
Multi-Valued Reasoning
about Reactive Systems

Full text available at: http://dx.doi.org/10.1561/0400000083

Other titles in Foundations and Trends® in Theoretical Computer
Science

Quantified Derandomization: How to Find Water in the Ocean
Roei Tell
ISBN: 978-1-63828-092-7

Complexity Theory, Game Theory, and Economics: The Barbados Lec-
tures
Tim Roughgarden
ISBN: 978-1-68083-654-7

Semialgebraic Proofs and Efficient Algorithm Design
Noah Fleming, Pravesh Kothari and Toniann Pitassi
ISBN: 978-1-68083-636-3

Higher-order Fourier Analysis and Applications
Hamed Hatami, Pooya Hatami and Shachar Lovett
ISBN: 978-1-68083-592-2

On Doubly-Efficient Interactive Proof Systems
Oded Goldreich
ISBN: 978-1-68083-424-6

Full text available at: http://dx.doi.org/10.1561/0400000083

Multi-Valued Reasoning about
Reactive Systems

Orna Kupferman
The Hebrew University

orna@cs.huji.ac.il

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0400000083

Foundations and Trends® in Theoretical Computer
Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

O. Kupferman. Multi-Valued Reasoning about Reactive Systems. Foundations and
Trends® in Theoretical Computer Science, vol. 15, no. 2, pp. 126–228, 2022.

ISBN: 978-1-63828-139-9
© 2022 O. Kupferman

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000083

Foundations and Trends® in Theoretical
Computer Science

Volume 15, Issue 2, 2022
Editorial Board

Editor-in-Chief
Salil Vadhan
Harvard University
United States

Editors

Bernard Chazelle
Princeton University

Oded Goldreich
Weizmann Institute

Shafi Goldwasser
Massachusetts Institute of Technology and Weizmann Institute

Sanjeev Khanna
University of Pennsylvania

Jon Kleinberg
Cornell University

László Lovász
Eötvös Loránd University

Christos Papadimitriou
University of California, Berkeley

Peter Shor
Massachusetts Institute of Technology

Eva Tardos
Cornell University

Salil Vadhan
Cornell University

Avi Wigderson
AIS, Princeton University

Full text available at: http://dx.doi.org/10.1561/0400000083

Editorial Scope
Topics

Foundations and Trends® in Theoretical Computer Science publishes survey
and tutorial articles in the following topics:

• Algorithmic game theory
• Computational algebra
• Computational aspects of

combinatorics and graph
theory

• Computational aspects of
communication

• Computational biology
• Computational complexity
• Computational geometry
• Computational learning
• Computational Models and

Complexity
• Computational Number

Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of
algorithms

• Distributed computing

• Information retrieval

• Operations Research

• Parallel algorithms

• Quantum Computation

• Randomness in Computation

Information for Librarians

Foundations and Trends® in Theoretical Computer Science, 2022, Vol-
ume 15, 4 issues. ISSN paper version 1551-305X. ISSN online version
1551-3068. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000083

Contents

1 Introduction 3

2 The Boolean Setting 8
2.1 Linear Temporal Logic . 8
2.2 Nondeterministic Büchi Automata 13
2.3 An Automata-Theoretic Approach for Reasoning About LTL

Specifications . 38

3 The Latticed Setting 47
3.1 Lattices . 47
3.2 Lattice Linear Temporal Logic 49
3.3 Lattice Automata . 51
3.4 An Automata-Theoretic Approach for Reasoning About

LLTL Specifications . 72

4 The Weighted Setting 75
4.1 The Temporal Logic LTL[F] 75
4.2 Theoretical Aspects of LTL[F] 79
4.3 An Automata-Theoretic Approach for Reasoning About

LTL[F] Specifications 84

Acknowledgements 94

References 95

Full text available at: http://dx.doi.org/10.1561/0400000083

Multi-Valued Reasoning about
Reactive Systems
Orna Kupferman

The Hebrew University, Israel; orna@cs.huji.ac.il

ABSTRACT

Traditional computer science is Boolean: a Turing machine
accepts or rejects its input, and logic assertions are true
or false. A primary use of logic in computer science has
been the specification and verification of reactive systems.
There, desired behaviors of systems are formally specified by
temporal-logic formulas, and questions about systems and
their behaviors are reduced to questions like satisfiability and
model checking. While correctness is binary, many questions
we want to ask about systems are multi-valued. The multi-
valued setting arises directly in systems with quantitative
aspects, for example systems with fuzzy assignments or
stochastic dynamics, and arises also in Boolean systems,
where it origins from the semantics of the specification
formalism. In particular, beyond checking whether a system
satisfies its specification, we may want to evaluate the quality
in which the specification is satisfied. The term “quality”
may refer to many aspects of the behavior: we may want to
prioritize different satisfaction alternatives, refer to delays,
costs, and many more. In recent years, we have seen a
growing effort in the formal-method community to shift
from Boolean specification formalisms to multi-valued ones.

