had reduced the need for another longer sur-
vey solely devoted to (spectral) sparsification. But I got unexpected
encouragement to write a survey from researchers outside my usual the-
ory community. Yan Liu, my machine learning/data mining colleague
at USC, invited me to present my work on spectral graph theory and
network analysis at the 2012 SIAM Data Mining Conference. I gave a
talk titled, “Algorithmic Primitives for Network Analysis: Through the
Lens of the Laplacian Paradigm,” based on my joint work with Dan
Spielman. Although the talk was a typical theoretical computer science
talk, I was excited by the reception that I received from the Big Data
experts: Huan Liu, Joydeep Ghosh, Vipin Kumar, Christos Faloutsos,
and particularly Yan Liu, who strongly encouraged me to write a survey
on these scalable algorithmic techniques for readers beyond theoretical
computer science.

It was a tall order! But given this potential interest from the Big
Data community, I reconnected with Madhu and James and proposed

Full text available at: http://dx.doi.org/10.1561/0400000051



4 Preface

a tutorial to further expand my talk. My goal was to survey some
basic theoretical developments (on scalable algorithms) and their tech-
niques that might be useful for practical data/network analysis. The
plan was to select a collection of fundamental and illustrative topics
of potential practical relevances. I naturally favor problems and al-
gorithms whose rigorous mathematical analysis are clean enough to
present for researchers outside theory. Towards this end — in the sur-
vey — I selectively encapsulate some “heavy duty” mathematical ma-
terials, state them as theorems without proofs, and only expose the
relevant essentials aiming to make the survey readable without losing
its rigor.

Here, I would like to thank Yan Liu for initiating all this and
her valuable feedback on the draft. I thank Madhu and James again
for supporting this changed plan and their advice on how to proceed
with this writing. I thank Amy Schroeder of the USC Viterbi Engi-
neering Writing Program for editing this monograph, and the anony-
mous referee and my Ph.D. student Yu Cheng for valuable feedback. I
thank Dan Spielman and all my collaborators who have directly con-
tributed to this survey: To Nina Amenta, Reid Andersen, Nina Bal-
can, Joshua Batson, Marshall Bern, Christian Borgs, Michael Braut-
bar, Mark Braverman, Jennifer Chayes, Paul Christiano, Wei Chen, Xi
Chen, Dehua Cheng, Yu Cheng, Siu-Wing Cheng, Ken Clarkson, David
Eppstein, Tamal Dey, John Dunagan, Herbert Edelsbrunner, Matthias
Eichstaedt, Michael Elkin, Yuval Emek, Michael Facello, Alan Frieze,
Daniel Ford, John Gilbert, Rumi Ghosh, John Hopcroft, Kamal Jain,
Jon Kelner, Marco Kiwi, James Lee, Tobin Lehman, Kristina Lerman,
Xiangyang Li, Yan Liu, Qi Lu, Aleksander Mądry, Adrian Marple,
Gary Miller, Vahab Mirrokni, Richard Peng, Greg Price, Heiko Röglin,
Horst Simon, Nikhil Srivastava, Carl Sturtivant, Dafna Talmor, Bill
Thurston, Steve Vavasis, Konstantin Voevodski, Noel Walkington, Yu
Xia, and Xiaoran Yan, thank you!

Theory and Practice

While I believe in the importance of provably-good algorithms in data
and network analysis, my own experiences at Intel, NASA, and Aka-
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Preface 5

mai have also taught me the limitation of “provably-good algorithms.”
The gap between proof-based theory and relevance-based practice is
beyond the limitation of the worst-case or average-case analyses. The
theory-practice gap exists also because essentially all measures of qual-
ities — from the centrality of a node in a network, to the similarity
between two datasets/networks, to the coherence of a network cluster
and community — may have their limitations.

Many conceptual questions that arise in modeling real-world
data are fundamentally challenging.

Thus, as much as I would like — in this survey — to make an algo-
rithmic connection between theory and practice in the area of data and
network analysis, I would also like readers to approach this survey with
an open mind: Theory is usually my guide for understanding practi-
cal problems, but theoretical thinking has too often been the obstacle
that makes me struggle in connecting with practice. On the few occa-
sions that theoretical thinking provided me with the insight to make a
connection, I was elated. But indeed, I usually found myself unable to
balance the connection between theory and practice, and then decided
to do theory for its mathematical beauty.

