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Abstract

This text collects the lecture notes from the author’s course “Commu-
nication Complexity (for Algorithm Designers),” taught at Stanford in
the winter quarter of 2015. The two primary goals of the text are:

(1) Learn several canonical problems in communication complexity
that are useful for proving lower bounds for algorithms (disjoint-
ness, index, gap-hamming, etc.).

(2) Learn how to reduce lower bounds for fundamental algorithmic
problems to communication complexity lower bounds.

Along the way, readers will also:

(3) Get exposure to lots of cool computational models and some
famous results about them — data streams and linear sketches,
compressive sensing, space-query time trade-offs in data struc-
tures, sublinear-time algorithms, and the extension complexity
of linear programs.

(4) Scratch the surface of techniques for proving communication com-
plexity lower bounds (fooling sets, corruption arguments, etc.).

T. Roughgarden. Communication Complexity (for Algorithm Designers).
Foundations and TrendsR© in Theoretical Computer Science, vol. 11, nos. 3-4,
pp. 217–404, 2015.
DOI: 10.1561/0400000076.
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Preface

The best algorithm designers prove both possibility and impossibility
results — both upper and lower bounds. For example, every serious
computer scientist knows a collection of canonical NP-complete prob-
lems and how to reduce them to other problems of interest. Commu-
nication complexity offers a clean theory that is extremely useful for
proving lower bounds for lots of different fundamental problems. Many
of the most significant algorithmic consequences of the theory follow
from its most elementary aspects.

This document collects the lecture notes from my course “Commu-
nication Complexity (for Algorithm Designers),” taught at Stanford in
the winter quarter of 2015. The two primary goals of the tutorial are:

(1) Learn several canonical problems in communication complex-
ity that are useful for proving lower bounds for algorithms
(Disjointness, Index, Gap-Hamming, etc.).

(2) Learn how to reduce lower bounds for fundamental algorithmic
problems to communication complexity lower bounds.

Along the way, we will also:

(3) Get exposure to lots of cool computational models and some
famous results about them — data streams and linear sketches,

2
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3

compressive sensing, space-query time trade-offs in data struc-
tures, sublinear-time algorithms, and the extension complexity
of linear programs.

(4) Scratch the surface of techniques for proving communication com-
plexity lower bounds (fooling sets, corruption arguments, etc.).

Readers are assumed to be familiar with undergraduate-level algo-
rithms, as well as the statements of standard large deviation inequalities
(Markov, Chebyshev, and Chernoff-Hoeffding).

The course material begins in Lectures 1–3 with the simple case
of one-way communication protocols — where only a single message is
sent — and their relevance to algorithm design. Each of these sections
depends on the previous one. Many of the “greatest hits” of communi-
cation complexity applications, including lower bounds for small-space
streaming algorithms and compressive sensing, are already implied by
lower bounds for one-way protocols. Reasoning about one-way proto-
cols also provides a gentle warm-up to the standard model of general
two-party communication protocols, which is the subject of Lecture 4.
Lectures 5–8 translate communication complexity lower bounds into
lower bounds in several disparate problem domains: the extension com-
plexity of polytopes, data structure design, algorithmic game theory,
and property testing. Each of these final four lectures depends only on
Lecture 4.

The course Web page (http://theory.stanford.edu/~tim/w15/
w15.html) contains links to relevant large deviation inequalities, links
to many of the papers cited in these notes, and a partial list of exercises.
Lecture notes and videos on several other topics in theoretical computer
science are available from my Stanford home page.

I always appreciate suggestions and corrections from readers.

Tim Roughgarden
474 Gates Building, 353 Serra Mall
Stanford, CA 94305
Email: tim@cs.stanford.edu
http://www.timroughgarden.org
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1
Data Streams: Algorithms and Lower Bounds

1.1 Preamble

This class is mostly about impossibility results — lower bounds on what
can be accomplished by algorithms. However, our perspective will be
unapologetically that of an algorithm designer.1 We will learn lower
bound technology on a “need-to-know” basis, guided by fundamental
algorithmic problems that we care about (perhaps theoretically, per-
haps practically). That said, we will wind up learning quite a bit of
complexity theory — specifically, communication complexity — along
the way. We hope this viewpoint makes this tutorial complementary
to the numerous excellent courses, books ([50, 58]), and surveys (for
example, [17, 59, 61, 74]) on communication complexity.2 The theme
of communication complexity lower bounds also provides a convenient
excuse to take a guided tour of numerous models, problems, and algo-
rithms that are central to modern research in the theory of algorithms
but missing from many algorithms textbooks: streaming algorithms,

1Already in this lecture, over half our discussion will be about algorithms and
upper bounds!

2See [71] for a series of four blog posts on data structures that share some spirit
with our approach.

4
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1.2. The data stream model 5

space-time trade-offs in data structures, compressive sensing, sublinear
algorithms, extended formulations for linear programs, and more.

Why should an algorithm designer care about lower bounds?
The best mathematical researchers can work on an open problem
simultaneously from both sides. Even if you have a strong prior belief
about whether a given mathematical statement is true or false, failing
to prove one direction usefully informs your efforts to prove the other.
(And for most us, the prior belief is wrong surprisingly often!) In
algorithm design, working on both sides means striving simultaneously
for better algorithms and for better lower bounds. For example,
a good undergraduate algorithms course teaches you both how to
design polynomial-time algorithms and how to prove that a problem
is NP -complete — since when you encounter a new computational
problem in your research or workplace, both are distinct possibilities.
There are many other algorithmic problems where the fundamental
difficulty is not the amount of time required, but rather concerns
communication or information transmission. The goal of this tutorial
is to equip you with the basic tools of communication complexity — its
canonical hard problems, the canonical reductions from computation
in various models to the design of low-communication protocols, and
a little bit about its lower bound techniques — in the service of
becoming a better algorithm designer.