Orna Kupferman (2022), “Multi-Valued Reasoning about Reactive Systems”, Foun-
dations and Trends® in Theoretical Computer Science: Vol. 15, No. 2, pp 126–228.
DOI: 10.1561/0400000083.
©2022 O. Kupferman

Full text available at: http://dx.doi.org/10.1561/0400000083

2

The shift involves a development of multi-valued temporal
logics as well as algorithms and tools for reasoning about
such logics.

This survey describes the basics of specification and ver-
ification of reactive systems, and the automata-theoretic
approach for them: by translating temporal-logic formulas
to automata, one reduces questions like satisfiability and
model checking to decision problems on automata, like non-
emptiness and language containment.

We first describe the Boolean setting: temporal logics, and
their applications in specification and verification. Since we
care about on-going behaviors of non-terminating systems,
the formalisms we study specify infinite computations, and
we focus on the theoretical properties of automata on in-
finite words. The transition from finite to infinite words
results in a beautiful mathematical model with much richer
combinatorial properties. We then describe two multi-valued
settings. The first is based on finite lattices and the second
on arbitrary functions over [0, 1]. In both settings, the goal
is to refine the Boolean correctness query to a quantitative-
evaluation query. Accordingly, the formalisms we introduce
are such that the satisfaction value of a temporal-logic for-
mula in a model, or the membership value of a word in the
language of an automaton, are multi valued, and classical
decision problems become search problems.

Full text available at: http://dx.doi.org/10.1561/0400000083

1
Introduction

One of the main obstacles to the development of complex hardware and
software systems lies in ensuring their correctness. Temporal logics are
modal logics geared towards the description of the temporal ordering
of events. In the early 1980s, temporal logics have been adopted as a
powerful tool for specifying and verifying reactive systems [72], namely
systems that interact with their environment and whose specification
concerns the on-going interaction [38]. One of the most significant devel-
opments in this area is the discovery of algorithmic methods for verifying
temporal logic properties of finite-state systems [17], [60], [74]. This
derives its significance both from the fact that many synchronization
and communication protocols can be modeled as finite-state systems,
as well as from the great ease of use of fully algorithmic methods.

The idea is simple: a finite-state system that is defined with respect
to a finite set AP of atomic propositions can be modeled by a finite
labeled state-transition graph: the vertices of the graph correspond to
configurations of the system, edges correspond to transitions between
configurations, and each vertex is labeled by the assignment to the
atomic propositions in AP that characterizes the corresponding con-
figuration. Thus, verifying the correctness of a system with respect to

3

Full text available at: http://dx.doi.org/10.1561/0400000083

4 Introduction

a desired behavior, is reduced to checking that the finite graph that
models the system satisfies a temporal-logic formula that specifies the
behavior. Hence the name model checking for the verification methods
derived from this viewpoint [18].

Finite automata on infinite objects were first introduced in the
1960s. Motivated by decision problems in mathematics and logic, Büchi,
McNaughton, and Rabin developed a framework for reasoning about
infinite words and infinite trees [11], [64], [75]. The framework has proved
to be very powerful. Automata and their tight relation to second-order
monadic logics were the key to the solution of several fundamental
decision problems in mathematics and logic [76], [87]. Today, automata
on infinite objects are used for specification and verification of finite-
state systems. The fact the automata run on infinite objects makes
them suitable for reasoning about non-terminating systems, which
have infinite computations. Recall that we model a system over a set
AP of atomic propositions by a graph whose vertices are labeled by
assignments to AP . Each of the system’s infinite computations induces
an infinite word over the alphabet 2AP , and the system itself induces
a language of infinite words over this alphabet. This language can be
defined by an automaton on infinite words. Similarly, a specification
for the system, which describes all the allowed computations, can be
viewed as a language of infinite words over 2AP , and can be defined by
an automaton. In the automata-theoretic approach to verification, we
reduce questions about systems and their specifications to questions
about automata. More specifically, questions such as satisfiability and
model checking are reduced to questions such as non-emptiness and
language containment [57], [90], [92].

