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Abstract

How to compute a linear Boolean operator by a small circuit using

only unbounded fanin addition gates? Because this question is about

one of the simplest and most basic circuit models, it has been consid-

ered by many authors since the early 1950s. This has led to a variety

of upper and lower bound arguments—ranging from algebraic (deter-

minant and matrix rigidity), to combinatorial (Ramsey properties, cov-

erings, and decompositions) to graph-theoretic (the superconcentrator

method). We provide a thorough survey of the research in this direc-

tion, and prove some new results to fill out the picture. The focus is on

the cases in which the addition operation is either the boolean OR or

XOR, but the model in which arbitrary boolean functions are allowed

as gates is considered as well.

S. Jukna and I. Sergeev. Complexity of Linear Boolean Operators. Foundations and
Trends R© in Theoretical Computer Science, vol. 9, no. 1, pp. 1–123, 2013.

DOI: 10.1561/0400000063.
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1

Introduction

Let (S, +) be a commutative semigroup, that is, a set S closed under a

binary “sum” operation + which is associative and commutative. Our

goal is to simultaneously compute a given system

yi =
∑

j∈Ti

xj , i = 1, . . . , m (1.1)

of m sums by only using the sum operation of the semigroup. By iden-

tifying the subsets Ti with their characteristic 0/1 vectors, this system

turns to a linear operator y = Ax for a boolean matrix A.

A natural computational model towards this goal is that of addition

circuits over (S, +). Such a circuit is a directed acyclic graph with n

input nodes x1, . . . , xn of zero fanin, and m output nodes y1, . . . , ym of

zero fanout. Each non-input node computes the sum of its inputs over

(S, +). There are no restrictions on the fanin or fanout of gates. The

size of a circuit is the total number of edges in it, and the depth is the

length of (the number of edges in) a longest path.

We will concentrate on the most basic semigroups—the OR semi-

group ({0, 1}, ∨), and the XOR group ({0, 1}, ⊕). Thus, OR circuits al-

low “cancellations” x + x = x (partial sums can be “merged”), whereas

XOR circuits allow cancellations x + x = 0 (partial sums can be “anni-

2
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3

hilated”). We also consider a restricted model of SUM circuits where

the system of sums (1.1) is computed over the semiring (N, +). In this

model none of these two types of cancellations can be used. Note that

the XOR and OR (and its “dual” AND) are the only commutative

semigroups over S = {0, 1}.

We stress that, given a boolean matrix A, the goal of all these three

types of circuits is the same: to compute the system of sums (1.1) de-

fined by A. The only difference is in what type of cancellations a circuit

can use to achieve this goal. OR circuits constitute the simplest mono-

tone model, whereas XOR circuits constitute the simplest group model

(necessarily non-monotone since the group is finite). SUM circuits are

“universal” in the sense that every such circuit for A is an addition

circuit for A over any semigroup (S, +).

The model of OR circuits was first considered by Lupanov [62]

by inventing the model of rectifier circuits. XOR circuits were first

considered by Nechiporuk in [70]. SUM circuits were first explicitly

introduced by Pippenger [81]. SUM circuits of fanin-2 are also known

as “vector addition chains” (see, for example, Knuth [55, Sect. 4.6.3]).

It is important to note that computing an operator y = Ax for

a boolean matrix A = (aij) by an addition circuit actually means to

“encode” the matrix A by paths in a directed acyclic graph. Namely, if

pij denotes the number of paths from the input node xj to the output

node yi in such a circuit for A then the circuit implements (or encodes)

the matrix A in the following sense:

• SUM circuit: pij = aij .

• OR circuit: pij > 0 if aij = 1, and pij = 0 if aij = 0.

• XOR circuit: pij is odd if aij = 1, and pij is even if aij = 0.

Thus, SUM circuits constitute the most restricted model in which

there cannot be more than one path between the same pair of input

and output nodes. Also, unlike XOR circuits, SUM and OR circuits

are monotone models: increasing values of inputs cannot decrease the

values of outputs. For these circuits, large (almost quadratic) explicit1

lower bounds, without any restriction on the circuit-depth are known.

