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ABSTRACT

Traditional computer science is Boolean: a Turing machine
accepts or rejects its input, and logic assertions are true
or false. A primary use of logic in computer science has
been the specification and verification of reactive systems.
There, desired behaviors of systems are formally specified by
temporal-logic formulas, and questions about systems and
their behaviors are reduced to questions like satisfiability and
model checking. While correctness is binary, many questions
we want to ask about systems are multi-valued. The multi-
valued setting arises directly in systems with quantitative
aspects, for example systems with fuzzy assignments or
stochastic dynamics, and arises also in Boolean systems,
where it origins from the semantics of the specification
formalism. In particular, beyond checking whether a system
satisfies its specification, we may want to evaluate the quality
in which the specification is satisfied. The term “quality”
may refer to many aspects of the behavior: we may want to
prioritize different satisfaction alternatives, refer to delays,
costs, and many more. In recent years, we have seen a
growing effort in the formal-method community to shift
from Boolean specification formalisms to multi-valued ones.
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dations and Trends® in Theoretical Computer Science: Vol. 15, No. 2, pp 126–228.
DOI: 10.1561/0400000083.
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The shift involves a development of multi-valued temporal
logics as well as algorithms and tools for reasoning about
such logics.

This survey describes the basics of specification and ver-
ification of reactive systems, and the automata-theoretic
approach for them: by translating temporal-logic formulas
to automata, one reduces questions like satisfiability and
model checking to decision problems on automata, like non-
emptiness and language containment.

We first describe the Boolean setting: temporal logics, and
their applications in specification and verification. Since we
care about on-going behaviors of non-terminating systems,
the formalisms we study specify infinite computations, and
we focus on the theoretical properties of automata on in-
finite words. The transition from finite to infinite words
results in a beautiful mathematical model with much richer
combinatorial properties. We then describe two multi-valued
settings. The first is based on finite lattices and the second
on arbitrary functions over [0, 1]. In both settings, the goal
is to refine the Boolean correctness query to a quantitative-
evaluation query. Accordingly, the formalisms we introduce
are such that the satisfaction value of a temporal-logic for-
mula in a model, or the membership value of a word in the
language of an automaton, are multi valued, and classical
decision problems become search problems.

Full text available at: http://dx.doi.org/10.1561/0400000083



1
Introduction

One of the main obstacles to the development of complex hardware and
software systems lies in ensuring their correctness. Temporal logics are
modal logics geared towards the description of the temporal ordering
of events. In the early 1980s, temporal logics have been adopted as a
powerful tool for specifying and verifying reactive systems [72], namely
systems that interact with their environment and whose specification
concerns the on-going interaction [38]. One of the most significant devel-
opments in this area is the discovery of algorithmic methods for verifying
temporal logic properties of finite-state systems [17], [60], [74]. This
derives its significance both from the fact that many synchronization
and communication protocols can be modeled as finite-state systems,
as well as from the great ease of use of fully algorithmic methods.

The idea is simple: a finite-state system that is defined with respect
to a finite set AP of atomic propositions can be modeled by a finite
labeled state-transition graph: the vertices of the graph correspond to
configurations of the system, edges correspond to transitions between
configurations, and each vertex is labeled by the assignment to the
atomic propositions in AP that characterizes the corresponding con-
figuration. Thus, verifying the correctness of a system with respect to

3
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4 Introduction

a desired behavior, is reduced to checking that the finite graph that
models the system satisfies a temporal-logic formula that specifies the
behavior. Hence the name model checking for the verification methods
derived from this viewpoint [18].