This lecture and the following one study the data stream model
of computation. There are some nice upper bounds in this model (see
Sections 1.4 and 1.5), and the model also naturally motivates a severe
but useful restriction of the general communication complexity setup
(Section 1.7). We will cover many computational models in the tutorial,
so whenever you get sick of one, do not worry, a new one is coming up
around the corner.

1.2 The data stream model

The data stream model is motivated by applications in which the input
is best thought of as a firehose — packets arriving to a network switch

Full text available at: http://dx.doi.org/10.1561/0400000076



6 Data Streams: Algorithms and Lower Bounds

at a torrential rate, or data being generated by a telescope at a rate of
one exabyte per day. In these applications, there is no hope of storing
all the data, but we still like to remember useful summary statistics
about what we have seen.

Alternatively, for example in database applications, it could be that
data is not thrown away but resides on a big, slow disk. Rather than
incurring random access costs to the data, one would like to process
it sequentially once (or a few times), perhaps overnight, remembering
the salient features of the data in a limited main memory for real-time
use. The daily transactions of Amazon or Walmart, for example, could
fall into this category.

Formally, suppose data elements belong to a known universe U =
{1, 2, . . . , n}. The input is a stream x1, x2, . . . , xm ∈ U of elements that
arrive one-by-one. Our algorithms will not assume advance knowledge
of m, while our lower bounds will hold even if m is known a priori.
With space ≈ m log2 n, it is possible to store all of the data. The cen-
tral question in data stream algorithms is: what is possible, and what
is impossible, using a one-pass algorithm and much less than m logn
space? Ideally, the space usage should be sublinear or even logarithmic
in n and m. We’re not going to worry about the computation time used
by the algorithm (though our positive results in this model have low
computational complexity, anyway).

Many of you will be familiar with a streaming or one-pass algorithm
from the following common interview question. Suppose an array A,
with length m, is promised to have a majority element — an element
that occurs strictly more thanm/2 times. A simple one-pass algorithm,
which maintains only the current candidate majority element and a
counter for it — so O(logn+ logm) bits — solves this problem. (This
is a good exercise, if you haven’t seen it before.) This can be viewed as
an exemplary small-space streaming algorithm.3

3Interestingly, the promise that a majority element exists is crucial. A conse-
quence of the next lecture is that there is no small-space streaming algorithm to
check whether or not a majority element exists!
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1.3. Frequency moments 7

1.3 Frequency moments

Next we introduce the canonical problems in the field of data stream
algorithms: computing the frequency moments of a stream. These were
studied in the paper that kickstarted the field [1], and the data stream
algorithms community has been obsessed with them ever since.

Fix a data stream x1, x2, . . . , xm ∈ U . For an element j ∈ U , let
fj ∈ {0, 1, 2, . . . ,m} denote the number of times that j occurs in the
stream. For a non-negative integer k, the kth frequency moment of the
stream is

Fk :=
∑
j∈U

fkj . (1.1)

Note that the bigger k is, the more the sum in (1.1) is dominated by
the largest frequencies. It is therefore natural to define

F∞ = max
j∈U

fj ,

as the largest frequency of any element of U .
Let’s get some sense of these frequency moments. F1 is boring —

since each data stream element contributes to exactly one frequency
fj , F1 =

∑
j∈U fj is simply the stream length m. F0 is the number of

distinct elements in the stream (we’re interpreting 00 = 0) — it’s easy
to imagine wanting to compute this quantity, for example, a network
switch might want to know how many different TCP flows are cur-
rently going through it. F∞ is the largest frequency, and again it’s easy
to imagine wanting to know this — for example, to detect a denial-
of-service attack at a network switch, or identify the most popular
product on Amazon yesterday. Note that computing F∞ is related to
the aforementioned problem of detecting a majority element. Finally,
F2 =

∑
j∈U f

2
2 is sometimes called the “skew” of the data — it is a

measure of how non-uniform the data stream is. In a database context,
it arises naturally as the size of a “self-join” — the table you get when
you join a relation with itself on a particular attribute, with the fj ’s
being the frequencies of various values of this attribute. Having esti-
mates of self-join (and more generally join) sizes at the ready is useful

Full text available at: http://dx.doi.org/10.1561/0400000076



8 Data Streams: Algorithms and Lower Bounds

for query optimization, for example. We will discuss F2 extensively in
the next lecture.4

It is trivial to compute all of the frequency moments in O(m logn)
space, just by storing the xi’s, or in O(n logm), space, just by comput-
ing and storing the fj ’s (a logm-bit counter for each of the n universe
elements). Similarly, F1 is trivial to compute in O(logm) space (via a
counter), and F0 in O(n) space (via a bit vector). Can we do better?

