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ABSTRACT

Over the last twenty years, an exciting interplay has emerged
between proof systems and algorithms. Some natural families
of algorithms can be viewed as a generic translation from a
proof that a solution exists into an algorithm for finding the
solution itself. This connection has perhaps been the most
consequential in the context of semi-algebraic proof systems
and basic primitives in algorithm design such as linear and
semidefinite programming. The proof system perspective,
in this context, has provided fundamentally new tools for
both algorithm design and analysis. These news tools have
helped in both designing better algorithms for well-studied
problems and proving tight lower bounds on such techniques.

This monograph is aimed at expositing this interplay
between proof systems and efficient algorithm design and
surveying the state-of-the-art for two of the most important
semi-algebraic proof systems: Sherali-Adams and Sum-of-
Squares.

We rigorously develop and survey the state-of-the-art for
Sherali-Adams and Sum-of-Squares both as proof systems,

∗Research supported by NSERC.

Noah Fleming, Pravesh Kothari and Toniann Pitassi (2019), “Semialgebraic Proofs
and Efficient Algorithm Design”, Foundations and TrendsR© in Theoretical Computer
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as well as a general family of optimization algorithms,
stressing that these perspectives are formal duals to one-
another. Our treatment relies on interpreting the outputs
of the Sum-of-Squares and Sherali-Adams algorithms as
generalized expectation functions — a viewpoint that has
been essential in obtaining both algorithmic results and
lower bounds. The emphasis is on illustrating the main
ideas by presenting a small fraction of representative results
with detailed intuition and commentary. The monograph
is self-contained and includes a review of the necessary
mathematical background including basic theory of linear
and semi-definite programming.
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1
Introduction

Proof complexity is the study of what can be proved efficiently1

in a given formal proof system. Algorithm analysis is the quest for
efficient and accurate algorithms for optimization problems, that can
be rigorously analyzed. Over the last twenty years, there has been an
exciting interplay between proof complexity and algorithms which in a
nutshell studies the proof complexity of algorithm correctness/analysis.
The main focus of this monograph is on algebraic and semi-algebraic
proof systems, and the story of how they became closely connected to
approximation algorithms. Indeed, we will argue that proof complexity
has emerged as the study of systematic techniques to obtain provably
correct algorithms.

There are two high level themes underlying this connection. The first
theme is that proof system lower bounds imply lower bounds for a broad
family of related algorithms. A proof system, in a specific formal sense,
corresponds to a family of efficient, provably correct algorithms. Thus,
lower bounds in specific proof systems (showing hardness of proving

1The emphasis on efficiency, as opposed to existence, is what distinguishes proof
complexity from classical proof theory, and also what links proof complexity with
complexity theory and algorithms.

3
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4 Introduction

well-definedness or other key properties of the function) rules out large
classes of algorithms for solving NP-hard optimization problems.

One of the earliest appearances of this theme was in the work of
Chvátal [46], which proved almost exponential lower bounds against
a promising class of algorithms for independent set by studying an
associated proof system. Another influential paper from 2006, aptly
titled paper “Proving Integrality Gaps without Knowing the Linear
Program” explicitly demonstrated the potential of this theme [5]. This
paper considered broad classes of linear relaxations for NP-optimzation
problems, and proved nearly tight integrality gaps for several important
problems (VertexCover, MaxSAT, and MaxCut) for any linear relaxation
from the class. The classes that they considered correspond to the
algorithms that underlie the semi-algebraic proof systems SA (Sherali-
Adams) and LS (Lovász-Schrijver).

Since then, there has been a huge body of work, proving inte-
grality gaps for large families of linear programming and semidefinite
programming-based algorithms for a variety of important NP-hard
optimization problems. These integrality gaps are none other than proof
complexity lower bounds for specific families of formulas. Most notably
are the proof systems Polynomial Calculus (PC) which is gives rise to a
family of algebraic algorithms, Sherali-Adams (SA) which gives rise to a
large family of linear programs, and Sum-of-Squares (SoS), which gives
rise to a large family of semidefinite programs. In another exciting line of
work, lower bounds for SA and SoS form the basis of exponential lower
bounds on the size of extended formulations (and positive semi-definite
extended formulations) for approximating MaxCut as well as for other
NP-hard optimization problems.