1Intuitively, a matrix or a boolean function being “explicit” means being “explic-
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4 Introduction

However, XOR circuits are a “Waterloo” of circuit complexity: here

superlinear lower bounds are only known for constant-depth circuits

(and these are barely-superlinear even for depth 5, say).

In this text we survey the most important complexity-theoretic

questions about the addition circuit model:

Q1: What is the maximum complexity of implementing a boolean

n × n matrix? Answer: it is about n2/ log n in all three models (Chap-

ter 2).

Q2: What are the best known explicit lower bounds for the three

complexity measures? Answer: for SUM and OR circuits, we have near-

optimal explicit examples of boolean n×n matrices with a lower bound

of n2−o(1) (§ 3.4). On the other hand, we have nothing super-linear for

XOR circuits, except for constant depth d, and these degrade badly

as d grows. For depth 2, the strongest known lower bound is about

n(ln n/ ln ln n)2, and is about n ln ln n for depth 3 (§ 3.7, § 3.8 and

Chapter 6).

Q3: How large a gap can occur between the SUM, OR and XOR

complexities of a given boolean n × n matrix A? Answer: the largest

possible gap in each of the three models is O(n/ log n) (Chapter 2).

The largest known SUM/OR gap is Ω(
√

n/ log2 n), OR/XOR gap is

Ω(n/ log2 n), and the largest known gap between the OR complexity of

a matrix A and its complement is Ω(n/ log3 n) (Chapter 5).

Q4: What are the most important known lower bound techniques

for handling specific matrices, what are their limitations? A variety

of techniques are described in Chapter 3 and Chapter 6. They give a

flexible toolkit for lower-bounding the SUM and OR complexities, their

bounded-depth analogues, and the depth-2 XOR complexity. Each of

presented lower-bound techniques uses some property of matrices and

gives some lower bound based on only these properties. Is the technique

“optimal” in the sense that one cannot derive a larger bound by only

using the same properties? We show various examples of this kind,

indicating where progress on lower bounds gets stuck (Table 4.1, § 6.1

and § 6.2).

itly constructed”, not just being “shown to exist”. A more rigorous definition of the
term “explicit” can be found, for example, in the book [50, Section 1.5.1].
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Q5: XOR circuits are the “natural” way to compute linear operators

over F2; but are they the “best” way? To address this question, we

consider general circuits that allow arbitrary boolean functions at its

gates. Despite this model’s crazy power, we still don’t know if there is

any example where it computes an F2-linear operator more efficiently

than XOR circuits do. Moreover, some of our lower bound techniques

apply also to this stronger model, and we describe some of this work

in Chapter 6.

For general circuits computing linear F2-operators, the strongest

known explicit lower bounds have the form Θ(n(ln n/ ln ln n)2) in

depth 2, and the form Θ(n ln ln n) in depth 3; these bounds are tight

and are achievable even by XOR circuits (see Chapter 6). This high-

lights the power of XOR circuits and difficulties of dealing with them.

In larger depths, the known lower bounds for XOR circuits are only

barely superlinear.

If we consider non-linear operators in the arbitrary gates model,

then we have explicit Ω(n3/2) bounds in depth 2, and Ω(n ln n) in depth

3. These bounds were proved by Cherukhin [18, 19] and Jukna [48]

using entropy arguments which do not work for linear operators. In

larger depths, the known bounds are only barely better than those

known for linear operators.

Though organized as a survey, the text also contains some new,

previously unpublished results. These include:

1. Hansel–Krichevski type lower bound (Theorem 3.5).

2. Rectangle-area lower bounds (Theorem 3.12).

3. Depth-2 lower bound for block matrices (Theorem 3.18(iii)).

4. Lower bound for Kronecker products (Theorem 3.20(ii)).

5. Bounds for the Kneser–Sierpinski matrix (Lemma 4.2).

6. Upper bounds for the Sylvester matrix (Theorem 4.3).

7. Balanced decomposition of the triangular matrix (Lemma 5.3).

8. Coverings vs. decompositions in depth 2 (Theorem 5.4).

9. An XOR/OR gap in depth 2 (Theorem 5.12).

10. Matrix/complement gaps (Theorem 5.13, items (i) and (iii)).

11. Linearization of half-linear depth-2 circuits (Lemma 7.17).

Most of the remaining (known) results are given with proofs—in most

Full text available at: http://dx.doi.org/10.1561/0400000063



6 Introduction

cases, substantially simplified—or at least with detailed proof sketches.

