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Abstract

This survey highlights the recent advances in algorithms for numerical
linear algebra that have come from the technique of linear sketching,
whereby given a matrix, one first compresses it to a much smaller ma-
trix by multiplying it by a (usually) random matrix with certain prop-
erties. Much of the expensive computation can then be performed on
the smaller matrix, thereby accelerating the solution for the original
problem. In this survey we consider least squares as well as robust re-
gression problems, low rank approximation, and graph sparsification.
We also discuss a number of variants of these problems. Finally, we
discuss the limitations of sketching methods.

D. P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Foundations
and TrendsR© in Theoretical Computer Science, vol. 10, no. 1-2, pp. 1–157, 2014.
DOI: 10.1561/0400000060.
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1
Introduction

To give the reader a flavor of results in this survey, let us first consider
the classical linear regression problem. In a special case of this problem
one attempts to “fit” a line through a set of given points as best as
possible.

For example, the familiar Ohm’s law states that the voltage V is
equal to the resistance R times the electrical current I, or V = R · I.
Suppose one is given a set of n example volate-current pairs (vj , ij) but
does not know the underlying resistance. In this case one is attempt-
ing to find the unknown slope of a line through the origin which best
fits these examples, where best fits can take on a variety of different
meanings.

More formally, in the standard setting there is onemeasured variable
b, in the above example this would be the voltage, and a set of d
predictor variables a1, . . . , ad. In the above example d = 1 and the
single predictor variable is the electrical current. Further, it is assumed
that the variables are linearly related up to a noise variable, that is
b = x0 + a1x1 + · · ·+ adxd + γ, where x0, x1, . . . , xd are the coefficients
of a hyperplane we are trying to learn (which does not go through the
origin if x0 6= 0), and γ is a random variable which may be adversarially

2
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3

chosen, or may come from a distribution which we may have limited or
no information about. The xi are also known as the model parameters.
By introducing an additional predictor variable a0 which is fixed to
1, we can in fact assume that the unknown hyperplane goes through
the origin, that is, it is an unknown subspace of codimension 1. We
will thus assume that b = a1x1 + · · · + adxd + γ and ignore the affine
component throughout.

In an experiment one is often given n observations, or n (d + 1)-
tuples (ai,1, . . . , ai,d, bi), for i = 1, 2, . . . , n. It is more convenient now
to think of the problem in matrix form, where one is given an n × d
matrix A whose rows are the values of the predictor variables in the
d examples, together with an n× 1 column vector b whose entries are
the corresponding observations, and the goal is to output the coefficient
vector x so that Ax and b are close in whatever the desired sense of
closeness may mean. Notice that as one ranges over all x ∈ Rd, Ax
ranges over all linear combinations of the d columns of A, and therefore
defines a d-dimensional subspace of Rn, which we refer to as the column
space of A. Therefore the regression problem is equivalent to finding
the vector x for which Ax is the closest point in the column space of
A to the observation vector b.

Much of the focus of this survey will be on the over-constrained case,
in which the number n of examples is much larger than the number d
of predictor variables. Note that in this case there are more constraints
than unknowns, and there need not exist a solution x to the equation
Ax = b.

Regarding the measure of fit, or closeness of Ax to b, one of the
most common is the least squares method, which seeks to find the
closest point in Euclidean distance, i.e.,

argminx‖Ax− b‖2 =
n∑
i=1

(bi − 〈Ai,∗,x〉)2,

where Ai,∗ denotes the i-th row of A, and bi the i-th entry of the
vector b. This error measure has a clear geometric interpretation, as
the optimal x satisfies that Ax is the standard Euclidean projection of
b onto the column space of A. Because of this, it is possible to write
the solution for this problem in a closed form. That is, necessarily one
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4 Introduction

has ATAx∗ = ATb for the optimal solution x∗ by considering the
gradient at a point x, and observing that in order for it to be 0, that is
for x to be a minimum, the above equation has to hold. The equation
ATAx∗ = ATb is known as the normal equation, which captures that
the line connecting Ax∗ to b should be perpendicular to the columns
spanned by A. If the columns of A are linearly independent, ATA is
a full rank d × d matrix and the solution is therefore given by x∗ =
(ATA)−1ATb. Otherwise, there are multiple solutions and a solution
x∗ of minimum Euclidean norm is given by x∗ = A†b, where A† is
the Moore-Penrose pseudoinverse of A. Recall that if A = UΣVT

is the singular value decomposition (SVD) of A, where U is n × d

with orthonormal columns, Σ is a diagonal d × d matrix with non-
negative non-increasing diagonal entries, and VT is a d × d matrix
with orthonormal rows, then the Moore-Penrose pseudoinverse of A is
the d × n matrix VΣ†UT , where Σ† is a d × d diagonal matrix with
Σ†i,i = 1/Σi,i if Σi,i > 0, and is 0 otherwise.