The second theme is that (sometimes) proof system upper bounds
can automatically generate efficient algorithms. More specifically, a
proof system is said to be automatizable if there is an algorithm that
can find proofs in that system efficiently, in the size of the shortest
proof. (So if there is a short proof in the system, then it can be found
efficiently as well.) SA is degree automatizable, in the sense that if
there is a degree d proof, then it can be found time nO(d). SoS is also
practically degree automatizable, if we assume that the coefficients
have length bounded by a polynomial in n (or can be sufficiently well

Full text available at: http://dx.doi.org/10.1561/0400000086



1.1. Proof complexity primer 5

approximated).2 In an automatizable proof system, an efficient proof
certifying the existence of a solution automatically implies an efficient
algorithm for the problem. Using this theme, several remarkable recent
papers have obtained new algorithms for unsupervised learning problems
via efficient SoS proofs.

In the rest of this introduction, we give a brief tour of proof
complexity including an introduction to the algebraic and semi-algebraic
proof systems that we will focus on in this monograph, from the proof
complexity point of view.

1.1 Proof complexity primer

Proof complexity refers to the study of nondeterministic algorithms
for solving problems in coNP. Abstractly, let L be a language in coNP.
For example, L could be the set of all undirected graphs that are not
3-colorable. The following definition of a proof system was given by
Cook and Reckhow in their seminal paper introducing the key ideas
behind the field [50].

Definition 1.1 (Propositional Proof System). A propositional proof
system for a language L ⊆ {0, 1}∗ is a polynomial-time function P :
{0, 1}∗ → {0, 1}∗ such that the following properties hold:

(1) (Soundness) For every y, P(y) ∈ L;

(2) (Completeness) For every x ∈ L, there exists a y such that
P(y) = x.

We think of P as an efficient algorithm that checks to see if y encodes
a legal proof that some x is in L. If so, then P(y) outputs x; otherwise
(if y does not code a legal proof), then P(y) outputs some canonical
string x ∈ L. The soundness property guarantees that the proof system
can only produce proofs for strings in L and the completeness property
means that every x ∈ L has a proof.

Definition 1.2 (Proof Size). Let L ⊆ {0, 1}∗ and let P be a proof
system for L. For x ∈ L sizeP(x) is the minimal natural number m such

2See the discussion in Section 3.2.3.3.
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6 Introduction

that there exists y, |y| = m and P(y) = x. In other words, sizeP(x) is
the length of the shortest P-proof of x.

Definition 1.3 (Polynomially Bounded Proof System). P is polyno-
mially bounded (or p-bounded) if for sufficiently large n, for all x ∈ L,
|x| > n, sizeP(x) ∈ |x|O(1).

It is easy to see from the definitions that there exists a polynomially
bounded proof system P for a language L if and only if L is in NP:
The NP algorithm on input x simply guesses some y (of polynomial
length) and accepts if and only if P(y) = x. When x ∈ L, since P is
complete and polynomially bounded, there is some y of polynomial
length such that P(y) = x and conversely if x 6∈ L then by soundness,
for every y, P(y) 6= x. In the other direction, any NP algorithm for
L gives rise to a polynomially bounded proof system for L. Since the
existence of a polynomially bounded proof system for a language L
is equivalent to saying that L is in NP, proving that no polynomially
bounded proof system exists for a coNP-complete language (such as
UNSAT) is equivalent to proving NP 6= coNP. This is a daunting task —
in particular, it implies that P 6= NP.

In light of the difficulty of proving that no proof system for UNSAT
(or for any other coNP-complete language) is polynomially bounded,
much of the research in the field has focused on proving superpolynomial
lower bounds for standard proof systems for the underlying coNP-
complete language L. For example, Resolution, Frege and Extended
Frege are standard proof systems for UNSAT; the Hajos calculus is a
natural proof system for proving non k-colorability of graphs; Cutting
Planes, Sherali-Adams and SOS (Sum-of-Squares) are well-studied proof
systems for proving that a set of linear inequalities has no integer
solution; and Nullstellensatz and Polynomial Calculus are proof systems
for showing that a set of polynomial equations has no common zero/one
solution. In the subsequent section, we will describe many of these proof
systems and give some concrete examples.