The subject of this survey previously found an only fragmentary expo-

sition in the books by Wegener [108], Dunne [24], Jukna [50], and in

an earlier very short survey by Lupanov [63].

What we do not cover To compute linear operators over fields

(S, +, ·), and in particular over infinite fields, it is natural to allow

multiplication by arbitrary field elements as a basic circuit operation.

Such circuits are called linear circuits. If S = {0, 1}, then these are just

the addition circuits considered in this survey. However, the ability to

use “for free” arbitrarily complex coefficients of arbitrary magnitude

is one of the central “mysteries” in arithmetic circuit complexity over

infinite fields.

Research in this direction also has long history, starting with the

seminal works of Morgenstern [67, 68], Grigoriev [37] and Valiant [106].

In this case, gates may compute arbitrary linear combinations of their

inputs, not just 0/1 combinations. It is still an open problem to prove

more than linear lower bounds on circuits computing a linear form Ax

defined by an explicit 0/1 matrix A—such bounds are only known when

either the matrix A has very “complicated” entries (say, square roots

of the first n2 distinct primes) or when the circuit is not allowed to

use large coefficients; see, for example, the book by Bürgisser, Clausen,

and Shokrollahi [13], or the more recent survey by Lokam [61].

1.1 Concepts used

We first recall some (mostly basic) concepts concerning boolean matri-

ces which we will use later. A matrix is boolean if it only has entries 0

and 1. If not otherwise stated,

by a “matrix” we will always mean a “boolean matrix”.

For such a matrix A, |A| denotes the number of 1-entries in A. A

rectangle in a matrix is an all-1 submatrix. If this is an a × b rectangle,

then we define its weight as a + b, its area as a · b, and its density as

a · b/(a + b). For a positive integer r, [r] = {1, . . . , r} will always denote

the set of the first r positive integers.

Full text available at: http://dx.doi.org/10.1561/0400000063



1.1. Concepts used 7

The Kronecker product A ⊗ B of a p × q matrix A = (ai,j) and

an n × m matrix B is an np × mq block-matrix obtained by replacing

1-entries of A by copies of B. The direct sum of matrices A and B is

the matrix A ⊞ B =
[

A 0
0 B

]
.

We can view a rectangle R in an n × n matrix A as an n × n matrix

R̂ with all entries outside R filled by 0s. A set R1, . . . , Rs of rectangles

in a matrix A is a:

• SUM covering (or a decomposition) of A if A =
∑s

i=1 R̂i;

• OR covering (or just a covering) of A if A =
∨s

i=1 R̂i;

• XOR covering of A if A =
⊕s

i=1 R̂i.

The weight of a covering is the sum of weights of its rectangles. For

L ∈ {SUM,OR,XOR} ,

the L-rank of A is the smallest number of rectangles in an L-covering

of A. The L-product of two matrices is their product over the corre-

sponding semiring. Thus, the L-rank of A is the smallest number r

such that A can be written as an L-product A = PQ⊤, where P and Q

are n × r matrices. To visually better distinguish the three ranks, we

will use rk+(A), rk∨(A) and rk(A) to denote, respectively, the SUM-,

OR- and XOR-rank of A. In communication complexity,2 log rk∨(A) is

exactly the nondeterministic communication complexity of A (see, e.g.

[50, § 4.2]).

The term rank, tr(B), of a boolean matrix B is the largest number

of its 1s, no two of which lie in the same row or column. By the König–

Egerváry theorem, this is exactly the smallest number of rows and

columns covering all 1s of B. It is easy to see that

tr(B) > rk+(B) > rk∨(B) .

Indeed, tr(B) is the smallest number a+b such that, after some permu-

tation of rows and columns, the matrix B can be written in the form

B =
[

C D
F 0

]
, where C is an a × b matrix. We can therefore write B as

a sum of a + b pairwise disjoint rectangles, each corresponding to one

row or column of B.