Finite automata on infinite objects were first introduced in the
1960s. Motivated by decision problems in mathematics and logic, Büchi,
McNaughton, and Rabin developed a framework for reasoning about
infinite words and infinite trees [11], [64], [75]. The framework has proved
to be very powerful. Automata and their tight relation to second-order
monadic logics were the key to the solution of several fundamental
decision problems in mathematics and logic [76], [87]. Today, automata
on infinite objects are used for specification and verification of finite-
state systems. The fact the automata run on infinite objects makes
them suitable for reasoning about non-terminating systems, which
have infinite computations. Recall that we model a system over a set
AP of atomic propositions by a graph whose vertices are labeled by
assignments to AP . Each of the system’s infinite computations induces
an infinite word over the alphabet 2AP , and the system itself induces
a language of infinite words over this alphabet. This language can be
defined by an automaton on infinite words. Similarly, a specification
for the system, which describes all the allowed computations, can be
viewed as a language of infinite words over 2AP , and can be defined by
an automaton. In the automata-theoretic approach to verification, we
reduce questions about systems and their specifications to questions
about automata. More specifically, questions such as satisfiability and
model checking are reduced to questions such as non-emptiness and
language containment [57], [90], [92].

The automata-theoretic approach for reasoning about systems and
their specifications separates the logical and the combinatorial aspects
of reasoning about systems. The translation of specifications to au-
tomata handles the logic and shifts all the combinatorial difficulties to
automata-theoretic problems, yielding clean and asymptotically opti-
mal algorithms, as well as better understanding of the complexity of
the problems. Beyond leading to tight complexity bounds, automata
have proven to be very helpful in practice. Automata-based methods
have been implemented in both academic and industrial automated-

Full text available at: http://dx.doi.org/10.1561/0400000083
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verification tools (e.g., COSPAN [37], SPIN [39], ForSpec [85], and
NuSMV [16]).

In recent years, researchers have considered extensions of the classical
Boolean setting to a multi-valued one. One type of such extensions
considers systems in which the atomic propositions are multi-valued.
This includes systems in which the designer can give to the atomic
propositions rich values, expressing, for example, energy consumption,
waiting time, different levels of confidence, or inconsistent view-points
[3], [6], [14], [40], [41]. The second type of such extensions considers
systems in which the atomic propositions are possibly Boolean, yet
the specification formalism itself includes multi-valued components. In
particular, when considering the quality of a system, the different ways
in which a specification may be satisfied induce different levels of quality,
which should be reflected in the output of the verification procedure [8],
[12], [20], [45].

This survey studies the automata-theoretic approach for reasoning
about systems and their specifications, with a focus on its extension
to multi-valued settings. We start with the Boolean setting: in Sec-
tion 2, which is based on [51], we introduce Linear Temporal Logic
(LTL) [71], [72], demonstrate its use in specifying on-going behaviors of
reactive systems, and study its theoretical properties. Essentially, LTL
extends propositional logic by temporal operators like G (“always”) and
F (“eventually”). For example, the LTL formula G(req → F (grant∨ack)
states that every request is eventually granted or acknowledged. Sec-
tion 2 continues with Büchi automata. We introduce them, study their
theoretical properties, and describe the automata-theoretic approach to
reasoning about LTL specifications.

In Sections 3 and 4 we describe extensions of the Boolean setting
to two types of extensions to the multi-valued setting. In Section 3,
which is based on [52], we study the first extension, where the atomic
propositions with respect to which the system is defined take values
from a finite lattice. A lattice is a partially-ordered set L = ⟨A,≤⟩ in
which every two elements ℓ and ℓ′ have a least upper bound (ℓ join ℓ′,
denoted ℓ ∨ ℓ′) and a greatest lower bound (ℓ meet ℓ′, denoted ℓ ∧ ℓ′).
Finite lattices capture several useful quantitative settings. Of special
practical interest are two classes of lattices: (1) Fully-ordered lattices,

Full text available at: http://dx.doi.org/10.1561/0400000083



6 Introduction

where L = ⟨{0, . . . , n− 1},≤⟩, for an integer n ≥ 0 and the usual “less
than or equal” order. In this lattice, the operators ∨ and ∧ correspond
to max and min, respectively. Fully-ordered lattices are sometimes
useful as is (for example, when modeling uncertainty or priorities [5],
[6]), and sometimes thanks to the fact that real values can often be
approximated by finitely many linearly ordered classes. (2) Power-set
lattices, where L = ⟨2X ,⊆⟩, for a finite set X, and the containment
order. In this lattice, the operators ∨ and ∧ correspond to union and
intersection, respectively. The power-set lattice models a wide range
of partially-ordered values. For example, in a setting with inconsistent
viewpoints, we have a set of agents, each with a different viewpoint of
the system, and the truth value of a signal or a formula indicates the
set of agents according to whose viewpoint the signal or the formula are
true [23]. As another example, in a peer-to-peer network, one can refer
to the different attributes of the communication channels by assigning
with them subsets of attributes.