A key high-level point is that the natural proof systems are well-
studied for a good reason and this is the link between proof complexity
and algorithms. Namely, the best algorithms for L, both exact and
approximate, are usually associated with a natural proof system in

Full text available at: http://dx.doi.org/10.1561/0400000086



1.1. Proof complexity primer 7

the sense that the transcript of the algorithm on some x ∈ L is a
proof y in the associated proof system! Moreover, we can also associate
transcripts of approximation algorithms with proofs. Therefore, proving
lower bounds for well-studied proof systems for L is tightly connected
to our understanding of how well large and natural classes of algorithms
can solve or approximate the optimization problem.

The next definition allows us to compare the relative strength of
different proof systems for the same language L.

Definition 1.4 (p-Simulation). Let P1 and P2 be two propositional
proof systems for L. We say that P1 p-simulates P2 if there exists a
polynomial q such that for sufficiently large n, for all x ∈ L, |x| > n,
sizeP1(x) 6 q(sizeP2(x)). In other words, P1 p-simulates P2 if for every
x ∈ L, the minimum proof length in P1 is at most polynomially larger
than the minimum proof length in P2. P1 and P2 are p-equivalent if P1
p-simulates P2, and P2 also p-simulates P1.

While proof size is important, it is also important to be able to
find a proof quickly. Given the likelihood that all proof systems for
coNP-hard languages are not polynomially-bounded, we should measure
the complexity of finding a proof with respect to the size of the shortest
proof, which motivates the next definition.

Definition 1.5 (Polynomial Automatizibility). A proof system P for
L is polynomially automatizable if there exists an algorithm A that
takes as input x ∈ L and returns a y such that P(y) = x and moreover,
the runtime of A is polynomial in sizeP (x) — that is, the runtime is
polynomial in the size of the shortest P-proof of x.

Shortly, we define algebraic and semialgebraic proof systems for
proving that a system of polynomial equations or inequalities has no
integral solution. For these systems, proofs will consist of a sequence
of polynomial equations/equalities. For these proof systems, we are
interested not only in proof size (the total length of the proof), but also
in the degree of the proof — the minimal degree d such that there is an
algebraic proof where every polynomial in the proof has degree at most d.
Thus, we define the following degree-based variant of automatizability.

Full text available at: http://dx.doi.org/10.1561/0400000086



8 Introduction

Definition 1.6 (Degree Automatizibility). An algebraic proof system
P is degree automatizable if there is an algorithm A that returns a
P-refutation of f in time nO(degP (f)), where degP(f) is the minimal
degree refutation of f in P.

Derivations versus Refutations. We have defined proof systems
as nondeterministic procedure for proving that x ∈ L where L is
a language in coNP. What if we want to consider instead proofs of
derivations, such as a proof that if x 6∈ L, then x′ 6∈ L. Of course we
can always determine if this implication is true by a reduction to our
nondeterministic procedure for L. For example, if L is UNSAT, and
we want to prove that if x is a satisfiable Boolean formula, then x′ is
also satisfiable, then we can do so indirectly by obtaining a proof that
¬(¬x∨x′) ∈ UNSAT. However, it will often be more convenient to work
directly with proofs of derivations (for example, when we want to study
the proof complexity of approximation algorithms). To this end, we
define a proof system for derivations as a polynomial-time function P
from strings (encodings of proofs) to strings (encodings of implications
of the form x→ x′), with the property that the range of P is exactly
the set of all valid implications. (An implication x→ x′ is valid if x 6∈ L,
then x′ 6∈ L). The special case of refutations/proofs then corresponds
to implications where x′ is empty.