For example, in theoretical computer science, we have also encoun-
tered the notion of clusterability in various settings, including VLSI
layout, parallel processing, network clustering, community identifica-
tion, and more generally, the design of divide-and-conquer algorithms
for matrix/graph problems. However, as illustrated throughout this sur-
vey, I remain unsure about how to evaluate and validate the relevance
of various mathematical notions of clusterability, particularly the con-
ductance or cut-ratio measures that I have been studying for more than
a decade. We use these partition/clusterability measures because they
appear to be reasonable, and because, using them, we have obtained
mathematical proofs that are aligned with our intuition.

My Ph.D. advisor Gary Miller once said to me, “coping with the
uncertainty between theory and practice gives rise to plausible and
sometimes good research questions, but questioning the certainty can
lead to excellent questions.” So I do think it is more than reasonable to
question and challenge every notion one chooses.

Full text available at: http://dx.doi.org/10.1561/0400000051



6 Preface

Discrete vs Continuous and Beyond

I would like to conclude the preface by remarking that several subjects
of this survey are at the intersection between combinatorial optimiza-
tion and numerical analysis. Thus, I think they serve as good examples
of the interplay between combinatorial thinking and numerical think-
ing [330]. While it is more conventional to view many network analysis
problems as graph-theoretical problems, it can often be constructive
to view them as numerical, statistical, or game-theoretical subjects as
well. Network data is richer than its graph representation, and network
science is beyond graph theory.

Numerical thinking is also more than numerical analysis — it is
a creative process of discovering useful numerical connections that
may not be apparent [330]. For example, in the 70s, Hall [162], Do-
nath and Hoffman [115, 116], and Fiedler1 [133, 134] made insight-
ful connection between graphs and matrices — beyond just the ma-
trix representation of graphs — which set the stage for spectral graph
theory. The field of algorithm design has benefited greatly from the
deep connection between graph properties (such as connectivity, con-
ductance, and mixing time) and algebraic properties (spectral bounds
of Laplacian/adjacency/random-walk matrices [82]). Over the last
decade, scientists have made even broader and deeper connections be-
tween numerical solutions and network solutions [211, 73], between nu-
merical representations and digital representations [110, 108], between

1To the memory of Miroslav Fiedler (1926 – 2015): It is difficult to overstate the
impact of Fiedler’s work to spectral graph theory. His paper, “Algebraic Connec-
tivity of Graphs,” [133] established a far-reaching connection between graph theory
and linear algebra. Fiedler’s spectral theorem, together with Koebe’s disk-packing
characterization of planar graphs [213] (see Theorem 5.34), Sperner’s lemma for
Brouwer’s fixed-point theorem [310], and Cheeger’s inequality [82] (see Theorem
4.2), are my favorite mathematical results — they beautifully connect continuous
mathematics with discrete mathematics. I have always cherished my only meeting
with Fiedler. After my talk, “The Laplacian Paradigm: Emerging Algorithms for
Massive Graphs,” [329] at 7th Annual Conference on Theory and Applications of
Models of Computation, Jaroslav Nešetřil (my former officemate at Microsoft Re-
search Redmond) thoughtfully invited my wife Diana (a US historian) and I to a
dinner with him and Fiedler. I still vividly remembered that special evening in the
beautiful Prague on June 10, 2010. At age eighty four, Miroslav was charming and
talkative, not just about mathematics but also about history.

Full text available at: http://dx.doi.org/10.1561/0400000051



Preface 7

numerical methods and statistical methods [111, 118], between numer-
ical concepts and complexity concepts [314], and between numerical
formulations and privacy formulations [121]. Numerical analysis has
played an increasing role in data analysis through dimension reduction
[111] and in machine learning through optimization.

In the examples of this survey, the Laplacian paradigm [319] has
not only used numerical concepts such as preconditioning to model net-
work similarity and graph sparsification, but also used combinatorial
tools to build scalable solvers for linear systems [313, 318, 317, 319],
Gaussian sampling [86], and geometric median [98]. Scalable techniques
for PageRank approximation [65] have also led to algorithmic break-
throughs in influence maximization [64, 325, 324] and game-theoretical
centrality formulation [84]. These results illustrate the rich connection
between network sciences and numerical analysis.

A Quick Guide of the Survey

The survey begins with two background chapters. Chapter 1 discusses
scalability measures for evaluating algorithm efficiency. It also intro-
duces the basic characterizations of scalable algorithms, which are the
central subjects of this survey. Chapter 2 reviews mathematical models
for specifying networks, and highlights a few basic problems in data and
network analysis. We will use these problems as examples to illustrate
the design and analysis of scalable algorithms in the technical chapters
that follow the background chapters. In Section 1.5, I will give a more
detailed outline of these technical chapters.