The automata-theoretic approach for reasoning about systems and
their specifications separates the logical and the combinatorial aspects
of reasoning about systems. The translation of specifications to au-
tomata handles the logic and shifts all the combinatorial difficulties to
automata-theoretic problems, yielding clean and asymptotically opti-
mal algorithms, as well as better understanding of the complexity of
the problems. Beyond leading to tight complexity bounds, automata
have proven to be very helpful in practice. Automata-based methods
have been implemented in both academic and industrial automated-

Full text available at: http://dx.doi.org/10.1561/0400000083

5

verification tools (e.g., COSPAN [37], SPIN [39], ForSpec [85], and
NuSMV [16]).

In recent years, researchers have considered extensions of the classical
Boolean setting to a multi-valued one. One type of such extensions
considers systems in which the atomic propositions are multi-valued.
This includes systems in which the designer can give to the atomic
propositions rich values, expressing, for example, energy consumption,
waiting time, different levels of confidence, or inconsistent view-points
[3], [6], [14], [40], [41]. The second type of such extensions considers
systems in which the atomic propositions are possibly Boolean, yet
the specification formalism itself includes multi-valued components. In
particular, when considering the quality of a system, the different ways
in which a specification may be satisfied induce different levels of quality,
which should be reflected in the output of the verification procedure [8],
[12], [20], [45].

This survey studies the automata-theoretic approach for reasoning
about systems and their specifications, with a focus on its extension
to multi-valued settings. We start with the Boolean setting: in Sec-
tion 2, which is based on [51], we introduce Linear Temporal Logic
(LTL) [71], [72], demonstrate its use in specifying on-going behaviors of
reactive systems, and study its theoretical properties. Essentially, LTL
extends propositional logic by temporal operators like G (“always”) and
F (“eventually”). For example, the LTL formula G(req → F (grant∨ack)
states that every request is eventually granted or acknowledged. Sec-
tion 2 continues with Büchi automata. We introduce them, study their
theoretical properties, and describe the automata-theoretic approach to
reasoning about LTL specifications.

In Sections 3 and 4 we describe extensions of the Boolean setting
to two types of extensions to the multi-valued setting. In Section 3,
which is based on [52], we study the first extension, where the atomic
propositions with respect to which the system is defined take values
from a finite lattice. A lattice is a partially-ordered set L = ⟨A,≤⟩ in
which every two elements ℓ and ℓ′ have a least upper bound (ℓ join ℓ′,
denoted ℓ ∨ ℓ′) and a greatest lower bound (ℓ meet ℓ′, denoted ℓ ∧ ℓ′).
Finite lattices capture several useful quantitative settings. Of special
practical interest are two classes of lattices: (1) Fully-ordered lattices,

Full text available at: http://dx.doi.org/10.1561/0400000083

6 Introduction

where L = ⟨{0, . . . , n− 1},≤⟩, for an integer n ≥ 0 and the usual “less
than or equal” order. In this lattice, the operators ∨ and ∧ correspond
to max and min, respectively. Fully-ordered lattices are sometimes
useful as is (for example, when modeling uncertainty or priorities [5],
[6]), and sometimes thanks to the fact that real values can often be
approximated by finitely many linearly ordered classes. (2) Power-set
lattices, where L = ⟨2X ,⊆⟩, for a finite set X, and the containment
order. In this lattice, the operators ∨ and ∧ correspond to union and
intersection, respectively. The power-set lattice models a wide range
of partially-ordered values. For example, in a setting with inconsistent
viewpoints, we have a set of agents, each with a different viewpoint of
the system, and the truth value of a signal or a formula indicates the
set of agents according to whose viewpoint the signal or the formula are
true [23]. As another example, in a peer-to-peer network, one can refer
to the different attributes of the communication channels by assigning
with them subsets of attributes.