The least squares measure of closeness, although popular, is some-
what arbitrary and there may be better choices depending on the appli-
cation at hand. Another popular choice is the method of least absolute
deviation, or `1-regression. Here the goal is to instead find x∗ so as to
minimize

‖Ax− b‖1 =
n∑
i=1
|bi − 〈Ai,∗,x〉|.

This measure is known to be less sensitive to outliers than the least
squares measure. The reason for this is that one squares the value
bi−〈Ai,∗,x〉 in the least squares cost function, while one only takes its
absolute value in the least absolute deviation cost function. Thus, if bi
is significantly larger (or smaller) than 〈Ai,∗,x〉 for the i-th observation,
due, e.g., to large measurement noise on that observation, this requires
the sought hyperplane x to be closer to the i-th observation when
using the least squares cost function than when using the least absolute
deviation cost function. While there is no closed-form solution for least
absolute deviation regression, one can solve the problem up to machine
precision in polynomial time by casting it as a linear programming
problem and using a generic linear programming algorithm.
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The problem with the above solutions is that on massive data sets,
they are often too slow to be of practical value. Using näive matrix
multiplication, solving the normal equations for least squares would
take at least n · d2 time. For least absolute deviation regression, when
casting the problem as a linear program one needs to introduce O(n)
variables (these are needed to enforce the absolute value constraints)
and O(n) constraints, and generic solvers would take poly(n) time for
an polynomial in n which is at least cubic. While these solutions are
polynomial time, they are prohibitive for large values of n.

The starting point of this survey is a beautiful work by Tamás
Sarlós [105] which observed that one could use sketching techniques to
improve upon the above time complexities, if one is willing to settle for
a randomized approximation algorithm. Here, one relaxes the problem
to finding a vector x so that ‖Ax−b‖p ≤ (1+ε)‖Ax∗−b‖p, where x∗
is the optimal hyperplane, with respect to the p-norm, for p either 1 or
2 as in the discussion above. Moreover, one allows the algorithm to fail
with some small probability δ, which can be amplified by independent
repetition and taking the best hyperplane found.

While sketching techniques will be described in great detail in the
following chapters, we give a glimpse of what is to come below. Let
r � n, and suppose one chooses a r × n random matrix S from a
certain distribution on matrices to be specified. Consider the following
algorithm for least squares regression:

1. Sample a random matrix S.

2. Compute S ·A and S · b.

3. Output the exact solution x to the regression problem
minx ‖(SA)x− (Sb)‖2.

Let us highlight some key features of this algorithm. First, notice that
it is a black box reduction, in the sense that after computing S · A
and S · b, we then solve a smaller instance of least squares regression,
replacing the original number n of observations with the smaller value
of r. For r sufficiently small, we can then afford to carry out step 3, e.g.,
by computing and solving the normal equations as described above.
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6 Introduction

The most glaring omission from the above algorithm is which ran-
dom familes of matrices S will make this procedure work, and for what
values of r. Perhaps one of the simplest arguments is the following.
Suppose r = Θ(d/ε2) and S is a r × n matrix of i.i.d. normal random
variables with mean zero and variance 1/r, denoted N(0, 1/r). Let U
be an n× (d+ 1) matrix with orthonormal columns for which the col-
umn space of U is equal to the column space of [A,b], that is, the
space spanned by the columns of A together with the vector b.

Consider the product S·U. By 2-stability of the normal distribution,
i.e., if A ∼ N(0, σ2

1) and B ∼ N(0, σ2
2), then A + B ∼ N(0, σ2

1 + σ2
2),

each of the entries of S ·U is distributed as N(0, 1/r) (recall that the
column norms of U are equal to 1). The entries in different rows of S·U
are also independent since the rows of S are independent. The entries
in a row are also independent by rotational invarance of the normal dis-
tribution, that is, if g ∼ N(0, In/r) is an n-dimensional vector of nor-
mal random variables and U∗,1, . . . ,U∗,d are orthogonal vectors, then
〈g,U∗,1〉, 〈g,U∗,2〉, . . . , 〈g,U∗,d+1〉 are independent. Here In is the n×n
identity matrix (to see this, by rotational invariance, these d + 1 ran-
dom variables are equal in distribution to 〈g, e1〉, 〈g, e2〉, . . . , 〈g, ed+1〉,
where e1, . . . , ed+1 are the standard unit vectors, from which indepen-
dence follows since the coordinates of g are independent).