Acknowledgements

The writing of this article is supported in part by a Simons Investigator
Award from the Simons Foundation and the NSF grant CCF-1111270.

Shang-Hua Teng
Los Angeles
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1
Scalable Algorithms

In light of the explosive growth in the amount of available data and the
diversity of computing applications, efficient algorithms are in higher
demand now more than ever before.

1.1 Challenges of Massive Data

Half a century ago, the pioneers of Theoretical Computer Science began
to use asymptotic analysis as the framework for complexity theory and
algorithm analysis [167]. At the time, computers could only solve small-
scale problems by today’s standards. For example, linear programs of
fifty variables, linear systems with a hundred variables, or graphs with
a thousand vertices, were considered large scale. In those days, the
world’s most powerful computers (e.g., the IBM main frames) were far
less capable than the iPhones of today. Even though these pioneers
were mindful that constant factors did matter for practical computing,
they used asymptotic notations — such as Big-O — to define complex-
ity classes such as P and NP to characterize efficient algorithms and
intractable problems [122, 100, 233, 189, 141]. Asymptotic complex-
ity simplifies analyses and crucially puts the focus on the order of the

8
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1.1. Challenges of Massive Data 9

leading complexity terms of algorithms [103, 209, 307]. However, with
respect to the size of practical inputs at the time, the asymptotic world
seemed to belong to the distant future.

Our pioneers persisted because they had a vision that one day com-
putational problems would be massive, and therefore, the rate of com-
plexity growth in relation to the growth of the inputs would be essential
for characterizing the efficiency of an algorithm as well as the compu-
tational difficulty of a problem.

The asymptotic world has arrived with the rise of the Internet!

Today, the Web has grown into a massive graph with trillions of
nodes; social networks and social media have generated an unbounded
amount of digital records; smart phones have produced billions of im-
ages and videos; and tasks of science and engineering simulation have
created equations and mathematical programs that involve hundreds of
millions of variables. Even our computing devices have grown rapidly
in size and complexity: In the middle 90s, the Intel Pentium processor
had 2 millions transistors; today’s PCs contain more than a billion.

While Big Data has taken algorithm design into the asymptotic
world envisioned by our pioneers, the explosive growth of problem size
has also significantly challenged the classical notion of efficient algo-
rithms, particularly the use of polynomial time as the characterization
of efficient computation [122]: Algorithms that used to be considered
efficient (in the classification according to P) — such as a neat O(n2)-
time or O(n1.5)-time algorithm — may no longer be adequate for solv-
ing today’s problems.

Therefore, more than ever before, it is not just desirable,
but essential, that efficient algorithms should be scalable. In
other words, their complexity should be nearly linear or sub-
linear with respect to the problem size. Thus, scalability —
not just polynomial-time computability — should be elevated
as the central complexity notion for characterizing efficient
computation.

Full text available at: http://dx.doi.org/10.1561/0400000051



10 Scalable Algorithms

1.2 The Scalability of Algorithms

The scalability of an algorithm measures the growth of its complexity
— such as the running time — in relation to the growth of the problem
size. It measures the capacity of an algorithm to handle big inputs.

Suppose Π is a computational problem1 whose input domain is Ω.
For each instance x ∈ Ω, let size(x) denote the size of input x. The input
domain Ω can be viewed as the union of a collection of subdomains
{...,Ωn, ...}, where Ωn denotes the subset of Ω with input size n.

Now, suppose A is an algorithm for solving Π. For x ∈ Ω, let TA(x)
denote the time complexity for running A(x). Instead of directly using
instance-based complexity TA(x) to measure the performance of algo-
rithm A for solving x, we consider the following related quality measure:

Definition 1.1 (Instance-Based Scalability). The scalability of an algo-
rithm A for solving an instance x ∈ Ω is given by:

scalability(A, x) = TA(x)
size(x) (1.1)

We now summarize the instanced-based scalability of algorithm A

over all instances in Ωn as:2

scalabilityA(n) := sup
x∈Ωn

scalability(A, x) = sup
x∈Ωn

TA(x)
size(x) .

Then, scalabilityA(n) is a function that measures the growth of the
complexity of A in relation to the growth of the problem. Let TA(n) =
supx∈Ωn TA(x) denote the (worst-case) complexity of algorithm A on
inputs of size n. Note that:

scalabilityA(n) = TA(n)
n

.