Intuitively, it might appear difficult to improve over the trivial solu-
tion. For F0, for example, it seems like you have to know which elements
you’ve already seen (to avoid double-counting them), and there is an
exponential (in n) number of different possibilities for what you might
have seen in the past. As we will see, this is good intuition for determin-
istic algorithms, and for (possibly randomized) exact algorithms. Thus,
the following positive result is arguably surprising, and very cool.5

Theorem 1.1 ([1]). Both F0 and F2 can be approximated, to within a
(1± ε) factor with probability at least 1− δ, in space

O
(
(ε−2(logn+ logm) log 1

δ

)
. (1.2)

Theorem 1.1 refers to two different algorithms, one for F0 and one
for F2. We cover the latter in detail below. Section 1.5 describes the
high-order bit of the F0 algorithm, which is a modification of the earlier
algorithm of [36]. Both algorithms are randomized, and are approx-
imately correct (to within (1 ± ε)) most of the time (except with
probability δ). Also, the logm factor in (1.2) is not needed for the
F0 algorithm, as you might expect. Some further optimizations are
possible; see Section 1.4.3.

4The problem of computing F2 and the solution we give for it are also quite well
connected to other important concepts, such as compressive sensing and dimension-
ality reduction.

5The Alon–Matias–Szegedy paper [1] ignited the field of streaming algorithms
as a hot area, and for this reason won the 2005 Gödel Prize (a “test of time”-type
award in theoretical computer science). The paper includes a number of other upper
and lower bounds as well, some of which we will cover in this monograph.

Full text available at: http://dx.doi.org/10.1561/0400000076



1.4. Estimating F2: The key ideas 9

The first reason to talk about Theorem 1.1 is that it’s a great result
in the field of algorithms — if you only remember one streaming algo-
rithm, the one below might as well be the one.6 You should never tire
of seeing clever algorithms that radically outperform the “obvious solu-
tion” to a well-motivated problem. And Theorem 1.1 should serve as
inspiration to any algorithm designer — even when at first blush there
is no non-trivial algorithm for problem in sight, the right clever insight
can unlock a good solution.

On the other hand, there unfortunately are some important prob-
lems out there with no non-trivial solutions. And it’s important for the
algorithm designer to know which ones they are — the less effort wasted
on trying to find something that doesn’t exist, the more energy is avail-
able for formulating the motivating problem in a more tractable way,
weakening the desired guarantee, restricting the problem instances, and
otherwise finding new ways to make algorithmic progress. A second
interpretation of Theorem 1.1 is that it illuminates why such lower
bounds can be so hard to prove. A lower bound is responsible for show-
ing that every algorithm, even fiendishly clever ones like those employed
for Theorem 1.1, cannot make significant inroads on the problem.

1.4 Estimating F2: The key ideas

In this section we give a nearly complete proof of Theorem 1.1 for the
case of F2 =

∑
j∈U f

2
2 estimation (a few details are left to the reader).

1.4.1 The basic estimator

The high-level idea is very natural, especially once you start thinking
about randomized algorithms.

1. Define a randomized unbiased estimator of F2, which can be com-
puted in one pass. Small space seems to force a streaming algo-
rithm to lose information, but maybe it’s possible to produce a
result that’s correct “on average.”

6Either algorithm, for estimating F0 or for F2, could serve this purpose. We
present the F2 estimation algorithm in detail, because the analysis is slightly slicker
and more canonical.
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10 Data Streams: Algorithms and Lower Bounds

2. Aggregate many independent copies of the estimator, computed
in parallel, to get an estimate that is very accurate with high
probability.

This is very hand-wavy, of course — does it have any hope of working?
It’s hard to answer that question without actually doing some proper
computations, so let’s proceed to the estimator devised in [1].

The Basic Estimator7:

1. Let h : U → {±1} be a function that associates each universe ele-
ment with a random sign. On a first reading, to focus on the main
ideas, you should assume that h is a totally random function.
Later we will see that relatively lightweight hash functions are
good enough (Section 1.4.2), which enables a small-space imple-
mentation of the basic ideas.

2. Initialize Z = 0.

3. Every time a data stream element j ∈ U appears, add h(j) to Z.
That is, increment Z if h(j) = +1 and decrement Z if h(j) = −1.8

4. Return the estimate X = Z2.

Remark 1.1. A crucial point: since the function h is fixed once and
for all before the data stream arrives, an element j ∈ U is treated
consistently every time it shows up. That is, Z is either incremented
every time j shows up or is decremented every time j shows up. In the
end, element j contributes h(j)fj to the final value of Z.

First we need to prove that the basic estimator is indeed unbiased.

Lemma 1.2. For every data stream,

Eh[X] = F2.

7This is sometimes called the “tug-of-war” estimator.
8This is the “tug of war,” between elements j with h(j) = +1 and those with

h(j) = −1.
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1.4. Estimating F2: The key ideas 11

Proof. We have

E[X] = E
[
Z2
]
,

= E


∑
j∈U

h(j)fj

2
 ,

= E

∑
j∈U

h(j)2︸ ︷︷ ︸
=1

f2
j + 2

∑
j<`

h(j)h(`)fjf`

 ,
=
∑
j∈U

f2
j︸ ︷︷ ︸

=F2

+2
∑
j<`

fjf` Eh[h(j)h(`)]︸ ︷︷ ︸
=0

, (1.3)

= F2, (1.4)

where in Equation (1.3) we use linearity of expectation and the fact
that h(j) ∈ {±1} for every j, and in Equation (1.4) we use the fact
that, for every distinct j, `, all four sign patterns for (h(j), h(`)) are
equally likely.

Note the reason for both incrementing and decrementing in the
running sum Z — it ensures that the “cross terms” h(j)h(`)fjf` in our
basic estimator X = Z2 cancel out in expectation. Also note, for future
reference, that the only time we used the assumption that h is a totally
random function was in Equation (1.4), and we only used the property
that all four sign patterns for (h(j), h(`)) are equally likely — that h
is “pairwise independent.”

