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Abstract

This monograph presents ideas and techniques from approximation theory for
approximating functions such as xs, x−1 and e−x, and demonstrates how these
results play a crucial role in the design of fast algorithms for problems which
are increasingly relevant. The key lies in the fact that such results imply faster
ways to compute primitives such as Asv, A−1v, exp(−A)v, eigenvalues, and
eigenvectors, which are fundamental to many spectral algorithms. Indeed,
many fast algorithms reduce to the computation of such primitives, which
have proved useful for speeding up several fundamental computations such
as random walk simulation, graph partitioning, and solving systems of linear
equations.
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Introduction

A Brief History of Approximation Theory

The area of approximation theory is concerned with the study of how well
functions can be approximated by simpler ones. While there are several no-
tions of well and simpler, arguably, the most natural notion is that of uniform
approximations by polynomials: Given a function f : R 7→ R and an interval
I, what is the closest a degree d polynomial can remain to f (x) throughout
the entire interval? Formally, if Σd is the class of all univariate real polyno-
mials of degree at most d, the goal is to understand

ε f ,I(d)
def
= inf

p∈Σd
sup
x∈I
| f (x)− p(x)|.

This notion of approximation, called uniform approximation or Chebyshev
approximation, is attributed to Pafnuty Chebyshev, who initiated this area in
an attempt to improve upon the parallel motion invented by James Watt for
his steam engine; see [13]. Chebyshev discovered the alternation property
of the best approximating polynomial and found the best degree-d−1 poly-
nomial approximating the monomial xd ; see [14]. Importantly, the study of
this question led to the discovery of, what are now referred to as, Chebyshev
polynomials (of the first kind). Chebyshev polynomials find applications in
several different areas of science and mathematics and, indeed, repeatedly
make an appearance in this monograph due to their extremal properties.1

1The Chebyshev polynomial of degree-d is the polynomial that arises when one writes
cos(dθ) as a polynomial in cosθ .

2
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Introduction 3

Despite Chebyshev’s seminal results in approximation theory, including
his work on best rational approximations, several foundational problems re-
mained open. While it is obvious that ε f ,I(d) cannot increase as we increase
d, it was Weierstrass [67] who later established that, for any continuous func-
tion f and a bounded interval I, the error ε f ,I(d) tends to 0 as d goes to
infinity. Further, it was Emile Borel [11] who proved that the best approxima-
tion is always achieved and is unique. Among other notable initial results in
approximation theory, A. A. Markov [38], motivated by a question in chem-
istry posed by Mendeleev, proved that the absolute value of the derivative of
a degree d polynomial that is bounded in absolute value by 1 in the interval
[−1,1] cannot exceed d2. These among other results not only solved impor-
tant problems motivated by science and engineering, but also significantly
impacted theoretical areas such as mathematical analysis in the early 1900s.

With computers coming into the foray around the mid 1900s, there was a
fresh flurry of activity in the area of approximation theory. The primary goal
was to develop efficient ways to calculate mathematical functions arising in
scientific computation and numerical analysis. For instance, to evaluate ex for
x ∈ [−1,1], it is sufficient to store the coefficients of its best polynomial (or
rational) approximation in this interval. For a fixed error, such approximations
often provided a significantly more succinct representation of the function
than the representation obtained by truncating the appropriate Taylor series.

Amongst this activity, an important development occurred in the 1960s
when Donald Newman [43] showed that the best degree-d rational approx-
imation to the function |x| on [−1,1] achieves an approximation error of
e−Θ(

√
d), while the best degree-d polynomial approximation can only achieve

an error of Θ(1/d). Though rational functions were also considered earlier, in-
cluding by Chebyshev himself, it was Newman’s result that revived the area
of uniform approximation with rational functions and led to several rational
approximation results where the degree-error trade-off was exponentially bet-
ter than that achievable by polynomial approximations. Perhaps the problem
that received the most attention, due to its implications to numerical methods
for solving systems of partial differential equations (see [19]), was to under-
stand the best rational approximation to e−x over the interval [0,∞). Rational
functions of degree d were shown to approximate e−x on [0,∞) up to an error
of cd for some constant c < 1. This line of research culminated in a land-
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4 Introduction

mark result in this area by Gonchar and Rakhmanov [20] who determined the
optimal c. Despite remarkable progress in the theory of approximation by ra-
tional functions, there seems to be no clear understanding as to why rational
approximations are often significantly better than polynomial approximations
of the same degree, and surprising results abound. Perhaps this is what makes
the study of rational approximations promising and worth understanding.

Approximation Theory in Algorithms and Complexity

Two of the first applications of approximation theory in algorithms2 were the
Conjugate Gradient method (see [24, 31]) and the Lanczos method (see [36]),
which are used to solve systems of linear equations Ax = v where A is an
n×n real, symmetric, and positive semi-definite (PSD) matrix. These results,
which surfaced in the 1950s, resulted in what are called Krylov subspace
methods and can also be used to speed up eigenvalue and eigenvector compu-
tations. These methods are iterative and reduce such computations to a small
number of computations of the form Au for different vectors u. Thus, they are
particularly suited for sparse matrices that are too large to handled by Gaus-
sian elimination-based methods; see the survey [58] for a detailed discussion.