Thus, A is a polynomial-time algorithm iff scalabilityA(n) is polyno-
mial in n. However, the scalability measure puts the focus on scalable
algorithms:

1See Appendix A.1.1 for a review of the basic types of computational problems.
2We may also use other beyond worst-case formulae for performance summariza-

tion [314]. For more discussion, see Section 8.4.
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1.2. The Scalability of Algorithms 11

Definition 1.2 (Scalable Algorithms). An algorithm A is scalable if there
exists a constant c > 0 such that:

scalabilityA(n) = O(logc n).

In the special case when c = 0, we say A is linearly-scalable. We say
algorithm A is super-scalable, if scalabilityA(n) = o(1). Super-scalable
algorithms have a complexity that is sub-linear in problem size. Thus,
necessarily, these algorithms must find solutions without examining the
entire input data set. Sampling and local data/network exploration are
two basic tools for designing super-scalable algorithms, and will be the
subjects of Chapters 3 and 4.
Remark: One may say that scalabilityA(n) encodes no more informa-
tion than TA(n) about algorithm A, because scalabilityA(n) = TA(n)/n.
For example, A is scalable if and only if TA(n) is nearly linear3 in n

as referred to in [313]. However, the former identifies scalability as an
essential concept for the characterization of efficient algorithms.

The scalability measure puts the emphasis not on
polynomial-time algorithms, but on scalable algorithms. It
highlights the exponential gap between O(logc n) and n, and
between scalable algorithms and quadratic-time algorithms.

To capture the essence of scalable algorithms, throughout the arti-
cle, we will adopt the following commonly-used asymptotic notation.

Definition 1.3 (Õ-Notation). For a given function g(n), we denote by
Õ(g(n)) the set of functions:

Õ(g(n)) = {f(n) : ∃ constant c > 0, such that f(n) = O(g(n) logc g(n))}

For any positive integer n, we also use Õn(1) to denote:

{f(n) : ∃ constant c > 0, such that f(n) = O(logc n))}.

3We say A is an almost linear-time algorithm (or is almost scalable) if TA(n) =
O(n1+o(1)), i.e., scalabilityA(n) = no(1).
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12 Scalable Algorithms

In other words, Õ is a variant of the asymptotic O-notation that
hides additional poly-logarithmic factors. For example, n log3 n =
Õ(n). With this notation, an algorithm is scalable if its scalability mea-
sure on an input of size n is Õn(1). In other words, its complexity on
an input of size n is Õ(n).
Remarks: The scalability analysis of algorithms is not unique to Big
Data. For example, in parallel processing [71, 223], the notion of scala-
bility is used to measure the efficiency of a parallel algorithm in utilizing
parallel machines: Let TA(p, n) denote the parallel complexity of an al-
gorithm A on a machine with p processors. So, the speed-up of this
parallel algorithm with respect to the sequential one is TA(n)

TA(p,n) .

Then, TA(n)
TA(p,n) ·

1
p measures the ratio of the achievable speedup to

maximum-possible speedup by running A on p processors. In this con-
text, a parallel algorithm A is linearly-scalable if this ratio is bounded
from below by a constant. Although the focus of scalability analysis of
parallel algorithms is different from the scalability analysis of sequential
algorithms, we can draw on insights from previous studies.

1.3 Complexity Class S

A basic step in algorithm analysis and complexity theory is to charac-
terize the family of problems that have efficient algorithmic solutions.
In the world of Big Data, instead of using the traditional polynomial-
time as the criterion for efficient algorithms, we require that efficient
algorithms must be scalable.

Definition 1.4 (Complexity Class S). We denote by S the set of compu-
tational problems that can be solved by a deterministic scalable algo-
rithm.

In other words, a computational problem Π is in class S if there
exists an algorithm A that solves Π with scalabilityA(n) = Õn(1).

Complexity class S is analogous to the traditional complexity classes
P and FP. In complexity theory, one usually classifies computational
problems into three basic types [307, 103]: decision problems, search
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problems, and optimization problems (see Appendix A.1.1 for a quick
review). Formalism is needed to precisely define complexity classes in
order to address the subtlety among different types of computational
problems. For example, to use polynomial time as the benchmark for
efficient computation, the class P is usually reserved only for decision
problems that can be solved in polynomial time without randomization
[307]. The search version of complexity class P is known as FP, i.e., the
class of functions that can be deterministically computed in polynomial
time. In this article, we intend to be less formal in this regard, so that
the focus will be on the notion of scalability rather than the difference
between decision, search, and optimization problems.

Definition 1.5 (Complexity Class RS). We denote by RS the set of com-
putational problems that can be solved by a randomized scalable algo-
rithm.