1.2 Proof systems for UNSAT

UNSAT is the language consisting of all unsatisfiable Boolean formulas.
Thus, x is an encoding of a Boolean formula, and a proof system
verifies the unsatisfiability of x, or equivalently it could verify that x
is a Boolean tautology. Since any formula can be efficiently converted
into an equivalent formula in conjunctive normal form (CNF), we
will without loss of generality, focus our discussion on propositional
proof systems for k-UNSAT — verifying the unsatisfiability of k-CNF
formulas. A k-CNF formula C over Boolean variables x1, . . . , xn is a
conjunction of clauses, C1, . . . , Cm, where each clause is a disjunction
of k literals. We will often view a k-CNF formula as a set of clauses or
constraints. A set of clauses {C1, . . . , Cm} is satisfiable if there exists

Full text available at: http://dx.doi.org/10.1561/0400000086



1.2. Proof systems for UNSAT 9

a Boolean assignment α to the underlying variables such that every
clause Ci evaluates to true under α; otherwise the set of clauses are
unsatisfiable.

Typical propositional proof systems for UNSAT are axiomatic,
meaning that they are described by a finite set of syntactic derivation
rules, which describe how to derive new formulas from one or two
previous ones. In an axiomatic system, a proof that a CNF formula C
(over x1, . . . , xn) is unsatisfiable will be (an encoding of) a sequence of
formulas, where each formula in the sequence is either one of the initial
clauses Ci, or follows from previous formulas in the sequence by one of
the rules. Finally, the last formula in the sequence should be a canonical
formula that is trivially unsatisfiable. (For example, the formula “0” or
the formula x ∧ ¬x.)

Resolution. The Resolution proof system (more commonly called a
refutation system since we are refuting the existence of a satisfying
assignment) is one of the most well-known propositional proof systems
and forms the basis for many well-known automated theorem provers
and SAT solvers. There is only one rule (the Resolution rule): (A ∨
x), (B ∨ ¬x) → (A ∨ B), where A and B are clauses, and by A ∨ B
we mean the clause obtained by taking the disjunction of all literals
occurring in A or B, removing duplications. For example, we can derive
(x1 ∨ x2) from (x1 ∨ x3) and (x1 ∨ x2 ∨ ¬x3). A Resolution refutation
of a k-CNF formula C = {C1, . . . , Cm} is a sequence of clauses such
that every clause in the sequence is either an initial clause Ci, i ∈ [m],
or follows from two previous clauses by the Resolution rule, and such
that the final clause is the empty clause. Resolution is sound and
complete: a CNF formula C has a Resolution refutation if and only if C
is unsatisfiable.

We will encode a Resolution refutation by encoding each clause in
the sequence; since each clause has length O(n), the number of clauses in
the refutation is polynomially related to the bit-length encoding. Thus,
for simplicity and without loss of generality we take the number of
clauses to be the length of a Resolution refutation. If the initial formula
is k-CNF formula for k constant, then its length is polynomial in n,
the number of underlying variables. Therefore, a Resolution refutation

Full text available at: http://dx.doi.org/10.1561/0400000086



10 Introduction

of a k-CNF over n variables is polynomially bounded if its length is
polynomial in n.

Example. Consider the family of propositional formulas, {INDn, n > 2}
corresponding to the induction principle. We have n variables associated
with INDn, x1, . . . , xn, and the following clauses: (1) (x1); (2) For all
i < n (¬xi ∨ xi+1); (3) (¬xn). For each n, INDn has size polynomial
in n and we say that INDn has efficient Resolution refutations if for n
sufficiently large, INDn has a Resolution refutation of polynomial size
in n. It is not hard to see that there are Resolution refutations of INDn

of linear length. More generally, any unsatisfiable Horn formula (CNF
formula with at most one negated variable per clause) has efficient
Resolution refutations, as does any unsatisfiable 2-CNF formula.