Lemma 1.2 is not enough for our goal, since the basic estimator
X is not guaranteed to be close to its expectation with high probabil-
ity. A natural idea is to take the average of many independent copies
of the basic estimator. That is, we will use t independent functions
h1, h2, . . . , ht: U → {±1} to define estimates X1, . . . , Xt. On the arrival
of a new data stream element, we update all t of the counters Z1, . . . , Zt
appropriately, with some getting incremented and others decremented.
Our final estimate will be

Y = 1
t

t∑
i=1

Xi.
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12 Data Streams: Algorithms and Lower Bounds

Since the Xi’s are unbiased estimators, so is Y (that is, Eh1,...,ht [Y ] =
F2). To see how quickly the variance decreases with the number t of
copies, note that

Var[Y ] = Var
[

1
t

t∑
i=1

Xi

]
= 1
t2

t∑
i=1

Var[Xi] = Var[X]
t

,

where X denotes a single copy of the basic estimator. That is, aver-
aging reduces the variance by a factor equal to the number of copies.
Unsurprisingly, the number of copies t (and in the end, the space) that
we need to get the performance guarantee that we want is governed by
the variance of the basic estimator. So there is really no choice but to
roll up our sleeves and compute it.

Lemma 1.3. For every data stream,

Varh[X] ≤ 2F 2
2 .

Lemma 1.3 states the standard deviation of the basic estimator
is in the same ballpark as its expectation. That might sound omi-
nous, but it’s actually great news — a constant (depending on ε and δ
only) number of copies is good enough for our purposes. Before proving
Lemma 1.3, let’s see why.

Corollary 1.4. For every data stream, with t = 2
ε2δ ,

Prh1,...,ht [Y ∈ (1± ε) · F2] ≥ 1− δ.

Proof. Recall that Chebyshev’s inequality is the inequality you want
when bounding the deviation of a random variable from its mean
parameterized by the number of standard deviations. Formally, it states
that for every random variable Y with finite first and second moments,
and every c > 0,

Pr[|Y −E[Y ] | > c] ≤ Var[Y ]
c2 . (1.5)

Note that Equation (1.5) is nontrivial (that is, probability less than 1)
once c exceeds Y ’s standard deviation, and the probability goes down
quadratically with the number of standard deviations. It’s a simple
inequality to prove; see the separate notes on tail inequalities for details.
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1.4. Estimating F2: The key ideas 13

We are interested in the case where Y is the average of t basic
estimators, with variance as in Lemma 1.3. Since we want to guarantee
a (1 ± ε)-approximation, the deviation c of interest to us is εF2. We
also want the right-hand side of Equation (1.5) to be equal to δ. Using
Lemma 1.3 and solving, we get t = 2/ε2δ.9

We now stop procrastinating and prove Lemma 1.3.

Proof of Lemma 1.3. Recall that

Var[X] = E
[
X2
]
−

 E[X]︸ ︷︷ ︸
=F2 by Lemma 1.2


2

. (1.6)

Zooming in on the E
[
X2] term, recall that X is already defined as the

square of the running sum Z, so X2 is Z4. Thus,

E
[
X2
]

= E


∑
j∈U

h(j)fj

4
 . (1.7)

Expanding the right-hand side of Equation (1.7) yields |U |4 terms,
each of the form h(j1)h(j2)h(j3)h(j4)fj1fj2fj3fj4 . (Remember: the h-
values are random, the f -values are fixed.) This might seem unwieldy.
But, just as in the computation Equation (1.4) in the proof of
Lemma 1.2, most of these are zero in expectation. For example, suppose
j1, j2, j3, j4 are distinct. Condition on the h-values of the first three.
Since h(j4) is equally likely to be +1 or −1, the conditional expected
value (averaged over the two cases) of the corresponding term is 0.
Since this holds for all possible values of h(j1), h(j2), h(j3), the uncon-
ditional expectation of this term is also 0. This same argument applies
to any term in which some element j ∈ U appears an odd number of
times. Thus, when the dust settles, we have

E
[
X2
]

= E

∑
j∈U

h(j)4︸ ︷︷ ︸
=1

f4
j + 6

∑
j<`

h(j)2︸ ︷︷ ︸
=1

h(`)2︸ ︷︷ ︸
=1

f2
j f

2
`

 ,
=
∑
j∈U

f4
j + 6

∑
j<`

f2
j f

2
` , (1.8)

9The dependence on 1
δ
can be decreased to logarithmic; see Section 1.4.3.
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14 Data Streams: Algorithms and Lower Bounds

where the “6” appears because a given h(j)2h(`)2f2
j f

2
` term with j < `

arises in
(4
2
)

= 6 different ways.
Expanding terms, we see that

F 2
2 =

∑
j∈U

f4
j + 2

∑
j<`

f2
j f

2
` ,

and hence
E
[
X2
]
≤ 3F 2

2 .

Recalling Equation (1.6) proves that Var[X] ≤ 2F 2
2 , as claimed. �

Looking back over the proof of Lemma 1.3, we again see that we
only used the fact that h is random in a limited way. In Equation (1.8)
we used that, for every set of four distinct universe elements, their
16 possible sign patterns (under h) were equally likely. (This implies
the required property that, if j appears in a term an odd number of
times, then even after conditioning on the h-values of all other universe
elements in the term, h(j) is equally likely to be +1 or −1.) That is,
we only used the “4-wise independence” of the function h.

1.4.2 Small-space implementation via 4-wise independent hash
functions

Let’s make sure we’re clear on the final algorithm.