Randomization also introduces its own subtlety, which has given
rise to classes such as BPP, RP, and ZPP for decision problems. For
example, ZPP denotes the set of problems that can be solved by a Las
Vegas algorithm with an expected polynomial runtime, which makes
no errors in all instances. BPP and RP relax the latter condition by
allowing the polynomial-time randomized algorithms to make bounded
errors. Algorithms for RP are allowed to make errors only for YES
instances, but algorithms for BPP are allowed to make errors for both
YES and NO instances.

Again, with regard to randomization, we intend to be less formal
as well so the focus will be on the notion of scalability rather than
different types of errors.
Remarks: In computational complexity theory, one has to first define
a computational model in order to define a complexity class. Commonly
used models are Turing machines and random-access machines (RAM).
It’s well known that complexity classes, such as P and FP, are essen-
tially robust with respect to these models.

The scalable classes S and RS can be formally defined according to
these computational models. Their robustnesses with respect to compu-
tational models require further investigation, but are outside the scope of
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this article. As universal as these computational models are, data and
network analysis programs on Turing machines or abstract random-
access machines could be cumbersome.

However, as Sipser said [307], “Real computers are quite compli-
cated — too much so to allow us to set up a manageable mathematical
theory of them directly.” In the world of Big Data, massive networks,
and large-scale optimization, without getting bogged down with details,
I encourage readers to think about the real RAM model of Blum, Shub,
and Smale [54], but with unit-cost computation of basic rational oper-
ations over reals at a given machine precision εmachine.

1.4 Scalable Reduction and Algorithmic Primitives

Algorithm design for scalable computing is like building a software
library. Once we develop a new scalable algorithm, we can add it to
our scalable library, and use it as a subroutine to design the next wave
of scalable algorithms.

At the heart of this perspective is the notion of scalable reduction.

Definition 1.6 (Scalable Reduction). A computational problem Π (over
domain Ω) is S-reducible to another computational problem Π′ (over
domain Ω′), denoted by Π ≤S Π′, if the following is true: Given any
solver B for Π′, there exists an algorithm A for solving Π such that
for every instance x ∈ Ω, A(x) takes Õ (size(x)) steps including (i)
generating a collection of instances y1, ..., yL(x) ∈ Ω′ with:

L(x)∑
i=1

size(yi) = Õ (size(x))

and (ii) making calls to B on these instances.

In other words, Π ≤S Π′ if Π has a scalable Turing-Cook-reduction
to Π′. In this definition, A is assumed to be a deterministic algorithm.
We say Π ≤RS Π′ if we use a randomized algorithm A in the definition
above. Directly from the definition, we have:
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Proposition 1.7. (1) Π ≤S Π′ and Π′ ≤S Π′′ imply Π ≤S Π′′. (2)
Π ≤RS Π′ and Π′ ≤RS Π′′ imply Π ≤RS Π′′.

Proposition 1.8. (1) If Π ≤S Π′ and Π′ ∈ S, then Π ∈ S. (2) If Π ≤RS Π′
and Π′ ∈ RS, then Π ∈ RS.

The field of computing has produced a number of remarkable scal-
able algorithms in various applicational domains. The following are a
few examples:

• Basic Algorithms: FFT, merge sort, median selection, Huffman
codes

• Graph Algorithms: minimum (maximum) spanning trees,
shortest path trees, breadth-first search, depth-first search, con-
nected components, strongly connected components, planar sep-
arators

• Optimization Algorithms: linear programming in constant di-
mensions

• Probabilistic Algorithms: VC-dimension based sampling,
quick sort

• Data structures: many wonderful data structures

• Numerical and Geometric Algorithms: the multigrid
method, the fast multipole method, 2D Delaunay triangulations
and Voronoi diagrams, 3D convex hulls, quadtrees and its fixed
dimensional extensions, ε-nets, nearest neighbors, and geometric
separators in any fixed dimensions

More recently, property testing [154, 288], a subfield of theoretical
computer science — inspired by PAC learning [340], holographic proofs
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[37], and the PCP theorem [31] — has led to thriving developments of
sub-linear-time algorithms [291]. These results, together with the work
of Vapnik-Chervonenkis [342] and Johnson-Lindenstrauss [180], have
demonstrated the power of sampling in scalable algorithm design. On
the practical side, a rich body of scalable algorithms has been developed
in fields of network science [184, 183, 230, 357, 354, 349, 64, 325, 324,
84], machine learning [182, 218, 143], and numerical computing [68,
190].