The well-known David-Putnam-Logemann-Loveland (DPLL) algo-
rithms [52, 53] for satisfiability is our first example demonstrating
the connection between proofs and algorithms. The DPLL algorithm
is a complete, backtracking-based search algorithm for deciding the
satisfiability of a CNF formula, C. Whenever x is unsatisfiable, the
transcript of the algorithm produces a decision tree over the underlying
variables, where each leaf of the tree is labelled with some clause
Ci ∈ C such that the partial truth assignment of the variables queried
along the path to that leaf falsifies Ci. Such a decision tree, in turn,
is actually a tree-like Resolution proof of C. Therefore, running the
DPLL algorithm on an unsatisfiable input x yields a Resolution proof
that x is in Unsat. In the last decade, enormous progress has been
made on practical SAT solvers, using more sophisticated backtracking

∅
x1 ¬x1

¬x1 ∨x2 ¬x2

¬xn

¬xn ∨ xn+1 ¬xn+1

Figure 1.1: Resolution refutation of INDn.
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1.2. Proof systems for UNSAT 11

algorithms, incorporating caching and restarts. In particular, the CDCL
algorithm (Conflict Driven Clause Learning) routinely solves very large
instances of SAT (with thousands of variables) efficiently [113]. Once
again, the CDCL algorithm as well as many of its extensions are based
on Resolution: running CDCL on an unsatisfiable input x yields a
Resolution refutation of x. Thus superpolynomial lower bounds for
Resolution proves unconditionally that DPLL, and CDCL are not in P.

We will now explain how Resolution characterizes a class of
approximation algorithms for SAT. Any instance of 3SAT has an
assignment satisfying at least 7/8th’s of the clauses, and such an
assignment can be found efficiently — so 3SAT has a polynomial-time
7/8-approximation algorithm. In a major result, Hastad proved that no
polynomial-time algorithm can do better unless P = NP — that is, he
showed that it is NP-hard to achieve an approximation ratio of 7/8 + ε,
for ε > 0 [72]. Proof complexity provides a framework for proving
unconditional lower bounds on approximation algorithms. Extensions of
DPLL and CDCL have been developed for solving and for approximating
MaxSAT which are again based on Resolution in the following sense. If
C is an unsatisfiable 3CNF formula, then running a Resolution-based
(7/8 + ε)-approximation algorithm on input C will output a Resolution
proof that C is not (7/8 + ε) satisfiable. Again, known superpolynomial
Resolution lower bounds on random unsatisfiable 3CNFs [47] can be
invoked to prove unconditionally that any Resolution-based (7/8 + ε)
approximation algorithm is not in P.

Frege Proofs. The most well-known collection of proof systems for
UNSAT, collectively referred to as Frege systems, are axiomatic systems
typically presented in undergraduate logic textbooks. Lines in a Frege
system are propositional formulas (usually over the standard basis
{∧,∨,¬}). A Frege system is equipped with a finite set of axiom and
rule schemas, and a Frege proof is a sequence of formulas, starting with
axioms, and inferring new formulas from previous ones by applying
these rules. Extended Frege systems are generalization of Frege systems
where lines are boolean circuits (rather than formulas). Cook and
Reckhow showed that standard propositional proof systems form a
natural hierarchy, which mirrors the well-known circuit class hierarchy.

Full text available at: http://dx.doi.org/10.1561/0400000086



12 Introduction

ResolutionNullstellensatz

Sherali-AdamsPolynomial Calculus

Sum-of-Squares Cutting Planesbounded-depth Frege

Frege

Extended Frege

IPS

Figure 1.2: The hierarchy of standard propositional proof systems (not only those
for UNSAT). An arrow P1 → P2 indicates that P2 is strictly stronger than P1: P2
p-simulates P1 and there exists a formula which has polynomial-size proofs in P2
but which requires super-polynomial size to prove in P1. A dashed arrow from P1 to
P2 implies that there is a formula which has short proofs in P2 but not in P1, but it
is unknown whether P2 p-simulates P1. A dashed line between P1 and P2 indicates
that P1 and P2 do not p-simulate each other.

At the bottom are Resolution proofs, where lines are clauses and thus
they (roughly) correspond to depth-1 circuits; above that are bounded-
depth Frege systems where lines are bounded-depth formulas, and
thus they correspond to bounded-depth AC0 circuits. Similarly, Frege
systems correspond to formulas (NC1 circuits) and Extended Frege
systems correspond to polynomial-size circuits. Thus as shown by Cook
and Reckhow, bounded-depth Frege p-simulates Resolution, Frege p-
simulates bounded-depth Frege, and Extended Frege p-simulates Frege.