1. Choose functions h1, . . . , ht : U → {±1}, where t = 2
ε2δ .

2. Initialize Zi = 0 for i = 1, 2, . . . , t.

3. When a new data stream element j ∈ U arrives, add hi(j) to Zi
for every i = 1, 2, . . . , t.

4. Return the average of the Z2
i ’s.

Last section proved that, if the hi’s are chosen uniformly at random
from all functions, then the output of this algorithm lies in (1 ± ε)F2
with probability at least 1− δ.

How much space is required to implement this algorithm? There
is clearly a factor of 2

ε2δ , since we’re effectively running this many
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streaming algorithms in parallel, and each needs its own scratch space.
How much space does each of these need? To maintain a counter Zi,
which always lies between −m and m, we only need O(logm) bits. But
it’s easy to forget that we have to also store the function hi. Recall from
Remark 1.1 the reason: we need to treat an element j ∈ U consistently
every time it shows up in the data stream. Thus, once we choose a sign
hi(j) for j we need to remember it forevermore. Implemented naively,
with hi a totally random function, we would need to remember one bit
for each of the possibly Ω(n) elements that we have seen in the past,
which is a dealbreaker.

Fortunately, as we noted after the proofs of Lemmas 1.2 and 1.3,
our entire analysis has relied only on 4-wise independence — that when
we look at an arbitrary 4-tuple of universe elements, the projection
of h on their 16 possible sign patterns is uniform. (Exercise: go back
through this section in detail and double-check this claim.) And hap-
pily, there are small families of simple hash functions that possess this
property.

Fact 1.5. For every universe U with n = |U |, there is a family H of 4-
wise independent hash functions (from U to {±1}) with size polynomial
in n.

Fact 1.5 and our previous observations imply that, to enjoy an
approximation of (1± ε) with probability at least 1− δ, our streaming
algorithm can get away with choosing the functions h1, . . . , ht uniformly
and independently from H.

If you’ve never seen a construction of a k-wise independent family
of hash functions with k > 2, you shouldn’t be scared of them — heavy
machinery is not required. For example, it suffices to map the elements
of U injectively into a suitable finite field (of size roughly |U |), and then
let H be the set of all cubic polynomials (with all operations occurring
in this field). The final output is then +1 if the polynomial’s output
(viewed as an integer) is even, and −1 otherwise. Such a hash function
is easily specified with O(logn) bits (just list its four coefficients), and
can also be evaluated in O(logn) space (which is not hard, but we will
not say more about it here).
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16 Data Streams: Algorithms and Lower Bounds

Putting it all together, we get a space bound of

O

 1
ε2δ︸︷︷︸

# of copies

·

 logm︸ ︷︷ ︸
counter

+ logn︸ ︷︷ ︸
hash function


 . (1.9)

1.4.3 Further optimizations

The bound in Equation (1.9) is worse than that claimed in Theorem 1.1,
with a dependence on 1

δ instead of log 1
δ . A simple trick yields the better

bound. In Section 1.4.1, we averaged t copies of the basic estimator to
accomplish two conceptually different things: to improve the approx-
imation ratio to (1 ± ε), for which we suffered an 1

ε2 factor, and to
improve the success probability to 1− δ, for which we suffered an addi-
tional 1

δ . It is more efficient to implement these improvements one at
a time, rather than in one shot. The smarter implementation first uses
≈ 1

ε2 copies to obtain an approximation of (1±ε) with probably at least
2
3 (say). To boost the success probability from 2

3 to 1−δ, it is enough to
run ≈ log 1

δ different copies of this solution, and then take the median
of their ≈ log 1

δ different estimates. Since we expect at least two-thirds
of these estimates to lie in the interval (1± ε)F2, it is very likely that
the median of them lies in this interval. The details are easily made
precise using a Chernoff bound argument; the details are left to the
reader.

Second, believe it or not, the logm term in Theorem 1.1 can be
improved to log logm. The reason is that we do not need to count the
Zi’s exactly, only approximately and with high probability. This relaxed
counting problem can be solved using Morris’s algorithm, which can be
implemented as a streaming algorithm that uses O(ε−2 log logm log 1

δ )
space.

1.5 Estimating F0: The high-order bit

Recall that F0 denotes the number of distinct elements present in a
data stream. The high-level idea of the F0 estimator is the same as
for the F2 estimator above. The steps are to define a basic estimator
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1.5. Estimating F0: The high-order bit 17

that is essentially unbiased, and then reduce the variance by taking
averages and medians. (Really making this work takes an additional
idea; see [8].)

The basic estimator for F0 — originally from [36] and developed
further in [1] and [8] — is as simple as but quite different from that
used to estimate F2. The first step is to choose a random permutation
h of U .10 Then, just remember (using O(logn) space) the minimum
value of h(x) that ever shows up in the data stream.

Why use the minimum? One intuition comes from the suggestive
match between the idempotence of F0 and of the minimum — adding
duplicate copies of an element to the input has no effect on the answer.

Given the minimum h(x)-value in the data stream, how do we
extract from it an estimate of F0, the number of distinct elements? For
intuition, think about the uniform distribution on [0, 1] (Figure 1.1).
Obviously, the expected value of one draw from the distribution is 1

2 .
For two i.i.d. draws, simple calculations show that the expected min-
imum and maximum are 1

3 and 2
3 , respectively. More generally, the

expected order statistics of k i.i.d. draws split the interval into k + 1
segments of equal length. In particular, the expected minimum is 1

k+1 .
In other words, if you are told that some number of i.i.d. draws were
taken from the uniform distribution on [0, 1] and the smallest draw was
c, you might guess that there were roughly 1/c draws.