We introduce Lattice Linear Temporal Logic (LLTL), where atomic
propositions and formulas take values from a finite lattice. An LLTL for-
mula in which the atomic propositions take values from a lattice L maps
computations to a value in L. For example, when the atomic propositions
take values from the fully-ordered lattice ⟨{0, . . . , n− 1},≤⟩, then the
satisfaction value of the LLTL formula G(req → F (grant ∨ ack) is the
maximal value v ∈ {0, . . . , n−1} such that every request of value greater
than (n− 1) − v is eventually followed by a grant or an acknowlegement
of value at least v. Then, when the atomic propositions take values
from the partially-ordered lattice ⟨X,⊆⟩, for a set X of agents, then the
satisfaction value of the formula is the set S ⊆ X of exactly all agents x
such that every request that is viewed by x is eventually followed by a
grant or an acknowlegement that are viewed by x. Since the satisfaction
value of LLTL formulas is an element in the lattice, questions like LLTL
satisfiability and model checking become search, rather than decision,
problems. Section 3 also introduces and studies lattice automata. Each
lattice automaton is defined with respect to a lattice L, and it maps
words to values in L. The Boolean setting can be viewed as a special case
of the lattice setting, for the Boolean lattice ⟨{0, 1},≤⟩. We study the
theoretical properties of LLTL and lattice automata, and describe an
automata-theoretic approach to reasoning about LLTL specifications.

Full text available at: http://dx.doi.org/10.1561/0400000083

7

In Section 4, which is based on [4], we study the second extension
of the Boolean setting, where specifications describe the quality of
computations. We introduce and study the linear temporal logic LTL[F],
which extends LTL with an arbitrary set F of functions over [0, 1]. Using
the functions in F , a specifier can formally and easily prioritize the
different ways of satisfaction. The logic LTL[F] is really a family of
logics, each parameterized by a set F ⊆ {f : [0, 1]k → [0, 1] : k ∈ IN}
of functions (of arbitrary arity) over [0, 1]. For example, F may contain
the min {x, y}, max {x, y}, and 1 − x functions, which are the standard
quantitative analogues of the ∧, ∨, and ¬ operators. The novelty of
LTL[F] is the ability to manipulate values by arbitrary functions. For
example, F may contain the quantitative operator ▽λ, for λ ∈ [0, 1],
that tunes down the quality of a sub-specification. Formally, the quality
of the satisfaction of the specification ▽λφ is the multiplication of the
quality of the satisfaction of φ by λ. For example, the satisfaction value
of the LTL[F] formula G(req → F (grant ∨▽ 3

4
ack) is 1 when all requests

are eventually granted, is 3
4 when all requests are eventually granted

or acknowledged yet some are only acknowledged, and is 0 when some
requests are neither granted nor acknowledged.

For an automata-theoretic approach to LTL[F], it seems natural
to translate formulas to weighted automata [22], [67]. Such automata
map input words to values from a semi-ring. In particular, they can
map computations to values in [0, 1]. Weighted automata, however, are
complicated, and many problems become undecidable for them (e.g., the
universality problem – [2], [50]). We show that it is possible to bound
the number of possible satisfaction values of LTL[F] formulas, and use
this bound in order to translate LTL[F] formulas to Boolean automata.
From a technical point of view, the big challenge in our setting is to
maintain the simplicity and the complexity of the algorithms for LTL,
even though the number of possible values is exponential.

Full text available at: http://dx.doi.org/10.1561/0400000083

References

[1] L. de Alfaro, M. Faella, and M. Stoelinga, “Linear and branching
metrics for quantitative transition systems,” in Proc. 31st Int.
Colloq. on Automata, Languages, and Programming, pp. 97–109,
2004.

[2] S. Almagor, U. Boker, and O. Kupferman, “What’s decidable
about weighted automata?” In 9th Int. Symp. on Automated
Technology for Verification and Analysis, ser. Lecture Notes in
Computer Science, vol. 6996, pp. 482–491, Springer, 2011.

[3] S. Almagor, U. Boker, and O. Kupferman, “Formalizing and
reasoning about quality,” in Proc. 40th Int. Colloq. on Automata,
Languages, and Programming, ser. Lecture Notes in Computer
Science, vol. 7966, pp. 15–27, Springer, 2013.

[4] S. Almagor, U. Boker, and O. Kupferman, “Formalizing and
reasoning about quality,” Journal of the ACM, vol. 63, no. 3,
2016, 24:1–24:56.

[5] S. Almagor and O. Kupferman, “Latticed-LTL synthesis in the
presence of noisy inputs,” Discrete Event Dynamic Systems, vol. 27,
no. 3, 2017, pp. 547–572.

