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Abstract

We survey recent (and not so recent) results concerning arrangements

of lines, points, and other geometric objects and the applications these

results have in theoretical computer science and combinatorics. The

three main types of problems we will discuss are:

(1) Counting incidences: Given a set (or several sets) of

geometric objects (lines, points, etc.), what is the maxi-

mum number of incidences (or intersections) that can exist

between elements in different sets? We will see several results

of this type, such as the Szemeredi–Trotter theorem, over

the reals and over finite fields and discuss their applications

in combinatorics (e.g., in the recent solution of Guth and

Katz to Erdos’ distance problem) and in computer science

(in explicit constructions of multisource extractors).

(2) Kakeya type problems: These problems deal with

arrangements of lines that point in different directions. The

goal is to try and understand to what extent these lines can

overlap one another. We will discuss these questions both

over the reals and over finite fields and see how they come

up in the theory of randomness extractors.
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(3) Sylvester–Gallai type problems: In this type of prob-

lems, one is presented with a configuration of points that

contain many ‘local’ dependencies (e.g., three points on a

line) and is asked to derive a bound on the dimension of the

span of all points. We will discuss several recent results of

this type, over various fields, and see their connection to the

theory of locally correctable error-correcting codes.

Throughout the different parts of the survey, two types of techniques

will make frequent appearance. One is the polynomial method, which

uses polynomial interpolation to impose an algebraic structure on the

problem at hand. The other recurrent techniques will come from the

area of additive combinatorics.
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1

Overview

Consider a finite set of points, P , in some vector space and another set L

of lines. An incidence is a pair (p,`) ∈ P × L such that p ∈ `. There

are many types of questions one can ask about the set of incidences

and many different conditions one can impose on the corresponding

set of points and lines. For example, the Szemeredi–Trotter theorem

(which will be discussed at length below) gives an upper bound on

the number of possible incidences. More generally, in this survey we

will be interested in a variety of problems and theorems relating to

arrangements of lines and points and the surprising applications these

theorems have, in theoretical computer science and in combinatorics.

The term ‘incidence theorems’ is used in a very broad sense and might

include results that could fall under other categories. We will study

questions about incidences between lines and points, lines and lines

(where an incidence is a pair of intersecting lines), circles and points

and more.

Some of the results we will cover have direct and powerful applica-

tions to problems in theoretical computer sciences and combinatorics.

One example in combinatorics is the recent solution of Erdos’ distance

problem by Guth and Katz [35]. The problem is to lower bound the

1
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2 Overview

number of distinct distances defined by a set of points in the real plane

and the solution (which is optimal up to logarithmic factors) uses a

clever reduction to a problem on counting incidences of lines [27].

In theoretical computer science, incidence theorems (mainly over

finite fields) have been used in recent years to construct extractors,

which are procedures that transform weak sources of randomness (that

is, distributions that have some amount of randomness but are not

completely uniform) into completely uniform random bits. Extractors

have many theoretical applications, ranging from cryptography to data

structures to metric embedding (to name just a few) and the current

state-of-the-art constructions all use incidence theorems in one way

or another. The need to understand incidences comes from trying to

analyze simple looking constructions that use basic algebraic opera-

tions. For example, how ‘random’ is X · Y + Z, when X,Y,Z are three

independent random variables each distributed uniformly over a large

subset of Fp.
We will see incidence problems over finite fields, over the reals, in low

dimension and in high dimension. These changes in field/dimension are

pretty drastic and, as a consequence, the ideas appearing in the proofs

will be quite diverse. However, two main techniques will make frequent

appearance. One is the ‘polynomial method’ which uses polynomial

interpolation to try and ‘force’ an algebraic structure on the problem.

The other recurrent techniques will come from additive combinatorics.

These are general tools to argue about sets in Abelian groups and the

way they behave under certain group operations. These two techniques

are surprisingly flexible and can be applied in many different scenarios

and over different fields.

The monograph is divided into four chapters, following this overview

chapter. The first chapter will be devoted to problems of counting inci-

dences over the real numbers (Szemeredi–Trotter and others) and will

contain applications mostly from combinatorics (including the Guth–

Katz solution to Erdos’ distance problem). The second chapter will

be devoted to the Szemeredi–Trotter theorem over finite fields and its

applications to the explicit constructions of multisource extractors. The

third chapter will be devoted to Kakeya type problems which deal with

arrangements of lines pointing in different directions (over finite and
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3

infinite fields). The applications in this chapter will be to the construc-

tion of another variant of extractors–seeded extractors. The fourth and

final chapter will deal with arrangements of points with many collinear

triples. These are related to questions in theoretical computer science

having to do with locally correctable error-correcting codes. More details

and definitions relating to each of the aforementioned chapters are given

in the next four subsections of this overview which serves as a road map

to the various sections.