2If not specified otherwise, log n will always stand for log2 n.
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8 Introduction

A matrix A is (k, l)-free (k, l > 1) if it does not contain a k × l

rectangle; being k-free means being (k, k)-free. Known upper bounds

for the Zarankiewicz problem (see, for example, [58] or the book [8])

state that, if A is a (k, l)-free matrix of dimension m × n, then

|A| 6 (k − 1)1/l(n − l + 1)m1−1/l + (l − 1)m . (1.2)

A matrix is (k, l)-Ramsey matrix if both the matrix and its complement

are (k, l)-free.

We will often use the arithmetic-geometric mean inequality

1

n

n∑

i=1

xi >
( n∏

i=1

xi

)1/n
, (1.3)

as well as a special version of the Jensen inequality for a convex func-

tion f :
n∑

i=1

f(xi) > n · f
(X

n

)
, (1.4)

where X =
∑n

i=1 xi and all xi > 0. In particular, by taking f(x) =

x log x, we obtain
n∑

i=1

xi log xi > X log
X

n
, (1.5)

In some estimates we will also use the binary entropy function

H(α) = α log
1

α
+ (1 − α) log

1

1 − α
.

Asymptotic notation To spare parenthesis (in larger expressions), we

will occasionally write f < g instead of f = Ω(g), f 4 g instead

of f = O(g), and f ≍ g instead of f = Θ(g). Also, f ≪ g stands

for f = o(g). Notation f ∼ g means the usual (tight) asymptotic

f/g → 1. By saying “the n × n matrix A has complexity < g(n)” we

will actually mean that we have an infinite sequence {An} of n × n

matrices (n = 1, 2, . . .) for which there exists a constant ǫ > 0 such

that “complexity of An is > ǫg(n)” holds for infinitely many n. By

writing “A has complexity > g(n)”, we will mean that this holds for all

large enough dimensions n.

Full text available at: http://dx.doi.org/10.1561/0400000063



1.2. Simple observations 9

1.2 Simple observations

We denote the minimum number of edges in an OR, XOR and SUM

circuit implementing a given matrix A by OR(A), XOR(A) and SUM(A).

If we speak only about circuits of depth 6 d, then the corresponding

measures are denoted by ORd(A), XORd(A) and SUMd(A).

As we noted above, SUM circuits constitute the weakest model:

each such circuit can be turned into an OR circuit or an XOR circuit

just by replacing the operations computed at their nodes. So, for every

matrix A, we have that

OR(A) 6 SUM(A) and XOR(A) 6 SUM(A) .

In the case of depth-d circuits, we will assume that the underlying

graph is “leveled” in the following sense. We have d + 1 levels of nodes.

The first level consists of input nodes, the last consists of output nodes,

and each edge goes from one level to the next one. Thus, if Ai is the

boolean adjacency matrix of the bipartite graph between the (i + 1)-th

and i-th levels, then these measures give the smallest weight
∑d

i=1 |Ai|
of the presentation of A as a product A = Ad · Ad−1 · · · A1 of boolean

matrices over the corresponding semirings, where |Ai| is the number of

1s in Ai. That is,

L-complexity of A = smallest weight of an L-factorization of A .

Observation 1.1 (Transposition principle). The complexities of a matrix

A and its transpose A⊤ are the same.

Proof. Given any circuit for A, one may reverse the direction of all

edges to obtain a circuit for A⊤.

Observation 1.2. The complexity of a submatrix is at most the com-

plexity of the entire matrix.

Proof. Given a circuit for a matrix, we can remove all input and output

nodes that are not in the submatrix.

For counting reasons, it is sometimes convenient to transform the

circuit so that every inner node (non-input node) has fanin at most 2,

Full text available at: http://dx.doi.org/10.1561/0400000063



10 Introduction

and then count the nodes in a new circuit rather than the edges in the

original one.

Observation 1.3. An unbounded fanin circuit with e edges and v non-

input nodes can be turned into an equivalent fanin-2 circuit with e − v

nodes.