It follows that S·U is an r×(d+1) matrix of i.i.d. N(0, 1/r) random
variables. For r = Θ(d/ε2), it is well-known that with probability 1 −
exp(−d), all the singular values of S ·U lie in the interval [1− ε, 1 + ε].
This can be shown by arguing that for any fixed vector x, ‖S ·Ux‖22 =
(1±ε)‖x‖22 with probability 1−exp(−d), since, by rotational invariance
of the normal distribution, S · Ux is a vector of r i.i.d. N(0, ‖x‖22)
random variables, and so one can apply a tail bound for ‖S · Ux‖22,
which itself is a χ2-random variable with r degrees of freedom. The fact
that all singular values of S ·U lie in [1−ε, 1+ε] then follows by placing
a sufficiently fine net on the unit sphere and applying a union bound
to all net points; see, e.g., Theorem 2.1 of [104] for further details.

Hence, for all vectors y, ‖SUy‖2 = (1±ε)‖Uy‖2. But now consider
the regression problem minx ‖(SA)x − (Sb)‖2 = minx ‖S(Ax − b)‖2.
For each vector x, Ax − b is in the column space of U, and therefore
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by the previous paragraph, ‖S(Ax − b)‖2 = (1 ± ε)‖Ax − b‖2. It
follows that by solving the regression problem minx ‖(SA)x− (Sb)‖2,
we obtain a (1 + ε)-approximation to the original regression problem
with probability 1− exp(−d).

The above technique of replacing A by S·A is known as a sketching
technique and S ·A is referred to as a (linear) sketch of A. While the
above is perhaps the simplest instantiation of sketching, notice that
it does not in fact give us a faster solution to the least squares re-
gression problem. This is because, while solving the regression problem
minx ‖(SA)x − (Sb)‖2 can now be done näively in only O(rd2) time,
which no longer depends on the large dimension n, the problem is that
S is a dense matrix and computing S ·A may now be too slow, taking
Θ(nrd) time.

Thus, the bottleneck in the above algorithm is the time for matrix-
matrix multiplication. Tamás Sarlós observed [105] that one can in fact
choose S to come from a much more structured random family of ma-
trices, called fast Johnson-Lindenstrauss transforms [2]. These led to
roughly O(nd log d)+poly(d/ε) time algorithms for the least squares re-
gression problem. Recently, Clarkson and Woodruff [27] improved upon
the time complexity of this algorithm to obtain optimal algorithms for
approximate least squares regression, obtaining O(nnz(A))+poly(d/ε)
time, where nnz(A) denotes the number of non-zero entries of the ma-
trix A. We call such algorithms input-sparsity algorithms, as they ex-
ploit the number of non-zero entries of A. The poly(d/ε) factors were
subsequently optimized in a number of papers [92, 97, 18], leading to
optimal algorithms even when nnz(A) is not too much larger than d.

In parallel, work was done on reducing the dependence on ε in these
algorithms from polynomial to polylogarithmic. This started with work
of Rokhlin and Tygert [103] (see also the Blendenpik algorithm [8]), and
combined with the recent input sparsity algorithms give a running time
of O(nnz(A) log(1/ε)) + poly(d) for least squares regression [27]. This
is significant for high precision applications of least squares regression,
for example, for solving an equation of the form ATAx = ATb. Such
equations frequently arise in interior point methods for linear program-
ming, as well as iteratively reweighted least squares regression, which
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8 Introduction

is a subroutine for many important problems, such as logistic regres-
sion; see [94] for a survey of such techniques for logistic regression. In
these examples A is often formed from the Hessian of a Newton step
in an iteration. It is clear that such an equation is just a regression
problem in disguise (in the form of the normal equations), and the (ex-
act) solution of argminx‖Ax− b‖2 provides such a solution. By using
high precision approximate regression one can speed up the iterations
in such algorithms.

Besides least squares regression, related sketching techniques have
also been instrumental in providing better robust `1-regression, low
rank approximation, and graph sparsifiers, as well as a number of
variants of these problems. We will cover these applications each in
more detail.

Roadmap: In the next chapter we will discuss least squares re-
gression in full detail, which includes applications to constrained and
structured regression. In Chapter 3, we will then discuss `p-regression,
including least absolute deviation regression. In Chapter 4 we will
dicuss low rank approximation, while in Chapter 5, we will discuss
graph sparsification. In Chapter 6, we will discuss the limitations
of sketching techniques. In Chapter 7, we will conclude and briefly
discuss a number of other directions in this area.
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