[6] R. Alur, A. Kanade, and G. Weiss, “Ranking automata and
games for prioritized requirements,” in Proc. 20th Int. Conf. on
Computer Aided Verification, ser. Lecture Notes in Computer
Science, vol. 5123, pp. 240–253, Springer, 2008.

95

Full text available at: http://dx.doi.org/10.1561/0400000083

96 References

[7] S. Arora and B. Barak, Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[8] R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann, “Better
quality in synthesis through quantitative objectives,” in Proc. 21st
Int. Conf. on Computer Aided Verification, ser. Lecture Notes in
Computer Science, vol. 5643, pp. 140–156, Springer, 2009.

[9] S. Breuers, C. Löding, and J. Olschewski, “Improved Ramsey-
based Büchi complementation,” in Proc. 15th Int. Conf. on Foun-
dations of Software Science and Computation Structures, ser. Lec-
ture Notes in Computer Science, vol. 7213, pp. 150–164, Springer,
2012.

[10] G. Bruns and P. Godefroid, “Model checking with multi-valued
logics,” in Proc. 31st Int. Colloq. on Automata, Languages, and
Programming, ser. Lecture Notes in Computer Science, vol. 3142,
pp. 281–293, 2004.

[11] J. Büchi, “On a decision method in restricted second order arith-
metic,” in Proc. Int. Congress on Logic, Method, and Philosophy
of Science. 1960, pp. 1–12, Stanford University Press, 1962.

[12] P. Cerný, K. Chatterjee, T. Henzinger, A. Radhakrishna, and R.
Singh, “Quantitative synthesis for concurrent programs,” in Proc.
23rd Int. Conf. on Computer Aided Verification, pp. 243–259,
2011.

[13] A. Chandra, D. Kozen, and L. Stockmeyer, “Alternation,” Journal
of the Association for Computing Machinery, vol. 28, no. 1, 1981,
pp. 114–133.

[14] K. Chatterjee, L. Doyen, and T. Henzinger, “Quantative lan-
guages,” in Proc. 17th Annual Conf. of the European Association
for Computer Science Logic, pp. 385–400, 2008.

[15] Y. Choueka, “Theories of automata on ω-tapes: A simplified
approach,” Journal of Computer and Systems Science, vol. 8,
1974, pp. 117–141.

[16] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV:
A new symbolic model checker,” Software Tools for Technology
Transfer, vol. 2, no. 4, 2000, pp. 410–425.

Full text available at: http://dx.doi.org/10.1561/0400000083

References 97

[17] E. Clarke, E. Emerson, and A. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifi-
cations,” ACM Transactions on Programming Languagues and
Systems, vol. 8, no. 2, 1986, pp. 244–263.

[18] E. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model Checking, Second Edition. MIT Press, 2018.

[19] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algo-
rithms. MIT Press and McGraw-Hill, 1990.

[20] D. Spinellis, Code Quality: The Open Source Perspective. Addison-
Wesley Professional, 2006.

[21] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S.
Smolka, “On temporal logic and signal processing,” in 10th Int.
Symp. on Automated Technology for Verification and Analysis,
pp. 92–106, Springer, 2012.

[22] M. Droste, W. Kuich, and H. V. (eds.), Handbook of Weighted
Automata. Springer, 2009.

[23] S. Easterbrook and M. Chechik, “A framework for multi-valued
reasoning over inconsistent viewpoints,” in Proc. 23rd Int. Conf.
on Software Engineering, pp. 411–420, IEEE Computer Society
Press, 2001.

[24] E. Emerson and C. Jutla, “The complexity of tree automata and
logics of programs,” in Proc. 29th IEEE Symp. on Foundations
of Computer Science, pp. 328–337, 1988.

[25] E. Emerson and C. Jutla, “Tree automata, µ-calculus and deter-
minacy,” in Proc. 32nd IEEE Symp. on Foundations of Computer
Science, pp. 368–377, 1991.

[26] E. Emerson and C.-L. Lei, “Modalities for model checking: Branch-
ing time logic strikes back,” in Proc. 12th ACM Symp. on Princi-
ples of Programming Languages, pp. 84–96, 1985.

[27] E. Emerson and C.-L. Lei, “Temporal model checking under
generalized fairness constraints,” in Proc. 18th Hawaii Int. Conf.
on System Sciences, Western Periodicals Company, 1985.

[28] M. Faella, A. Legay, and M. Stoelinga, “Model checking quantita-
tive linear time logic,” Electr. Notes Theor. Comput. Sci., vol. 220,
no. 3, 2008, pp. 61–77.