Proof. Just replace every node of fanin d > 2 by a binary tree with

d − 1 inner nodes. The difference e′ − v′ in the new circuit equals e − v

in the original circuit. See [50, Section 1.8] for more details.

Depth-1 complexity is a trivial measure: we have SUM(A) 6

SUM1(A) = |A| 6 n2 for every n × n matrix A. Depth-2 circuits

constitute the first non-trivial model. We already know that L2(A) =

min{|B| + |C| : A = B · C}. Here and in what follows, L(A) stands for

the SUM, OR or XOR complexity, and the matrix product is over the

corresponding semiring. On the other hand, depth-2 circuits have also

a combinatorial description in terms of coverings.

Observation 1.4. For every matrix A, L2(A) is the minimum weight of

an L-covering of A.

Proof. The paths going through one node on the middle level of a

circuit for A define a rectangle in A.

Let again L(A) stand for the SUM, OR or XOR complexity, and let

A + B and A · B denote the matrix sum and the matrix product over

the corresponding semiring. Then we have:

1. L(A + B) 6 L(A) + L(B), if the matrices can be added;

2. L(A · B) 6 L(A) + L(B), if the matrices can be multiplied;

3. L(A ⊞ B) 6 L(A) + L(B);

4. L(A ⊗ B) 6 a · L(B) + b · L(A), if A has a rows, and B has b

columns.

Only (4) needs a proof. First, we rewrite the Kronecker product as

A ⊗ B = (Ia ⊗ B)(A ⊗ Ib), and observe that A ⊗ Ib = P (Ib ⊗ A)Q for

particular permutation matrices P and Q. Since, Ia ⊗ B = B ⊞ B ⊞

· · ·⊞B is a direct sum (a times), the desired inequality (4) follows from

(2) and (3).
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1.3. Some basic matrices 11

1.3 Some basic matrices

Let us recall the definitions of some basic matrices whose complexities

we will investigate later. These matrices are well-suited to demonstrate

known lower bound techniques. This section is just for later reference,

so that the reader can safely skip it, and proceed with the next section.

Full triangular matrix The full triangular matrix Tn, known also as

the prefix matrix, is an n × n matrix with 1s on the main diagonal

and below it, and zeroes elsewhere. For n = 2r, these matrices can be

defined recursively as follows:

T2 =

[
1 0

1 1

]
, T4 =




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1


 , T2n =

[
Tn 0

1 Tn

]
.

This gives the recursion SUM2(Tn) 6 2 · SUM2(Tn/2) + n, which

results to

SUM2(Tn) 6 n log n + n . (1.6)

Complement of identity matrix To demonstrate some bounds, we

will also use the complement In = Tn ⊕ T ⊤
n of the identity matrix In

for n = 2r. For this matrix, we have that

rk∨(In) 6 2r = 2 log n and OR2(In) 6 2r2r = 2n log n . (1.7)

To see this, label the rows and columns of In by vectors u ∈ {0, 1}r .

For each position i ∈ {1, . . . , r}, we have two rectangles: one consists

of all pairs (u, v) such that ui = 0 and vi = 1, and the other consists

of all pairs (u, v) such that ui = 1 and vi = 0. This way, we obtain a

covering of In by 2r rectangles of total weight 4r2r−1 = 2n log n.

A general construction of some important n×n matrices, for n = 2r

being a power of two, is the following. Label the rows and columns by

distinct subsets u of [r]. The n × n matrix Mf induced by a function

f : {0, 1, . . . , r} → {0, 1} is then defined by: Mf [u, v] := f(|u ∩ v|).
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Kneser–Sierpinski (disjointness) matrix In graph theory, the Kneser

graph is the graph whose nodes correspond to the k-element subsets

of a set of r elements, and where two nodes are adjacent if and only if

the two corresponding sets are disjoint. Kneser graphs are named after

Martin Kneser, who first investigated them in 1955.