Lower Bounds for UNSAT Proof Systems. In terms of lower
bounds, Haken famously proved exponential lower bounds for Resolution
(using the propositional pigeonhole principle as the hard formulas) [71].
Lower bounds for the Tseitin formulas (essentially random mod 2
equations) and for random k-CNF formulas were subsequently obtained
by [148] and [47]. In [31] an even more general result was proven,
showing that Resolution proof size could be reduced to Resolution
width. (The width of a Resolution proof is the maximum clause size

Full text available at: http://dx.doi.org/10.1561/0400000086



1.2. Proof systems for UNSAT 13

over all clauses in the proof.) Beyond Resolution, a landmark paper by
Ajtai [1] proved superpolynomial lower bounds (again for the pigeonhole
principle) for Frege systems of bounded depth, and in [26] this was
improved to truly exponential lower bounds. It is a longstanding open
problem to prove superpolynomial lower bounds for Frege systems. A
comprehensive treatment of propositional proof complexity can be found
in the following surveys [28, 139, 130].

Proof Search. Some non-trivial proof-search algorithms have been
discovered for several weak proof systems for UNSAT. Beame and
Pitassi [27] showed that any Resolution proof of size S can be found in
time nO(

√
n logS). Ben-Sasson and Wigderson [31] noted that the same

result follows from the reduction from proof size to width, by simply
generating all clauses, according to the Resolution rule, of width bounded
by the width of the proof. For tree-like Resolution, the size-width trade-
off yields an automating algorithm which runs in quasi-polynomial
time.

For stronger proof systems, a line of work has sought to rule out
their automatizability under widely-believed cryptographic assumptions.
This began with the work of Krajícek and Pudlák, who showed that
Extended Frege is not automatizable unless RSA is not secure against
polynomial size circuits [99]. Building on these ideas, Bonet et al.
showed non-automatizability of Frege [35] and bounded-depth Frege
systems [34] under the assumption that computing the Diffie-Hellman
function cannot be computed by polynomial and sub-exponential size
circuits respectively. For weaker proof systems, this approach seems
less hopeful as it is not clear how to use the limited reasoning of
these weak proof systems to break cryptographic assumptions leaving,
in particular, the polynomial automatizability of Resolution as a
tantalizing open problem. In an important paper, Alekhnovich and
Razborov [2] showed that if Resolution, or even tree-like Resolution
were polynomially automatizable, then the hierarchy of parameterized
complexity classes would collapse; that is, W[P] = FPT. In a recent
groundbreaking paper, Atserias and Müller [12] settled the question of
automating Resolution proofs by showing that Resolution is not even
sub-exponentially automatizable unless P = NP.
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1.3 Algebraic proof systems

In this section we consider algebraic proof systems for proving that
a system of polynomial equations/identities has no solution. For this
language, we have a fixed ambient field or ring which is typically the
integers or a finite field. An instance is now (an encoding of) a set
of polynomial equations over the variables x1, . . . , xn, and we want to
prove that this set of polynomial equations has no solution over the
underlying field.

Any algebraic proof system can also be viewed as a proof system for
UNSAT, and more generally using polynomial-time reductions we can
view a proof system for one coNP-complete language as a proof system
for any other another coNP language (although it may not be a natural
one). In the case of UNSAT, we translate each clause into an equivalent
polynomial equation. For example (x1∨¬x2∨x3) becomes the equation
(1− x1)(x2)(1− x3) = 0, and we can also add the equations x2

i − xi = 0
in order to force only Boolean solutions.

Nullstellensatz and Polynomial Calculus. These proof systems
are based on Hilbert’s Nullstellensatz which states that a system of
polynomial equations p1(x1, . . . , xn), . . . , pm(x1, . . . , xm) over a field F
is unsatisfiable if and only if the ideal in the ring F [x1, . . . , xn] generated
by p1(x), . . . , pm(x) contains 1. In other words, if and only if there exists
polynomials q1(x), . . . , qm(x) such that

p1q1 + . . .+ pmqm = 1.