This survey is aimed at both mathematicians and computer scien-

tists and could serve as a basis for a one semester course. Ideally, each

chapter should be read from start to end (the different chapters are

mostly independent of each other). We only assume familiarity with

undergraduate level algebra, including the basics of finite fields and

polynomials.

Notations: We will use .,& and ∼ to denote (in)equality up to

multiplicative absolute constants. That is, X . Y means ‘there exists

an absolute constant C such that X ≤ CY ’. In some places, we opt

to use instead the computer science notations of O(·),Ω(·), and θ(·)
to make some expressions more readable. So X = O(Y ) is the same as

X . Y , X = Ω(Y ) is the same as X & Y , and X = θ(Y ) is the same

as X ∼ Y . This allows us to write, for example, X = 2Ω(Y ) to mean:

‘there exists an absolute constant C such that x ≥ 2CY ’.

Sources: Aside from research papers there were two main sources

that were used in the preparation of this monograph. The first is a

sequence of posts on Terry Tao’s blog which cover a large portion of

Section 2 (see e.g., [67]). Ben Green’s lecture notes on additive com-

binatorics [32] were the main source in preparing Section 3. Both of

these sources were indispensable in preparing this monograph and I

am grateful to both authors.

Section 2: Counting Incidences Over the Reals

Let P be a finite set of points and L a finite set of lines in R2. Let

I(P,L) = {(p,`) ∈ P × L |p ∈ `}

Full text available at: http://dx.doi.org/10.1561/0400000056



4 Overview

denote the set of incidences between P and L. A basic question we will

ask is how big can I(P,L) be. The Szemeredi–Trotter (ST) theorem

[65] gives the (tight) upper bound of

|I(P,L)| . (|L| · |P |)2/3 + |L| + |P |.

We begin this section in Section 2.1 with two different proofs of this

theorem. The first proof, presented in Section 2.1.1, is due to Tao [67]

(based on [18] and similar to the original proof of [65]) and uses the

method of cell partitions. The idea is to partition the two-dimensional

plane into cells, each containing a bounded number of points/lines and

to argue about each cell separately. This uses the special ‘ordered’ struc-

ture of the real numbers (this proof strategy is also the only one that

generalizes to the complex numbers [68]). The second proof, presented

in Section 2.1.2, is due to Szekely [64] ands uses the crossing number

inequality for planar drawings of graphs and is perhaps the most ele-

gant proof known for this theorem. This proof can also be adapted

easily to handle intersections of more complex objects such as curves.

We continue in Section 2.2 with some simple applications of the ST

theorem to geometric and algebraic problems. These include proving

sum-product estimates and counting distances between sets of points.

Sections 2.3–2.6 are devoted to the proof of the Guth–Katz theorem

on Erdos’ distance counting problem. This theorem, obtained in [35],

says that a set of N points in the real plane define at least & N/ logN

distinct distances. This gives an almost complete answer to an old

question of Erdos (the upper bound has a factor of
√

logN instead of

logN). The tools used in the proof are developed over several sections

which contain several other related results.

In Section 2.3 we discuss the Elekes–Sharir framework [27] which

reduces distance counting to a question about incidences of a specific

family of lines in R3, much in the spirit of the ST theorem. Sections 2.4

and 2.5 introduce the two main techniques used in the proof of the

Guth–Katz theorem. In Section 2.4 we introduce for the first time one

of the main characters of this survey — the polynomial method. As

a first example to the power of this method, we show how it can be

used to give a solution to another beautiful geometric conjecture —

the joints conjecture [34]. Here, one has a set of lines in R3 and wants

Full text available at: http://dx.doi.org/10.1561/0400000056
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to upper bound the number of joints, or noncoplanar intersections of

three lines or more. In Section 2.5 we introduce the second ingredient

in the Guth–Katz theorem — the polynomial ham sandwich theorem.

This technique, introduced by Guth in [33], combines the polynomial

method with the method of cell partitions. As an example of how this

theorem is used we give a third proof of the ST theorem which was

discovered recently [39].