By analogy, the Kneser-Sierpinski n × n matrix (known also as the

disjointness matrix) D = Dn is the f -intersection matrix induced by

the function f(x) = 1 if and only if x = 0. That is, the rows and

columns of D = Dn with n = 2r are labeled by distinct subsets u of [r],

and D[u, v] = 1 if and only if u ∩ v = ∅. These matrices can be defined

inductively as follows:

D2 =

[
1 0

1 1

]
, D4 =




1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


 , D2n =

[
Dn 0

Dn Dn

]
. (1.8)

The Kneser–Sierpinski matrix D is an important object. This ma-

trix is also sometimes called the Sierpinski matrix, since it resembles

the well-known “Sierpinski gasket”. In particular, it gives a linear trans-

formation between the vector of the values of a boolean function f and

the vector of coefficients of its unique representation as multilinear poly-

nomial over the 2-element field. This polynomial is also known as the

Zhegalkin polynomial for f .

To see this, consider a boolean function f : 2[r] → {0, 1} and its

XOR-polynomial f(X) =
⊕

u⊆[r] g(u)Xu with boolean coefficients g(u),

and Xu =
∏

i∈u xi. Then the 2r ×2r matrix D induces a linear mapping

from the vector (g(u) : u ⊆ [r]) to the vector (f(v) : v ⊆ [r]): just note

that Xu(v) = 1 if and only if u ⊆ v, or, in other words, if and only if

u ∩ v = ∅. Moreover, the inverse map is also given by the matrix D,

since D = D−1 (easy to check).

Intersection matrix The intersection n × n matrix is the f -

intersection matrix induced by the function f(x) = 1 if and only if

x > 0. That is, the intersection matrix is just the complement Ðn = Dn

of the Kneser–Sierpinski matrix with n = 2r. The rows and columns

are labeled by distinct subsets u of [r], and Ð[u, v] = 1 if and only if
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u ∩ v 6= ∅. These matrices also have a recursive definition:

Ð2 =

[
0 1

0 0

]
, Ð4 =




0 1 1 1

0 0 1 1

0 1 0 1

0 0 0 0


 , Ð2n =

[
Ðn 1

Ðn Ðn

]
.

By identifying subsets u with their characteristic vectors, we see that

Ð[u, v] =
∨r

i=1 ui ∧ vi. Thus, over the boolean semiring, we have that

Ð = B ·B⊤ for the n×r matrix B whose rows are all vectors of length r.

This yields

OR2(Ðn) 6 2r2r−1 = n log n . (1.9)

In the unique intersection matrix Ðu we have a stronger condition

for 1s: Ðu[u, v] = 1 if and only if |u ∩ v| = 1.

Sylvester matrices The Sylvester n × n matrix Hn for n = 2r is the

n × n f -intersection matrix induced by the function f(x) = x mod 2.

That is, the rows and columns of H are labeled by distinct subsets u

of [r], and H[u, v] = 1 if and only if |u ∩ v| is odd. Sylvester matrices

can be defined inductively as follows:

H2 =

[
0 0

0 1

]
, H4 =




0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0


 , H2n =

[
Hn Hn

Hn Hn

]
. (1.10)

By identifying subsets of [r] with their characteristic vectors u ∈ {0, 1}r ,

we see that H[u, v] = 〈u, v〉 = u1v1 ⊕ u2v2 ⊕ · · · ⊕ urvr is the scalar

product of u and v over F2. Thus, H is just a “counting version” of

the intersection matrix, and we have H = B · B⊤ over F2 for the n × r

matrix B whose rows are all n binary vectors of length r. This yields

XOR2(Hn) 6 2r2r−1 = n log n . (1.11)

A basic property of Sylvester matrices is expressed by the following

lemma, whose simple proof can be found, say, in [28, p. 88].

Lindsey’s Lemma. The Sylvester n × n matrix contains no monochro-

matic a × b submatrices, unless ab 6
√

n.
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We will show in § 3.3 that OR(A) > |A|/k2 holds for every k-free

matrix A. Here we give some examples of such matrices.

Random matrices A random n × n matrix A, where each entry is

drawn uniformly and independently from {0, 1}, has Ω(n2) ones, and

is k-free for relatively small k. This holds because A fails to be k-free

with probability at most
(n

k

)2
2−k2 ≪ e2k ln n−k2

: there are
(n

k

)2
k × k

submatrices, and the probability that all k2 entries of a given k × k

submatrix are 0s is 2−k2
. For k > 2 ln n, this probability tends to 0

as n → ∞. Thus, k-free n × n matrices A with k = O(log n) and

|A| = Ω(n2) exist.