Figure 1.1: The expected order statistics of i.i.d. samples from the uniform distri-
bution on the unit interval are spaced out evenly over the interval.

10Or rather, a simple hash function with the salient properties of a random per-
mutation.
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18 Data Streams: Algorithms and Lower Bounds

Translating this idea to our basic F0 estimator, if there are k

distinct elements in a data stream x1, . . . , xm, then there are k dif-
ferent (random) hash values h(xi), and we expect the smallest of
these to be roughly |U |/k. This leads to the basic estimator X =
|U |/(minmi=1 h(xi)). Using averaging and an extra idea to reduce the
variance, and medians to boost the success probability, this leads to
the bound claimed in Theorem 1.1 (without the logm term). We leave
the details to the interested reader.

Remark 1.2. You’d be right to ask if this high-level approach to prob-
abilistic and approximate estimation applies to all of the frequency
moments, not just F0 and F2. The approach can indeed be used to
estimate Fk for all k. However, the variance of the basic estimators will
be different for different frequency moments. For example, as k grows,
the statistic Fk becomes quite sensitive to small changes in the input,
resulting in probabilistic estimators with large variance, necessitating
a large number of independent copies to obtain a good approximation.
k 6∈ {0, 1, 2} can be computed using only a logarithmic amount of space
(more details to come).

1.6 Can we do better?

Theorem 1.1 is a fantastic result. But a good algorithm designer is
never satisfied, and always wants more. So what are the weaknesses of
the upper bounds that we have proved so far?

1. We only have interesting positive results for F0 and F2 (and
maybe F1, if you want to count that). What about for k > 2
and k =∞?

2. Our F0 and F2 algorithms only approximate the corresponding
frequency moment. Can we compute it exactly, possibly using a
randomized algorithm?

3. Our F0 and F2 algorithms are randomized, and with probability
δ fail to provide a good approximation. (Also, they are Monte
Carlo algorithms, in that we can’t tell when they fail.) Can we
compute F0 or F2 deterministically, at least approximately?
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1.7. One-way communication complexity 19

4. Our F0 and F2 algorithms use Ω(logn) space. Can we reduce the
dependency of the space on the universe size?11

5. Our F0 and F2 algorithms use Ω(ε−2) space. Can the dependence
on ε−1 be improved? The ε−2 dependence can be painful in prac-
tice, where you might want to take ε = 0.01, resulting in an extra
factor of 10,000 in the space bound. An improvement to ≈ ε−1,
for example, would be really nice.

Unfortunately, we can’t do better — the rest of this lecture and the
next explain why all of these compromises are necessary for positive
results. This is kind of amazing, and it’s also pretty amazing that we
can prove it without overly heavy machinery. Try to think of other
basic computational problems where, in a couple hours of lecture and
with minimal background, you can explain complete proofs of both a
non-trivial upper bound and an unconditional (independent of P vs.
NP , etc.) matching lower bound.12

1.7 One-way communication complexity

We next describe a simple and clean formalism that is extremely useful
for proving lower bounds on the space required by streaming algorithms
to perform various tasks. The model will be a quite restricted form
of the general communication model that we study later — and this
is good for us, because the restriction makes it easier to prove lower
bounds. Happily, even lower bounds for this restricted model typically
translate to lower bounds for streaming algorithms.

In general, communication complexity is a sweet spot. It is a gen-
eral enough concept to capture the essential hardness lurking in many
different models of computation, as we will see throughout the tuto-
rial. At the same time, it is possible to prove numerous different lower
bounds in the model — some of these require a lot of work, but many of

11This might seem like a long shot, but you never know. Recall our comment about
reducing the space dependency on m from O(logm) to O(log logm) via probabilistic
approximate counters.

12OK, comparison-based sorting, sure; and we will see a couple others later in this
course (but I do not know of that many examples!).
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the most important ones are easier that you might have guessed. These
lower bounds are “unconditional” — they are simply true, and do not
depend on any unproven (if widely believed) conjectures like P 6= NP .
Finally, because the model is so clean and free of distractions, it nat-
urally guides one toward the development of the “right” mathematical
techniques needed for proving new lower bounds.

In (two-party) communication complexity, there are two parties,
Alice and Bob. Alice has an input x ∈ {0, 1}a, Bob an input y ∈ {0, 1}b.
Neither one has any idea what the other’s input is. Alice and Bob
want to cooperate to compute a Boolean function (that is, a predicate)
f : {0, 1}a × {0, 1}b → {0, 1} that is defined on their joint input. We
will discuss several examples of such functions shortly.

For this lecture and the next, we can get away with restricting
attention to one-way communication protocols. All that is allowed here
is the following:

1. Alice sends Bob a message z, which is a function of her input x
only.

2. Bob declares the output f(x,y), as a function of Alice’s message
z and his input y only.

Since we’re interested in both deterministic and randomized algo-
rithms, we will discuss both deterministic and randomized one-way
communication protocols.

The one-way communication complexity of a Boolean function f is
the minimum worst-case number of bits used by any one-way protocol
that correctly decides the function. (Or for randomized protocols, that
correctly decides it with probability at least 2/3.) That is, it is

min
P

max
x,y
{length (in bits) of Alice’s message z when Alice’s input isx},

where the minimum ranges over all correct protocols.
Note that the one-way communication complexity of a function f

is always at most a, since Alice can just send her entire a-bit input x
to Bob, who can then certainly correctly compute f . The question is
to understand when one can do better. This will depend on the specific
function f . For example, if f is the parity function (that is, decide
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whether the total number of 1s in (x,y) is even or odd), then the one-
way communication complexity of f is 1 (Alice just sends the parity of
x to Bob, who’s then in a position to figure out the parity of (x,y)).