Section 2.6, contains a relatively detailed sketch of the proof of the

Guth–Katz theorem (omitting some of the more technical algebraic

parts). The main result proved in this section is an incidence theorem

upper bounding the number of pairwise intersections in a set of N lines

in R3. If we don’t assume anything, N lines can have & N2 intersections

(an intersection is a pair of lines that intersect). An example is a set of

N/2 horizontal lines and N/2 vertical lines, all lying in the same plane.

If we assume, however, that the lines are ‘truly’ in three dimensions, in

the sense that no large subset of them lies in two dimensions, we can get

a better (and tight) bound of ≤ N1.5 logN . This theorem then implies

the bound on distinct distances using the Elekes–Sharir framework.

In the last section of this section, Section 2.7, we see yet another

beautiful application of the three-dimensional incidence theorem of

Guth and Katz obtaining optimal bounds in the flavor of the sum-

product theorem [38].

Section 3: Counting Incidences Over Finite Fields

This section deals with the analog of the Szemeredi–Trotter theorem

over finite fields and its applications. When we replace the field R with

a finite field Fq of q elements things become much more tricky and

much less is known (in particular there are no tight bounds). Assuming

nothing on the field, the best possible upper bound on the number of

intersections between N lines and N points is ∼ N1.5, which is what

one gets from only using the fact that two points determine a line (using

a simple Cauchy–Schwarz calculation). However, if we assume that Fq
does not contain large subfields (as is the case, for example, if q is

prime) one can obtain a small improvement of the form N1.5−ε for some

positive ε, provided N � p2. This was shown by Bourgain, Katz and

Full text available at: http://dx.doi.org/10.1561/0400000056



6 Overview

Tao as an application of the sum-product theorem over finite fields [14].

The sum-product theorem says that, under the same conditions on

subfields, for every set A ⊂ Fq of size at most q1−α we have max{|A +

A|, |A · A|} > |A|1+α′ , where α′ depends only on α. The set A + A is

defined as the set of all elements of the form a + a′ with a,a′ ∈ A (A · A
is defined in a similar way).

The proof of the finite field ST theorem is given in Sections 3.1–3.4.

Section 3.1 describes the machinery called ‘Ruzsa calculus’ — a set of

useful claims for working with sumsets. Section 3.2 proves a theorem

about growth of subsets of Fp (we will only deal with prime fields) which

is a main ingredient of the proof of the ST theorem. Section 3.3 proves

the Balog–Szemeredi–Gowers theorem, a crucial tool in this proof and

in many other results in additive combinatorics. Finally, Section 3.4

puts it all together and proves the final result. We note that, unlike

previous expositions (and the original [14]), we opt to first prove the

ST theorem and then derive the sum-product theorem from it as an

application. This is not a crucial matter but it seems to simplify the

proof of the ST theorem a bit.

As an application of these results over finite fields we will discuss,

in Section 3.5, the theory of multisource extractors coming from theo-

retical computer science. We will see how to translate the finite field

ST theorem into explicit mappings which transform ‘weak’ structured

sources of randomness into purely random bits. More precisely, suppose

you are given samples from several (at least two) independent random

variables and want to use them to output uniform random bits. It is

not hard to show that a random function will do the job, but finding

explicit (that is, efficiently computable) constructions is a difficult task.

Such constructions have applications in theoretical computer science,

in particular in the area of de-randomization, which studies the power

of randomized computation vs. deterministic computation.

We will discuss in some detail two representative results in this area:

the extractors of Barak, Impagliazzo and Wigderson for several inde-

pendent blocks [5], which were the first to introduce the tools of additive

combinatorics to this area, and Bourgain’s two-source extractor [12].

Both rely crucially on the finite field Szemeredi–Trotter theorem of [14].

Full text available at: http://dx.doi.org/10.1561/0400000056
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Section 4: Packing Lines in Different
Directions — Kakeya Sets

This section deals with a somewhat different types of theorems that

describe the way lines in different directions can overlap. In Sections 4.1

and 4.2 we will discuss these questions over the real numbers and over

finite fields, respectively. In Section 4.3 we will discuss applications of

the finite field results to problems in theoretical computer science.