As mentioned above, in our standard context where the variables xi
range over the Boolean domain {0, 1}, we can enforce this by adding
x2
i − xi to the list of polynomial equations. Alternatively we can just

factor them out by working in the ring F [x1, . . . , xn]/(x2
1−x1, . . . , x

2
n−

xn) of multilinear polynomials. Thus q1(x), . . . , qm(x) can be assumed
to be multilinear and therefore of degree at most n.

A Nullstellensatz (Nsatz) refutation of p1(x), . . . , pm(x) is thus a
set of polynomials q1, . . . , qm such that

∑
i piqi = 1. It is clear that

this proof satisfies the Cook-Reckhow definition: it is easy to check
that

∑
i piqi = 1, and soundness and completeness follow from Hilbert’s

Nullstellensatz.
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The size of a Nullstellensatz refutation is the sum of the sizes of
the qi(x)’s. Another important measure for Nullstellensatz refutations
is the degree, which is the maximal degree of the pi(x)qi(x)’s. As
mentioned above, the degree is at most linear. An important property
of Nullstellensatz refutations is that they are degree automatizable:
If an initial family p1(x), . . . , pm(x) of polynomials has a degree d

Nullstellensatz refutation, then it can be found in time nO(d) by simply
solving a system of linear equations where the underlying variables of
the equations are the coefficients of the monomials in q1(x), . . . , qm(x).

The Polynomial Calculus (PC) is a dynamic version of Nullstellensatz
that is rule-based. The inference rules are: (i) from f = 0, g = 0 we can
derive αf + βg = 0, and (ii) from f = 0 we can derive fg = 0. The size
of a PC proof is the sum of the sizes of all polynomials in the derivation,
and the degree is the maximum degree of any line in the proof. Because
this system is dynamic, it is sometimes possible (through cancellations)
to obtain a much lower degree refutation than is possible using the
static Nullstellensatz system. A great example is the induction principle
INDn mentioned above. It is not too hard to see that they have degree
2 PC refutations; on the other hand, it has been shown that their Nsatz
degree is Θ(logn) [38]. Clegg, Edmonds and Impagliazzo [48] proved
that, like Nsatz, PC refutations are degree automatizable.

Stronger Algebraic Proof Systems. The Nullstellensatz and
Polynomial Calculus proof systems witness the unsolvability of a set P of
polynomial equations by demonstrating that 1 lies in the ideal generated
by P, where the measure of complexity of the proof is the maximal
degree. More generally proofs can be viewed as directed acyclic graphs,
where each line in the proof is either a polynomial from P, or follows
from two previous lines by taking a linear combination of two previous
lines, or by multiplying a previous equation by a variable, and where the
final line is the identically 1 polynomial. Thus, the entire proof can be
viewed more compactly as an algebraic circuit, with the leaves labelled by
polynomials from P , and constants, and where internal vertices are either
plus or times gates. This proof system (now called Hilbert-IPS) was
introduced in [117] and is known to be quite powerful: it can efficiently
simulate proofs in all standard propositional proof systems. However, it

Full text available at: http://dx.doi.org/10.1561/0400000086



16 Introduction

is not known to be a Cook-Reckhow proof system since proofs are not
known to be verifiable in polynomial time. Determinining if a Hilbert-
IPS circuit is a proof amounts to determining if the polynomial that
it computes is the identically-1 polynomial, and therefore verifying a
Hilbert-IPS proof amounts to solving PIT (polynomial identity testing),
a problem that admits a randomized (one-sided error) polynomial-
time algorithm. A longstanding and important problem is to prove (or
disprove) that PIT has a deterministic polynomial time algorithm.

A generalization of Hilbert-IPS called the IPS proof system (the
Ideal Proof System) was introduced by Grochow and Pitassi [67]. IPS
proofs have no rules — a proof of unsolvability of P is simply an
algebraic circuit C with two types of inputs, x1, . . . , xn and y1, . . . , ym,
and subject to the following properties (which can be verified by a
PIT algorithm): (i) C with zero substituted for each of the yi variables
evaluates to the identically zero polynomial; (ii) C with p1(x), . . . , pm(x)
substituted for y1, . . . , ym, computes the identically 1 polynomial. As
for Hilbert-IPS, IPS are not known to be deterministically verifiable in
polynomial time, and can simulate all standard Frege and Extended
Frege systems. Grochow and Pitassi prove that superpolynomial lower
bounds for IPS for any family of unsolvable polynomials P would resolve
the longstanding problem of separating VP from VNP, thus establishing
a connection between lower bounds in proof complexity and circuit
lower bounds.