1.8 Connection to streaming algorithms

If you care about streaming algorithms, then you should also care about
one-way communication complexity. Why? Because of the unreasonable
effectiveness of the following two-step plan to proving lower bounds on
the space usage of streaming algorithms.

1. Small-space streaming algorithms imply low-communication one-
way protocols.

2. The latter do not exist.

Both steps of this plan are quite doable in many cases.
Does the connection in the first step above surprise you? It is the

best kind of statement — genius and near-trivial at the same time. We
are be formal about it shortly, but it is worth remembering a cartoon
meta-version of the connection, illustrated in Figure 1.2. Consider a
problem that can be solved using a streaming algorithm S that uses
space only s. How can we use it to define a low-communication pro-
tocol? The idea is for Alice and Bob to treat their inputs as a stream
(x,y), with all of x arriving before all of y. Alice can feed x into S with-
out communicating with Bob (she knows x and S). After processing x,

Figure 1.2: Why a small-space streaming algorithm induces a low-communication
one-way protocol. Alice runs the streaming algorithm on her input, sends the mem-
ory contents of the algorithm to Bob, and Bob resumes the execution of the algorithm
where Alice left off on his input.

Full text available at: http://dx.doi.org/10.1561/0400000076



22 Data Streams: Algorithms and Lower Bounds

S’s state is completely summarized by the s bits in its memory. Alice
sends these bits to Bob. Bob can then simply restart the streaming
algorithm S seeded with this initial memory, and then feed his input y
to the algorithm. The algorithm S winds up computing some function
of (x,y), and Alice only needs to communicate s bits to Bob to make
it happen. The communication cost of the induced protocol is exactly
the same as the space used by the streaming algorithm.

1.9 The disjointness problem

To execute the two-step plan discussed in the last lecture and to prove
lower bounds on the space usage of streaming algorithms, we need
to come up with a Boolean function that (i) can be reduced to a
streaming problem that we care about and (ii) does not admit a low-
communication one-way protocol.

1.9.1 Disjointness is hard for one-way communication

If you only remember one problem that is hard for communication
protocols, it should be the Disjointness problem. This is the canon-
ical hard problem in communication complexity, analogous to satis-
fiability (SAT) in the theory of NP -completeness. We will see more
reductions from the Disjointness problem than from any other in this
tutorial.

In an instance of Disjointness, both Alice and Bob hold n-bit
vectors x and y. We interpret these as characteristic vectors of two
subsets of the universe {1, 2, . . . , n}, with the subsets corresponding to
the “1” coordinates. We then define the Boolean function DISJ in the
obvious way, with DISJ(x,y) = 0 if there is an index i ∈ {1, 2, . . . , n}
with xi = yi = 1, and DISJ(x,y) = 1 otherwise.

To warm up, let’s start with an easy result.

Proposition 1.1. Every deterministic one-way communication protocol
that computes the functionDISJ uses at least n bits of communication
in the worst case.
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That is, the trivial protocol is optimal among deterministic protocols.13
The proof follows pretty straightforwardly from the pigeonhole princi-
ple — you might want to think it through before reading the proof
below.

Formally, consider any one-way communication protocol where
Alice always sends at most n−1 bits. This means that, ranging over the
2n possible inputs x that Alice might have, she only sends 2n−1 distinct
messages. By the pigeonhole principle, there are distinct messages x1

and x2 where Alice sends the same message z to Bob. Poor Bob, then,
has to compute DISJ(x,y) knowing only z and y and not knowing
x — x could be x1, or it could be x2. Letting i denote an index in
which x1 and x2 differ (there must be one), Bob is really in trouble if
his input y happens to be the ith basis vector (all zeroes except yi = 1).
For then, whatever Bob says upon receiving the message z, he will be
wrong for exactly one of the cases x = x1 or x = x2. We conclude that
the protocol is not correct.

A stronger, and more useful, lower bound also holds.

Theorem 1.6. Every randomized one-way protocol14 that, for every
input (x,y), correctly decides the function DISJ with probability at
least 2

3 , uses Ω(n) communication in the worst case.

The probability in Theorem 1.6 is over the coin flips performed by
the protocol (there is no randomness in the input, which is “worst-
case”). There is nothing special about the constant 2

3 in the statement
of Theorem 1.6 — it can be replaced by any constant strictly larger
than 1

2 .
Theorem 1.6 is certainly harder to prove than Proposition 1.1, but

it’s not too bad — we will kick off the next lecture with a proof.15 For
13We will see later that the communication complexity remains Ω(n) even when

we allow general communication protocols.
14There are different flavors of randomized protocols, such as “public-coin” versus

“private-coin” versions. These distinctions will not matter until next lecture, and
we elaborate on them then.

15A more difficult and important result is that the communication complexity of
Disjointness remains Ω(n) even if we allow arbitrary (not necessarily one-way)
randomized protocols. We will use this stronger result several times. We will also
briefly discuss the proof in Section 4.3.4 of Lecture 4.
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the rest of this lecture, we will take Theorem 1.6 on faith and use it to
derive lower bounds on the space needed by streaming algorithms.