1.5 Article Organization

In this article, we will survey scalable algorithmic techniques, particu-
larly those based on rapid progress in spectral graph theory, numerical
analysis, probabilistic methods, and computational geometry. Many of
these techniques are simple on their own, but together they form a
powerful toolkit for designing scalable algorithms. After a brief review
of network models in Chapter 2, we will proceed with the technical
chapters of this article as follows:

In Chapter 3, “Significant Nodes: Sampling — Making Data
Smaller,” we will start by focusing on the smallest structures in big
networks — nodes. We will discuss results from [65] that incorpo-
rate efficient local network exploration methods into advanced sampling
schemes.

Both sampling and local network exploration are widely used tech-
niques for designing efficient algorithms. Here, the combination of the
two leads to the first super-scalable algorithm for identifying all nodes
with significant PageRank values in any network [65].4 Leaving the de-
tails of local network exploration for the next chapter, this short chap-
ter will focus on an annealing approach to construct robust PageRank
estimators. This approach uses a multi-precision sampling scheme to

4This result was covered by Richard Lipton and Kenneth Regan, under title
“Shifts In Algorithm Design,” on their popular blog Gödel’s Lost Letter and P=NP
(https://rjlipton.wordpress.com/2014/07/21/shifts-in-algorithm-design/). The sur-
prising conclusion that one can in fact identify all nodes with significant
PageRank values without examining the entire network also landed this re-
sult on the list of “Top ten algorithms preprints of 2012” by David Eppstein
(http://11011110.livejournal.com/260838.html).
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guide a local statistics-gathering algorithm. We will show that this an-
nealing method can build a robust PageRank estimator by visiting only
a sub-linear number of nodes in the network. The reverse-structural
techniques of this algorithm have been used in subsequent scalable al-
gorithms for computing other network centrality measures [84], and for
influence maximization [64, 325, 324].

Keywords: Markov processes; PageRank; personalized
PageRank; PageRank matrix; multi-precision sampling;
multi-precision annealing; Riemann estimator.

In Chapter 4, “Clustering: Local Exploration of Networks,” we will
turn our attention to slightly larger structures in networks — clus-
ters. We will survey the basic framework of local network exploration
algorithms introduced in [318]. These algorithms conduct locally ex-
pandable searches of networks: Starting from a small set of input nodes
of a network, local algorithms iteratively expands its knowledge about
the “hidden” network by only exploring the neighborhood structures
of the explored nodes.

We first discuss a family of provably-good local clustering algo-
rithms5 [318, 22, 93, 24, 23]. We will then analyze two scalable al-
gorithms for personalized-PageRank approximation. These local algo-
rithms highlight the usefulness of graph-theoretical concepts, such as
random walks, personalized PageRank, and conductance, for analyz-
ing network structures, both mathematically and algorithmically. We
then conclude the section with a study of the interplay between net-
work structures and dynamic processes (such as random walks, social
influence, or information propagation). In particular, we will discuss
the framework introduced in [146] for quantifying the impact of this
interplay on the clusterability of subsets in the network, and prove a
parameterized Cheeger’s inequality [82].

This chapter, together with Section 5.8 Chapter 6 and Chapter 7,
also provide us with a quick tour through spectral graph theory.

5Several of these local clustering algorithms have been implemented by Kon-
stantin Voevodski of Google (http://gaussian.bu.edu/lpcf.html) and used in the
context of protein network analysis.
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Keywords: clusterability measures; conductance; Lapla-
cian matrix; Cheeger’s inequality; sweep with eigenvectors;
local network-analysis algorithms; local clustering; power
methods; random-walk sampling; interplay between dynamic
processes and networks; spectral graph theory.

In Chapter 5, “Partitioning: Geometric Techniques For Data Analysis,”
we will focus on networks defined by geometric data.We illustrate
the power of geometric techniques — such as spatial decomposition and
divide-and-conquer — in scalable data analysis. The geometric struc-
tures, such as nearest neighborhood graphs, also offer potentially use-
ful measures of clusterability and cluster stability [38], which have both
structural and algorithmic consequences. We will discuss a family of ge-
ometric partitioning techniques,6 and apply them to the computation
of nearest neighborhood graphs and geometric clusters. These tech-
niques lead to powerful scalable geometric divide-and-conquer schemes
[252, 253]. They also provide a beautiful bridge between spectral graph
theory and network analysis, involving a popular spectral partitioning
method [315].

Keywords: nearest neighborhood graphs; geometric graphs;
geometric partitioning; spectral partitioning; separator the-
orems; centerpoints; evolutionary algorithms, conformal
maps; geometric divide-and-conquer; VC dimensions; ran-
dom projection; spectral projection.