We introduce Lattice Linear Temporal Logic (LLTL), where atomic
propositions and formulas take values from a finite lattice. An LLTL for-
mula in which the atomic propositions take values from a lattice L maps
computations to a value in L. For example, when the atomic propositions
take values from the fully-ordered lattice ⟨{0, . . . , n− 1},≤⟩, then the
satisfaction value of the LLTL formula G(req → F (grant ∨ ack) is the
maximal value v ∈ {0, . . . , n−1} such that every request of value greater
than (n− 1) − v is eventually followed by a grant or an acknowlegement
of value at least v. Then, when the atomic propositions take values
from the partially-ordered lattice ⟨X,⊆⟩, for a set X of agents, then the
satisfaction value of the formula is the set S ⊆ X of exactly all agents x
such that every request that is viewed by x is eventually followed by a
grant or an acknowlegement that are viewed by x. Since the satisfaction
value of LLTL formulas is an element in the lattice, questions like LLTL
satisfiability and model checking become search, rather than decision,
problems. Section 3 also introduces and studies lattice automata. Each
lattice automaton is defined with respect to a lattice L, and it maps
words to values in L. The Boolean setting can be viewed as a special case
of the lattice setting, for the Boolean lattice ⟨{0, 1},≤⟩. We study the
theoretical properties of LLTL and lattice automata, and describe an
automata-theoretic approach to reasoning about LLTL specifications.

Full text available at: http://dx.doi.org/10.1561/0400000083
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In Section 4, which is based on [4], we study the second extension
of the Boolean setting, where specifications describe the quality of
computations. We introduce and study the linear temporal logic LTL[F ],
which extends LTL with an arbitrary set F of functions over [0, 1]. Using
the functions in F , a specifier can formally and easily prioritize the
different ways of satisfaction. The logic LTL[F ] is really a family of
logics, each parameterized by a set F ⊆ {f : [0, 1]k → [0, 1] : k ∈ IN}
of functions (of arbitrary arity) over [0, 1]. For example, F may contain
the min {x, y}, max {x, y}, and 1 − x functions, which are the standard
quantitative analogues of the ∧, ∨, and ¬ operators. The novelty of
LTL[F ] is the ability to manipulate values by arbitrary functions. For
example, F may contain the quantitative operator ▽λ, for λ ∈ [0, 1],
that tunes down the quality of a sub-specification. Formally, the quality
of the satisfaction of the specification ▽λφ is the multiplication of the
quality of the satisfaction of φ by λ. For example, the satisfaction value
of the LTL[F ] formula G(req → F (grant ∨▽ 3

4
ack) is 1 when all requests

are eventually granted, is 3
4 when all requests are eventually granted

or acknowledged yet some are only acknowledged, and is 0 when some
requests are neither granted nor acknowledged.

For an automata-theoretic approach to LTL[F ], it seems natural
to translate formulas to weighted automata [22], [67]. Such automata
map input words to values from a semi-ring. In particular, they can
map computations to values in [0, 1]. Weighted automata, however, are
complicated, and many problems become undecidable for them (e.g., the
universality problem – [2], [50]). We show that it is possible to bound
the number of possible satisfaction values of LTL[F ] formulas, and use
this bound in order to translate LTL[F ] formulas to Boolean automata.
From a technical point of view, the big challenge in our setting is to
maintain the simplicity and the complexity of the algorithms for LTL,
even though the number of possible values is exponential.
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