Full text available at: http://dx.doi.org/10.1561/0400000083

98 References

[29] E. Filiot, R. Gentilini, and J. Raskin, “Finite-valued weighted
automata,” in Proc. 34th Conf. on Foundations of Software Tech-
nology and Theoretical Computer Science, pp. 133–145, 2014.

[30] S. Fogarty, O. Kupferman, M. Vardi, and T. Wilke, “Unifying
Büchi complementation constructions,” in Proc. 20th Annual Conf.
of the European Association for Computer Science Logic, pp. 248–
263, 2011.

[31] E. Friedgut, O. Kupferman, and M. Vardi, “Büchi complementa-
tion made tighter,” Int. J. Found. Comput. Sci., vol. 17, no. 4,
2006, pp. 851–868.

[32] C. Fritz, “Constructing Büchi automata from linear temporal
logic using simulation relations for alternating Büchi automata,”
in Proc. 8th Int. Conf. on Implementation and Application of
Automata, ser. Lecture Notes in Computer Science, pp. 35–48,
Springer, 2003.

[33] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “On the temporal
analysis of fairness,” in Proc. 7th ACM Symp. on Principles of
Programming Languages, pp. 163–173, 1980.

[34] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata transla-
tion,” in Proc. 13th Int. Conf. on Computer Aided Verification,
ser. Lecture Notes in Computer Science, vol. 2102, pp. 53–65,
Springer, 2001.

[35] R. Gerth, D. Peled, M. Vardi, and P. Wolper, “Simple on-the-fly
automatic verification of linear temporal logic,” in Protocol Speci-
fication, Testing, and Verification, P. Dembiski and M. Sredniawa,
Eds., pp. 3–18, Chapman & Hall, 1995.

[36] D. Giannakopoulou and F. Lerda, “From states to transitions: Im-
proving translation of LTL formulae to Büchi automata,” in Proc.
22nd International Conference on Formal Techniques for Net-
worked and Distributed Systems, ser. Lecture Notes in Computer
Science, vol. 2529, pp. 308–326, Springer, 2002.

[37] R. Hardin, Z. Har’el, and R. Kurshan, “COSPAN,” in Proc. 8th
Int. Conf. on Computer Aided Verification, ser. Lecture Notes in
Computer Science, vol. 1102, pp. 423–427, Springer, 1996.

Full text available at: http://dx.doi.org/10.1561/0400000083

References 99

[38] D. Harel and A. Pnueli, “On the development of reactive systems,”
in Logics and Models of Concurrent Systems, ser. NATO Advanced
Summer Institutes, K. Apt, Ed., vol. F-13, Springer, 1985, pp. 477–
498.

[39] G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, 1997, pp. 279–295.

[40] M. Huth and S. Pradhan, “Consistent partial model checking,”
Electr. Notes Theor. Comput. Sci., vol. 73, 2004, pp. 45–85.

[41] IEEE, IEEE standard multivalue logic system for VHDL model
interoperability (Std_logic_1164), 1993.

[42] N. Immerman, “Nondeterministic space is closed under comple-
ment,” Information and Computation, vol. 17, 1988, pp. 935–
938.

[43] D. Kähler and T. Wilke, “Complementation, disambiguation, and
determinization of Büchi automata unified,” in Proc. 35th Int.
Colloq. on Automata, Languages, and Programming, ser. Lecture
Notes in Computer Science, vol. 5126, pp. 724–735, Springer, 2008.

[44] J. Kamp, “Tense logic and the theory of order,” Ph.D. dissertation,
UCLA, 1968.

[45] S. Kans, Metrics and Models in Software Quality Engineering.
Addison-Wesley Longman Publishing Co., 2002.

[46] D. Kirsten and S. Lombardy, “Deciding unambiguity and sequen-
tiality of polynomially ambiguous min-plus automata,” in 26th
International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2009, February 26-28, 2009, Freiburg, Germany,
Proceedings, pp. 589–600, 2009.

[47] N. Klarlund, “Progress measures for complementation of ω-auto-
mata with applications to temporal logic,” in Proc. 32nd IEEE
Symp. on Foundations of Computer Science, pp. 358–367, 1991.