1.9.2 Space lower bound for F∞ (even with randomization and
approximation)

Recall from Section 1.6 that the first weakness of Theorem 1.1 is that
it applies only to F0 and F2 (and F1 is easy). The next result shows
that, assuming Theorem 1.6, there is no sublinear-space algorithm for
computing F∞, even probabilistically and approximately.

Theorem 1.7 ([1]). Every randomized streaming algorithm that, for
every data stream of length m over a universe of size n, computes F∞
to within a (1 ± 0.2) factor with probability at least 2/3 uses space
Ω(min{m,n}).

Theorem 1.7 rules out, in a strong sense, extending our upper
bounds for F0, F1, F2 to all Fk. Thus, the different frequency moments
vary widely in tractability in the streaming model.16

Proof of Theorem 1.7. The proof simply implements the cartoon
in Figure 1.2, with the problems of computing F∞ (in the streaming
model) and Disjointness (in the one-way communication model). In
more detail, let S be a space-s streaming algorithm that for every
data stream, with probability at least 2/3, outputs an estimate in (1±
.2)F∞. Now consider the following one-way communication protocol P
for solving the Disjointness problem (given an input (x,y)):

1. Alice feeds into S the indices i for which xi = 1; the order can
be arbitrary. Since Alice knows S and x, this step requires no
communication.

2. Alice sends S’s current memory state σ to Bob. Since S uses space
s, this can be communicated using s bits.

3. Bob resumes the streaming algorithm S with the memory state
σ, and feeds into S the indices i for which yi = 1 (in arbitrary
order).

16For finite k strictly larger than 2, the optimal space of a randomized (1 ± ε)-
approximate streaming algorithm turns out to be roughly Θ(n1−1/2k) [7, 13, 48].
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4. Bob declares “disjoint” if and only if S’s final answer is at most
4/3.

To analyze this reduction, observe that the frequency of an index
i ∈ {1, 2, . . . , n} in the data stream induced by (x,y) is 0 if xi = yi = 0,
1 if exactly one of xi, yi is 1, and 2 if xi = yi = 1. Thus, F∞ of this
data stream is 2 if (x,y) is a “no” instance of Disjointness, and is at
most 1 otherwise. By assumption, for every “yes” (respectively, “no”)
input (x,y), with probability at least 2/3 the algorithm S outputs
an estimate that is at most 1.2 (respectively, at least 2/1.2); in this
case, the protocol P correctly decides the input (x,y). Since P is a
one-way protocol using s bits of communication, Theorem 1.6 implies
that s = Ω(n). Since the data stream length m is in general Ω(n), this
reduction also rules out o(min{m,n]})-space streaming algorithms for
the problem. �

Remark 1.3 (The Heavy Hitters Problem). Theorem 1.7 implies that
computing the maximum frequency is a hard problem in the streaming
model, at least for worst-case inputs. As mentioned, the problem is nev-
ertheless practically quite important, so it’s important to make progress
on it despite this lower bound. For example, consider the following
relaxed version, known as the “heavy hitters” problem: for a parameter
k, if there are any elements with frequency bigger than m/k, then find
one or all such elements. When k is constant, there are good solutions
to this problem: the “Mishra-Gries” algorithm, and the “Count-Min
Sketch” and its variants also give good solutions [16, 22].17 The heavy
hitters problem captures many of the applications that motivated the
problem of computing F∞.

1.9.3 Space lower bound for randomized exact computation of F0
and F2

In Section 1.6, we also criticized our positive results for F0 and F2 —
to achieve them, we had to make two compromises, allowing approx-
imation and a non-zero chance of failure. The reduction in the proof

17This does not contradict Theorem 1.6 — in the hard instances of F∞ produced
by that proof, all frequencies are in {0, 1, 2} and hence there are no heavy hitters.
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of Theorem 1.7 also implies that merely allowing randomization is not
enough.

Theorem 1.8 ([1]). For every non-negative integer k 6= 1, every ran-
domized streaming algorithm that, for every data stream, computes Fk
exactly with probability at least 2/3 uses space Ω(min{n,m}).

The proof of Theorem 1.8 is almost identical to that of Theorem 1.6.
The reason the proof of Theorem 1.6 rules out approximation (even
with randomization) is because F∞ differs by a factor of 2 in the two
different cases (“yes” and “no” instances of Disjointness). For finite k,
the correct value of Fk will be at least slightly different in the two cases,
which is enough to rule out a randomized algorithm that is exact at
least two-thirds of the time.18

The upshot of Theorem 1.8 is that, even for F0 and F2, approxi-
mation is essential to obtain a sublinear-space algorithm. It turns out
that randomization is also essential — every deterministic streaming
algorithm that always outputs a (1± ε)-estimate of Fk (for any k 6= 1)
uses linear space [1].

1.10 Looking backward and forward

Assuming that randomized one-way communication protocols require
Ω(n) communication to solve the Disjointness problem (Theo-
rem 1.6), we proved that some frequency moments (in particular, F∞)
cannot be computed in sublinear space, even allowing randomization
and approximation. Also, both randomization and approximation are
essential for our sublinear-space streaming algorithms for F0 and F2.

The next action items are:

1. Prove Theorem 1.6.
18Actually, this is not quite true (why?). But if Bob also knows the number of 1’s

in Alice’s input (which Alice can communicate in log2 n bits, a drop in the bucket),
then the exact computation of Fk allows Bob to distinguish “yes” and “no” inputs
of Disjointness (for any k 6= 1).
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2. Revisit the five compromises we made to obtain positive results
(Section 1.6). We have showed senses in which the first three
compromises are necessary. In the next lecture, we will see why
the last two are needed as well.
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