Until recently, the main applications of approximation theory in theo-
retical computer science have been in complexity theory. One of the most
notable was by Beigel et al. [8] who used Newman’s result to show that the
complexity class PP is closed under intersections and unions.3 Another im-
portant result where approximation theory, in particular Chebyshev polyno-
mials, played a role is the quadratic speed-up for quantum search algorithms,
initiated by a work by Grover [22]. The fact that one cannot speed up beyond
Grover’s result was shown by Beals et al. [7] which, in turn, relied on the use
of Markov’s theorem as inspired by Nisan and Szegedy’s lower bound for the
Boolean OR function [46]. For more on applications of approximation theory
to complexity theory, communication complexity and computational learning
theory, we refer the reader to [1, 33, 61, 65], and for applications to streaming
algorithms to [23].

2More precisely, in the area of numerical linear algebra.
3PP is the complexity class that contains sets that are accepted by a polynomial-time

bounded probabilistic Turing machine which accepts with probability strictly more than 1/2.
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Introduction 5

Faster Algorithms via Approximation Theory

The goal of this monograph is to illustrate how classical and modern tech-
niques from approximation theory play a crucial role in obtaining results that
are relevant to the emerging theory of fast algorithms. For example, we show
how to compute good approximations to matrix-vector products such as Asv,
A−1v and exp(−A)v for any matrix A and a vector v.4 We also show how to
speed up algorithms that compute the top few eigenvalues and eigenvectors
of a symmetric matrix A. Such primitives are useful for performing several
fundamental computations quickly, such as random walk simulation, graph
partitioning, and solving linear system of equations. The algorithms for com-
puting these primitives perform calculations of the form Bu where B is a
matrix closely related to A (often A itself) and u is some vector. A key feature
of these algorithms is that if the matrix-vector product for A can be computed
quickly, e.g., when A is sparse, then Bu can also be computed in essentially
the same time. This makes such algorithms particularly relevant for handling
the problem of big data. Such matrices capture either numerical data or large
graphs, and it is inconceivable to be able to compute much more than a few
matrix-vector product on matrices of this size.

Roughly half of this monograph is devoted to the ideas and results from
approximation theory that we think are central, elegant, and may have wider
applicability in TCS. These include not only techniques relating to polyno-
mial approximations but also those relating to approximations by rational
functions and beyond. The remaining half illustrates a variety of ways we
can use these results to design fast algorithms.

As a simple but important application, we show how to speed up the com-
putation of Asv where A is a symmetric matrix with eigenvalues in [−1,1], v
is a vector and s is a large positive integer. The straightforward way to com-
pute Asv takes time O(ms) where m is the number of non-zero entries in A,
i.e., A’s sparsity. We show how, appealing to a result from approximation
theory, we can bring this running time down to essentially O(m

√
s). We start

with a result on polynomial approximation for xs over the interval [−1,1].
Using some of the earliest results proved by Chebyshev, it can be shown that

4Recall that the matrix exponential is defined to be exp(−A) def
= ∑k≥0

(−1)kAk

k! .
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6 Introduction

there is a polynomial p of degree d ≈
√

s log 1/δ that δ -approximates xs over
[−1,1]. Suppose p(x) is ∑

d
i=0 aixi, then the candidate approximation to Asv

is ∑
d
i=0 aiAiv. The facts that all the eigenvalues of A lie in [−1,1], and that

p is close to xs in the entire interval [−1,1] imply that ∑
d
i=0 aiAiv is close

to Asv. Moreover, the time taken to compute ∑
d
i=0 aiAiv is easily seen to be

O(md) = O(m
√

s log 1/δ), which gives us a saving of about
√

s.

When A is the random walk matrix of a graph and v is an initial distri-
bution over the vertices, the result above implies that we can speed up the
computation of the distribution after s steps by a quadratic factor. Note that
this application also motivates why uniform approximation is the right no-
tion for algorithmic applications, since all we know is the interval in which
eigenvalues of A lie while v can be any vector and, hence, we would like the
approximating polynomial to be close everywhere in that interval.

While the computation of exp(−A)v is of fundamental interest in sev-
eral areas of mathematics, physics, and engineering, our interest stems from
its recent applications in algorithms and optimization. Roughly, these latter
applications are manifestations of the multiplicative weights method for de-
signing fast algorithms, and its extension to solving semi-definite programs
via the framework by Arora and Kale [6].5 At the heart of all algorithms
based on the matrix multiplicative weights update method is a procedure to
quickly compute exp(−A)v for a symmetric, positive semi-definite matrix A
and a vector v. Since exact computation of the matrix exponential is expen-
sive, we seek an approximation. It suffices to approximate the function e−x

on a certain interval. A simple approach is to truncate the Taylor series ex-
pansion of e−x. However, we can use a polynomial approximation result for
e−x to produce an algorithm that saves a quadratic factor (a saving similar to
the application above). In fact, when A has more structure, we can go beyond
the square-root.