[48] J. Kretínský and J. Esparza, “Deterministic automata for the (f,
g)-fragment of LTL,” in Proc. 24th Int. Conf. on Computer Aided
Verification, ser. Lecture Notes in Computer Science, vol. 7358,
pp. 7–22, Springer, 2012.

Full text available at: http://dx.doi.org/10.1561/0400000083

100 References

[49] S. Krishnan, A. Puri, and R. Brayton, “Deterministic ω-automata
vis-a-vis deterministic Büchi automata,” in Algorithms and Com-
putations, ser. Lecture Notes in Computer Science, vol. 834,
pp. 378–386, Springer, 1994.

[50] D. Krob, “The equality problem for rational series with multiplici-
ties in the tropical semiring is undecidable,” International Journal
of Algebra and Computation, vol. 4, no. 3, 1994, pp. 405–425.

[51] O. Kupferman, “Automata theory and model checking,” in Hand-
book of Model Checking, Springer, 2018, pp. 107–151.

[52] O. Kupferman and Y. Lustig, “Lattice automata,” in Proc. 8th Int.
Conf. on Verification, Model Checking, and Abstract Interpretation,
ser. Lecture Notes in Computer Science, vol. 4349, pp. 199–213,
Springer, 2007.

[53] O. Kupferman and M. Vardi, “Weak alternating automata are not
that weak,” ACM Transactions on Computational Logic, vol. 2,
no. 2, 2001, pp. 408–429.

[54] O. Kupferman and M. Vardi, “Complementation constructions for
nondeterministic automata on infinite words,” in Proc. 11th Int.
Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science, vol. 3440,
pp. 206–221, Springer, 2005.

[55] O. Kupferman, M. Vardi, and P. Wolper, “An automata-theoretic
approach to branching-time model checking,” Journal of the ACM,
vol. 47, no. 2, 2000, pp. 312–360.

[56] R. Kurshan, “Complementing deterministic Büchi automata in
polynomial time,” Journal of Computer and Systems Science,
vol. 35, 1987, pp. 59–71.

[57] R. Kurshan, Computer Aided Verification of Coordinating Pro-
cesses. Princeton Univ. Press, 1994.

[58] L. Landweber, “Decision problems for ω–automata,” Mathematical
Systems Theory, vol. 3, 1969, pp. 376–384.

[59] F. Laroussinie and P. Schnoebelen, “A hierarchy of temporal logics
with past,” Theoretical Computer Science, vol. 148, no. 2, 1995,
pp. 303–324.

Full text available at: http://dx.doi.org/10.1561/0400000083

References 101

[60] O. Lichtenstein and A. Pnueli, “Checking that finite state con-
current programs satisfy their linear specification,” in Proc. 12th
ACM Symp. on Principles of Programming Languages, pp. 97–107,
1985.

[61] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,”
in Logics of Programs, ser. Lecture Notes in Computer Science,
vol. 193, pp. 196–218, Springer, 1985.

[62] C. Löding, “Optimal bounds for the transformation of ω-automa-
ta,” in Proc. 19th Conf. on Foundations of Software Technology
and Theoretical Computer Science, ser. Lecture Notes in Computer
Science, vol. 1738, pp. 97–109, 1999.

[63] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer, 1992.

[64] R. McNaughton, “Testing and generating infinite sequences by a
finite automaton,” Information and Control, vol. 9, 1966, pp. 521–
530.

[65] A. Meyer and L. Stockmeyer, “The equivalence problem for regular
expressions with squaring requires exponential space,” in Proc.
13th IEEE Symp. on Switching and Automata Theory, pp. 125–
129, 1972.

[66] M. Michel, “Complementation is more difficult with automata on
infinite words,” 1988.

[67] M. Mohri, “Finite-state transducers in language and speech pro-
cessing,” Computational Linguistics, vol. 23, no. 2, 1997, pp. 269–
311.

[68] S. Moon, K. Lee, and D. Lee, “Fuzzy branching temporal logic,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 34, no. 2, 2004, pp. 1045–1055.

[69] D. Muller and P. Schupp, “Alternating automata on infinite trees,”
in Automata on Infinite Words, ser. Lecture Notes in Computer
Science, vol. 192, pp. 100–107, Springer, 1985.

[70] N. Piterman, “From nondeterministic Büchi and Streett automata
to deterministic parity automata,” Logical Methods in Computer
Science, vol. 3, no. 3, 2007, p. 5.