Singer matrix [100] The upper bound (1.2) for the Zarankiewicz

problem implies that no 2-free n×n matrix can have more than n3/2+n

ones. On the other hand, there are several explicit constructions of 2-

matrices with almost this number of 1s. One of the oldest construction

is due to Singer [100].

For a prime power q, a projective plane PG(2, q) has n = q2 + q + 1

points and n subsets of points (called lines). Every point lies in q + 1

lines, every line has q + 1 points, any two points lie on a unique line,

and any two lines meet in the unique point.

The point-line incidence matrix of a finite projective plane P was

introduced by Singer [100]. Label rows by points x, columns by lines

L, and let P [x, L] = 1 if and only if x ∈ L, then the obtained matrix is

2-free. The number of 1s is |P | = (q + 1)n > n3/2.

A 2-free matrix similar in spirit to Singer’s was constructed by

Kövari–Sós—Turán [58] and Nechiporuk [74]. This matrix is related to

the point-line incidences in a finite affine plane. Here rows and columns

correspond to pairs of numbers in Fq, and each row (a, b) has 1s in

positions (x, ax − b) with x ∈ Fq. Thus, |A| = nq = q3 = n3/2. The

matrix is 2-free because every system of two equations ax = b + y and

cx = d + y has at most one solution.

Circulant matrices A matrix is circulant if each its row is a cyclic

shift (by one position to the left) of the previous one. Singer [100]
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proved that his n × n matrices P with n = q2 + q + 1 and q a prime

power are circulant: there exists a subset S ⊆ {0, 1, . . . , n − 1} of size

|S| = q + 1 such that (after permutation of rows and columns) we have

that P [x, y] = 1 if and only if y = x + a mod n for some a ∈ S. The

circulant property is significant for us because such matrices have small

XOR complexity (see § 5.4).

We can define a circulant matrix by giving a subset S = {s1, . . . , sk}
of Zn = {0, 1, . . . , n − 1}: these are the positions of 1s in the first row.

The resulting circulant matrix A has |A| = kn ones. Such a set is called

a Sidon set if all differences modulo n of two its elements are distinct.

It is well known (and not difficult to show) that, if the support S of a

circulant matrix A is a Sidon set, then the matrix A is 2-free: the 1s of

A stay on |S| diagonals determined by position in S. It is known that

no Sidon set can have more than
√

n + 1 elements. Explicit examples

of Sidon sets S with |S| ∼ √
n were given by Alexeev [1], Bose [9],

Ruzsa [94], and other authors; see a survey by O’Bryant [77].

Norm matrices Let q be a prime-power, t > 2 an integer, and consider

the field Fqt with qt elements. The norm of an element a of this field is

defined as the element ‖a‖ := a · aq · · · aqt−1
= a(qt−1)/(q−1) of this field.

Now let n = qt, and construct an n × n matrix N = Nn,t whose rows

and columns are labeled by elements of Fqt . The entries are defined by

letting N [a, b] = 1 if and only if ‖a + b‖ = 1.

It is known that the number of solutions in Fqt of the equation ‖x‖ =

1 is (qt − 1)/(q − 1); see e. g., the book by Lidl and Niederreiter [60].

Hence, each row of N has r = (qt − 1)/(q − 1) ones, implying that the

total number of ones is |N | = rqt > q2t−1 = n2−1/t.

Kollár, Rónyai and Szabó [57] proved that, for every t distinct ele-

ments a1, . . . , at of Fqt, the system of equations ‖a1+x‖ = 1, ‖a2 +x‖ =

1, . . . , ‖at + x‖ = 1 has at most t! solutions x ∈ Fqt . This implies that

the constructed matrix N has no t×(t!+1) all-1 submatrix. Hence, the

constructed matrix A is (t, t! + 1)-free. Explicit matrices with slightly

worse parameters were constructed earlier by Andreev [7].
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