A Kakeya set K ⊂ Rn is a compact set containing a unit line

segment in every direction. These sets can have measure zero. An

important open problem is to understand the minimum Minkowski

or Hausdorff dimension1 of a Kakeya set. This question reduces in

a natural way to a discrete incidence question involving a finite set

of lines in many ‘sufficiently separated’ directions. The Kakeya con-

jecture states that Kakeya sets must have maximal dimension (i.e.,

have dimension n). The conjecture is open in dimensions n ≥ 3 and

was shown to have deep connections with other problems in Analysis,

Number Theory, PDE’s, and others (see [66]).

The most successful line of attack on this conjecture was initiated by

Bourgain [11] and later developed by Katz and Tao [43] and uses tools

from additive combinatorics. In Section 4.1 we will discuss Kakeya sets

over the reals and prove a ≥ (4/7)n bound on the Minkowski dimension,

which is very close to the best-known lower bound of (0.596 . . .)n. The

underlying additive combinatorics problem that arises in this context

is upper bounding the number of differences a − b, for pairs (a,b) ∈
G ⊂ A × B in some graph G as a function of the number of sums (or,

more generally, weighted sums) on the same graph. We will not discuss

the applications of the Euclidean Kakeya conjecture since they are out

of scope for this survey (we are focusing on applications in discrete

mathematics and computer science). Even though we will not directly

use additive combinatorics results developed in Section 3, they will be

in the background and will provide intuition as to what is going on.

Over a finite field Fq a Kakeya set is a set containing a line in every

direction (a line will contain q points). It was conjectured by Wolff [69]

1For a definition see Section 4.1.

Full text available at: http://dx.doi.org/10.1561/0400000056



8 Overview

that the minimum size of a Kakeya set is at least Cn · qn for some con-

stant Cn depending only on n. We will see the proof of this conjecture

(obtained by the author in [20]) which uses the polynomial method.

An application of this result, described in Section 4.3, is a construc-

tion of seeded extractors, which are explicit mappings that transform a

‘weak’ random source into a close-to-uniform distribution with the aid

of a short random ‘seed’ (since there is a single source, the extractor

must use a seed). A specific question that arises in this setting is the

following: Suppose Alice and Bob each pick a point X,Y ∈ Fnq (X for

Alice, Y for Bob). Consider the random variable Z computed by pick-

ing a random point on the line through X,Y . If both Alice and Bob

pick their points independently at random then it is easy to see that Z

will also be random. But what happens when Bob picks his points Y

to be some function Y = F (X)? Using the connection to the Kakeya

conjecture one can show that, in this case, Z is still sufficiently random

in the sense that it cannot hit any small set with high probability. More

formally, this requires proving a variant of the Kakeya conjecture over

finite field with lines replaced by low degree curves.

Section 5: From Local to Global — Sylvester–Gallai
Type Theorems

The Sylvester–Gallai (SG) theorem says that, in a finite set of points

in Rn, not all on the same line, there exists a line intersecting exactly

two of the points. In other words, if for every two points u,v in the set,

the line through u,v contains a third point in the set, then all points

are on the same line. Besides being a natural incidence theorem, one

can also look at this theorem as converting local geometric informa-

tion (collinear triples) into global upper bounds on the dimension (i.e.,

putting all points on a single line, which is one dimensional). We will

see several generalizations of this theorem, obtained in [4], in various

settings. For example, assume that for every point u in a set of N points

there are at least N/100 other points v such that the line through u,v

contains a third point. We will see in this case that the points all lie

on an affine subspace of dimension bounded by a constant. The proof

technique here is different than what we have seen so far and will rely
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on convex optimization techniques among other things. These results

will be described in Section 5.1 with the main technical tool, a rank

lower bound for design matrices, proved in Section 5.2.

In Section 5.3 we will consider this type of question over a finite field

and see how the bounds are weaker in this case. In particular, under the

same assumption as above (with N/100) the best possible upper bound

on the dimension will be . logq(N)), where q is the characteristic of the

field [9]. Here, we will again rely on tools from additive combinatorics

and will use results proved in Section 3.

In Section 5.4 we will see how this type of question arises naturally

in computer science applications involving error-correcting codes which

are ‘locally correctable’. A (linear) Locally Correctable Code (LCC)

is a (linear) error-correcting code in which each symbol of a possible

corrupted codeword can be corrected by looking at only a few other

locations (in the same corrupted codeword). Such codes are very differ-

ent than ‘regular’ error-correcting codes (in which decoding is usually

done in one shot for all symbols) and have interesting applications in

complexity theory.2

2They are also very much related to Locally Decodable Codes (LDCs) which are discussed
at length in the survey [71].
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