For fast graph algorithms, often the quantity of interest is exp(−tL)v,
where L is the normalized Laplacian of a graph, t ≥ 0 and v is a vector. The
vector exp(−tL)v can also be interpreted as the resulting distribution of a t-
length continuous-time random walk on the graph with starting distribution
v. Appealing to a rational approximation to e−x with some additional prop-

5See also [26, 27, 28, 29, 50, 51, 48, 66, 5].
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Introduction 7

erties, the computation of exp(−tL)v can be reduced to a small number of
computations of the form L−1u. Thus, using the near-linear-time Laplacian
solver6 due to Spielman and Teng [62], this gives an Õ(m)-time algorithm
for approximating exp(−tL)v for graphs with m edges. In the language of
random walks, continuous-time random walks on an undirected graph can
be simulated essentially independent of time; such is the power of rational
approximations.

A natural question which arises from our last application is whether the
Spielman-Teng result (which allows us to perform computations of the form
L−1u) is necessary in order to compute exp(−L)v in near-linear time. In
our final application of approximation theory, we answer this question in the
affirmative: We show that the inverse of a positive-definite matrix can be ap-
proximated by a weighted-sum of a small number of matrix exponentials.
Roughly, we show that for a PSD matrix A, A−1 ≈ ∑

k
i=1 wi exp(−tiA) for a

small k. Thus, if there happens to be an algorithm that performs computations
of the form exp(−tiA)v in time T (independent of ti), then we can compute
A−1v in essentially O(T k) time. Thus, we show that the disparate looking
problems of inversion and exponentiation are really the same from a point of
view of designing fast algorithms.

Organization

We first present the ideas and results from approximation theory and subse-
quently we present applications to the design of fast algorithms. While we
have tried to keep the presentation self-contained, for the sake of clarity, we
have sometimes sacrificed tedious details. This means that, on rare occasions,
we do not present complete proofs or do not present theorems with optimal
parameters.

In Section 1, we present some essential notations and results from ap-
proximation theory. We introduce Chebyshev polynomials in Section 2, and
prove certain extremal properties of these polynomials which are used in this
monograph. In Sections 3 and 4 we construct polynomial approximations to

6A Laplacian solver is an algorithm that (approximately) solves a given system of linear
equations Lx = v, where L is a (normalized) graph Laplacian and v ∈ Im(L), i.e., it (approxi-
mately) computes L−1v; see [66].
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8 Introduction

the monomial xs over the interval [−1,1] and e−x over the interval [0,b] re-
spectively. Both results are based on Chebyshev polynomials. In Section 5
we prove a special case of Markov’s theorem which is then used to show that
these polynomial approximations are asymptotically optimal.

Sections 6–7 are devoted to introducing techniques for understanding ra-
tional approximations for the function e−x over the interval [0,∞). In Section
6, we first show that degree d rational functions can achieve cd error for some
0 < c < 1. Subsequently we prove that this result is optimal up to the choice
of constant c. In Section 7 we present a proof of the theorem that such geo-
metrically decaying errors for the e−x can be achieved by rational functions
with an additional restriction that all its poles be real and negative. We also
show how to bound and compute the coefficients involved in this rational
approximation result; this is crucial for the application presented in Section
11.

Sections 8–11 contain the presentation of applications of the approxima-
tion theory results. In Section 8 we show how the results of Section 3 imply
that we can quadratically speed up random walks in graphs. Here, we dis-
cuss the important issue of computing the coefficients of the polynomials in
Section 3. In Section 9 we present the famous Conjugate Gradient method
for iteratively solving symmetric PSD systems Ax = v, where the number
of iterations depends on the square-root of the condition number of A. The
square-root saving is shown to be due to the scalar approximation result for xs

from Section 2. In Section 10 we present the Lanczos method and show how
it can be used to approximate the largest eigenvalue of a symmetric matrix.
We show how the existence of a good approximation for xs, yet again, allows
a quadratic speedup over the power method.

In Section 11 we show how the polynomial and rational approximations
to e−x developed in Sections 6 and 7 imply the best known algorithms for
computing exp(−A)v. If A is a symmetric and diagonally dominant (SDD)
matrix, then we show how to combine rational approximations to e−x with
negative poles with the powerful SDD (Laplacian) solvers of Spielman-Teng
to obtain near-linear time algorithms for computing exp(−A)v.

Finally, in 12, we show how x−1 can be approximated by a sparse sum
of the form ∑i wie−tix over the interval (0,1]. The proof relies on the Euler-
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Introduction 9

Maclaurin formula and certain bounds derived from the Riemann zeta func-
tion. Using this result, we show how to reduce computation of A−1v for a sym-
metric positive-definite (PD) matrix A to the computation of a small number
of computations of the form exp(−tA)v. Apart from suggesting a new ap-
proach to solving a PD system, this result shows that computing exp(−A)v
inherently requires the ability to solve a system of equations involving A.
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