In Chapter 6, “Spectral Similarity: Sparsification — Making Networks
Simpler,” we will focus on what is means to say “one network is similar
to another network." We will address three basic questions:

• Conceptual Question: How should we measure the similarity
between two given networks?

• Mathematical Question: Does every graph have a “similar”
sparse graph?

6Many algorithms discussed in this chapter have been implemented [148] and are
available in MESHPART, a Matlab mesh partitioning and graph separator toolbox
(http://www.cerfacs.fr/algor/Softs/MESHPART/).
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• Algorithmic Question: Is there a scalable algorithm for con-
structing a good sparsifier?

This is my favorite subject in spectral graph theory.

Keywords: spectral similarity; cut-similarity; effective re-
sistances; spectral sparsification; low-stretch spanning tree;
matrix sampling; conjugate gradient; PageRank completion
of networks.

In Chapter 7, “Electrical Flows: Laplacian Paradigm for Network Anal-
ysis,” we survey a family of scalable algorithmic toolkits. At the
heart of these toolkits is a scalable solver for Laplacian linear systems
and electrical flows [313, 318, 317, 319]. This scalable Laplacian solver
has initiated and enabled many new scalable algorithms for spectral ap-
proximation [319], geometric and statistical approximation [98], graph
embedding [335], machine learning [358], numerical methods, random-
walk approximation, and Gaussian sampling in graphical models [86].

These applications illustrate a powerful, general algorithmic frame-
work — called the Laplacian paradigm — for network analysis. In this
framework, we attempt to reduce an optimization problem to one or
more linear algebraic or spectral graph-theoretical problems that can
be solved efficiently by the Laplacian solver or primitives from this scal-
able family. In addition to the applications above, this framework has
also led to several recent breakthrough results — including scalable al-
gorithms for max-flow/min-cut approximation [303, 197, 275, 243, 282]
and sparse Newton’s method [86] — that have gone beyond the original
scalable Laplacian linear solvers [319, 215, 200, 97, 217].

These success stories point to an exciting future for scalable al-
gorithm design in data and network analysis. I hope that continuing
advancements will help enrich our scalable algorithmic library, and in-
spire new efficient solutions for data and network analysis.

Keywords: SDD primitive; electrical flows; Laplacian lin-
ear systems; spectral approximation; graph embedding; ma-
chine learning; Gaussian sampling; Gaussian Markov ran-
dom fields; random walk sparsification; sparse Newton’s
method; Laplacian paradigm.
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In Chapter 8, “Remarks and Discussions,” we conclude this article with
a few “inconclusive” remarks. The inconclusiveness reflects the con-
ceptual challenges that we usually face in data and network analysis.
We also discuss a few frameworks beyond the commonly-used graph-
theoretical network models to address fundamental conceptual ques-
tions in data analysis and network science.

Keywords: centrality; clusterability; k-means methods;
multifaceted network data; beyond graph-based network
models; incentive networks; interplay between influence pro-
cesses and social networks; social choice theory; axiomati-
zation; game theory; cooperative games; Shapley value; be-
haviors of algorithms; beyond worst-case analysis.

A.1 Appendix to the Chapter

A.1.1 Basic Types of Computational Problems

In complexity theory, one usually classifies basic computational
problems into three types [307, 103]:

Decision Problems: A decision problem concerns the membership of
a language L ⊆ {0, 1}∗: Given an input string x ∈ {0, 1}∗, one is asked
to determine if x ∈ L. The output of a decision problem has constant
complexity as the answer is either YES or NO (or DON’T KNOW,
when randomization is used). This family of problems is commonly
used to capture the computational challenge in deciding whether or
not an input problem has a feasible solution.

Search Problems (or function problems:) A search problem typi-
cally works with a binary relation, R ⊆ {0, 1}∗×{0, 1}∗: Given an input
x, one is asked to determine if there exists y such that (x, y) ∈ R, and
furthermore, when such a y exists, one must also produce an element
from solutionR(x) = {y ∈ {0, 1}∗|(x, y) ∈ R}. A search problem has
two basic size measures: the size of the input x and the size of an output
y. Thus, the complexity for solving a search problem is measured by a
function in terms of either or both of these sizes. If the scalability of an
algorithm A (for a search problem Π) is bounded by a poly-logarithmic
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function with respect to the size of the output it produces, then we say
that A is output-scalable.