Full text available at: http://dx.doi.org/10.1561/0400000083

102 References

[71] N. Piterman and A. Pnueli, “Temporal logic and fair discrete
systems,” in Handbook of Model Checking. Springer, 2018, pp. 27–
73.

[72] A. Pnueli, “The temporal semantics of concurrent programs,”
Theoretical Computer Science, vol. 13, 1981, pp. 45–60.

[73] A. Pnueli and A. Zaks, “On the merits of temporal testers,” in 25
Years of Model Checking, ser. Lecture Notes in Computer Science,
vol. 5000, pp. 172–195, Springer, 2008.

[74] J. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in Cesar,” in Proc. 8th ACM Symp. on Principles of
Programming Languages, ser. Lecture Notes in Computer Science,
vol. 137, pp. 337–351, Springer, 1982.

[75] M. Rabin, “Decidability of second order theories and automata on
infinite trees,” Transaction of the AMS, vol. 141, 1969, pp. 1–35.

[76] M. Rabin, “Decidable theories,” in Handbook of Mathematical
Logic, J. Barwise, Ed., Amsterdam: North-Holland, 1977, pp. 595–
629.

[77] M. Rabin and D. Scott, “Finite automata and their decision
problems,” IBM Journal of Research and Development, vol. 3,
1959, pp. 115–125.

[78] S. Safra, “On the complexity of ω-automata,” in Proc. 29th IEEE
Symp. on Foundations of Computer Science, pp. 319–327, 1988.

[79] S. Schewe, “Büchi complementation made tight,” in Proc. 26th
Symp. on Theoretical Aspects of Computer Science, ser. LIPIcs,
vol. 3, pp. 661–672, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2009.

[80] S. Schewe, “Beyond Hyper-Minimisation—Minimising DBAs and
DPAs is NP-Complete,” in Proc. 30th Conf. on Foundations of
Software Technology and Theoretical Computer Science, ser. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 8,
pp. 400–411, 2010.

[81] C. E. Shannon, “The synthesis of two terminal switching circuits,”
BELL-SYST-TECH, vol. 28, no. 1, 1949, pp. 59–98.

[82] A. Sistla and E. Clarke, “The complexity of propositional linear
temporal logic,” Journal of the ACM, vol. 32, 1985, pp. 733–749.

Full text available at: http://dx.doi.org/10.1561/0400000083

References 103

[83] A. Sistla, M. Vardi, and P. Wolper, “The complementation prob-
lem for Büchi automata with applications to temporal logic,”
Theoretical Computer Science, vol. 49, 1987, pp. 217–237.

[84] F. Somenzi and R. Bloem., “Efficient Büchi automata from LTL
formulae,” in Proc. 12th Int. Conf. on Computer Aided Verifica-
tion, ser. Lecture Notes in Computer Science, vol. 1855, pp. 248–
263, Springer, 2000.

[85] Synopsys, “Assertion-based verification,” 2003, url: www.open-
vera.com.

[86] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM
Journal of Computing, vol. 1(2), 1972, pp. 146–160.

[87] W. Thomas, “Automata on infinite objects,” Handbook of The-
oretical Computer Science, J. V. Leeuwen, Ed., 1990, pp. 133–
191.

[88] M. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Proc. 1st IEEE Symp. on
Logic in Computer Science, pp. 332–344, 1986.

[89] M. Vardi and P. Wolper, “Automata-theoretic techniques for
modal logics of programs,” Journal of Computer and Systems
Science, vol. 32, no. 2, 1986, pp. 182–221.

[90] M. Vardi and P. Wolper, “Reasoning about infinite computations,”
Information and Computation, vol. 115, no. 1, 1994, pp. 1–37.

[91] P. Wolper, “Temporal logic can be more expressive,” in Proc. 22nd
IEEE Symp. on Foundations of Computer Science, pp. 340–348,
1981.

[92] P. Wolper, M. Vardi, and A. Sistla, “Reasoning about infinite
computation paths,” in Proc. 24th IEEE Symp. on Foundations
of Computer Science, pp. 185–194, 1983.

[93] Q. Yan, “Lower bounds for complementation of ω-automata via
the full automata technique,” in Proc. 33rd Int. Colloq. on Au-
tomata, Languages, and Programming, ser. Lecture Notes in Com-
puter Science, vol. 4052, pp. 589–600, Springer, 2006.

Full text available at: http://dx.doi.org/10.1561/0400000083

www.open-vera.com
www.open-vera.com