Optimization Problems: In a basic constrained optimization prob-
lem, we have a single utility/cost function u, whose value depends on
multiple decision parameters (x1, x2, ..., xn). Each xi has its own do-
main xi ∈ Ω(i), and the feasible region is given by a global constraint:

(x1, x2, ..., xn) ∈ C.

The optimization problem could either be a maximization or a mini-
mization problem:

optimize u(x1, x2, ..., xn)
subject to (x1, x2, ..., xn) ∈ C and xi ∈ Ω(i), ∀ i.

An input instance of an optimization problem is given by a representa-
tion of (u,C,Ω(1)×· · ·×Ω(n)). Like search problems, the complexity of
an optimization problem (or an optimization algorithm) can be mea-
sured in terms of either or both input and output sizes.

Beyond Decision, Search, and Optimization: Other types of com-
putational problems exist. For a binary relation R, for example, when
given an input x, the counting problem aims to determine the number of
solutions in |solutionR(x)|, the enumeration problem needs to identify
all members in solutionR(x), while the sampling problem generates an
element from solutionR(x), chosen according to uniform or a given dis-
tribution over solutionR(x). The multi-objective optimization problem
captures the potential trade-offs among several — possibly competing
— objective functions in multiple-criteria decision-making:

optimize u1(x1, x2, ..., xn), ..., uk(x1, x2, ..., xn)
subject to (x1, x2, ..., xn) ∈ C and xi ∈ Ω(i), ∀ i.

A basic solution concept for multi-objective optimization is the Pareto
set, which contains every feasible solution not strictly dominated by
other feasible solutions.

The game-theoretical problem captures possible compromises among
multiple decision makers in strategic decision-making, where each de-
cision maker has his/her own utility function and can only determine
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his/her own subset of decision parameters. The basic solution concept
in game theory is the Nash Equilibrium [259, 258]. Schematically, there
are n players. The ith player has utility function ui, and controls only
input parameter xi ∈ Ω(i). These players have to jointly set their deci-
sion parameters in order to satisfy a global constraint: (x1, ..., xn) ∈ C.
Each player’s utility usually depends on all decision parameters. The
domain Ω(i) is referred to as the strategy space for player i. The simplest
example of a game is a two-player matrix game [256, 259, 258].

We can formulate the computation of Pareto points and Nash
equilibria as search problems [104, 268, 269, 272, 287]. However, we
can capture more complex real-world phenomena using multi-objective
optimization and game theory than with search and optimization
[271, 269, 270].

A.1.2 Convention for Basic Notation

In this article, we will largely follow the conventions below for math-
ematical notation [314]:

• Lower-case English and Greek letters:

– Scalar constants, variables, and functions
– Vertices in a graph

• Upper-case English and Greek letters:

– Sets and graphs
– Distributions and events
– Constants (occasionally)

• Lower-case English and Greek letters in bold font:

– Vectors
If an n-dimensional vector is denoted by v, then we assume
v = (v1, v2, ..., vn)T , where T denotes the transpose opera-
tor. We use vi or v[i] to denote the ith entry of v. We always
assume v is a column vector. Thus, its transpose, vT , is a
row vector.
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– Permutation (mostly in Greek letters)
If π denotes a permutation of n elements, then we use πi or
π[i] to denote its ith element.

• Upper-case English and Greek letters in bold font:

– Matrices
If an m × n-matrix vector is denoted by M , then we use
mi,j or M[i, j] to denote its (i, j)th entry.

• Special matrices and vectors:

– In denotes the identity matrix in n dimensions. When it
is clear from the context, we use I to denote the identity
matrix of the assumed dimensions.

– 1 and 0, respectively, denote the vectors of all 1s or 0s in
the assumed dimensions.

– For v ∈ [n], 1v denotes the n-place vector that has 1 at entry
v and 0 everywhere else.

– For S ⊂ [n], 1S denotes the n-place vector that has 1 at
entries in S and 0 everywhere else.

• [n] or [1 : n] denotes the set of integers between 1 and n. More
generally, for integers a ≤ b, [a : b] denotes the set of integers
between a and b.

• Matrix entry-wise inequality

– For two m × n matrices A and B, and parameters ε > 0
and c > 0, we use A ≤ c ·B + ε to denote ai,j ≤ c · bi,j + ε,
∀i ∈ [m],∀j ∈ [n].

• Respectively, log and ln denote the logarithm base 2 and the
natural logarithm.

• The indicator random variable for an event A is I[A] or [A].

• Respectively, PrD [A] and ED [X] denote the probability of event
A and the expectation of variable X, over a distribution D.
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