In [104] Tzemeret and Wang define a noncommutative version of
IPS, and quite surprisingly, they prove that it is equivalent to standard
Frege systems. In different but related work, Grigoriev and Hirsch [65]
introduce an algebraic proof system with derivation rules corresponding
to the ring axioms; unlike the IPS systems, proofs in their system can
be verified in polynomial-time. (See [120] for a survey of algebraic proof
systems.)

Lower Bounds and Proof Search. Lower bounds for Nsatz and
PC are known and will be discussed in Chapter 6. For the stronger
algebraic proof systems which can efficiently represent polynomials by
algebraic circuits (Hilbert-IPS and IPS), there are no nontrivial lower
bounds (although lower bounds have been proven for some restricted
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subsystems [54].) In terms of proof search, both Nsatz and PC are
degree automatizable [49], using a modification of the Grobner basis
algorithm.

1.4 Semialgebraic proof systems

In the previous section we discussed proof systems for proving that a
system of polynomial identities is solvable. We can generalize to the
semialgebraic setting, where now the input is a system of polynomial
inequalities, and a semialgebraic proof should certify that the system of
inequalities has no solution over the reals. This generalizes algebraic
proofs (over the reals) since we can always write a polynomial equality
as a set of two inequalities. And by translating clauses into a polynomial
inequalities ((x1 ∨ ¬x2 ∨ x3) becomes x1 + x3 > x2) we can also view
semialgebraic proof systems as proof systems for UNSAT.

Cutting Planes. Cutting Planes is a semi-algebraic proof system over
the integers, where the inequalities are linear. It was originally devised
as a method for solving integer linear programs by relaxing them to
fractional constraints (replacing xi ∈ {0, 1} by 0 6 xi 6 1), and then
deriving new inequalities from previous ones via the Cutting Planes
rules, as a way to tighten the relaxed polytope, to whittle away at
non-integral points. There are two rules for deriving new inequalities:

(i) Combination: From
∑
i aixi > γ and

∑
i bixi > δ, derive

∑
i(αai +

βbi)xi > αγ + βδ, for nonnegative integers α, β.

(ii) Division with rounding: From
∑
i aixi > γ, derive

∑
i
ai
c xi > d

γ
c e,

provided that c divides all ai.

Sherali-Adams. Sherali-Adams (SA) will be the focus of Chapter 2.
Like Cutting Planes, it is a semi-algebraic proof system over the integers,
where lines are polynomial inequalities. Like Nsatz, it is a static proof
system. Let p1(x), . . . , pm(x) be a set of polynomial inequalities that
includes that polynomial inequalities x2

i > xi, xi > x2
i for all i ∈ [n].

A SA refutation of p1(x) > 0, . . . , pm(x) > 0 is a set of polynomials
q1(x), . . . , qm(x) such that each qi(x) is a non-negative combination of
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non-negative juntas, and such that
∑
i piqi = −1. (A non-negative junta

is a polynomial that corresponds to a conjunction of Boolean literals —
for example, x1(1− x2)x3 is a non-negative junta that corresponds to
the Boolean conjunction x1¬x2x3).

Sum-of-Squares. (SoS) is another static semi-algebraic proof system,
and is the focus of Chapter 3. Again let p1(x), . . . , pm(x) be a set of
polynomial inequalities that includes x2

i − xi = 0 for all i ∈ [n]. An
SoS refutation of p1(x) > 0, . . . , pm(x) > 0 is a set of polynomials
q1(x), . . . , qm(x) such that each qi is a sum-of-squares — that is, qi(x)
can be written as

∑
j(ri,j(x))2 for some polynomials ri,j(x), and such

that
∑
i piqi = −1. It is not hard to see that non-negative combinations

of non-negative juntas are sum-of-squares, and thus the SoS proof
system extends SA.

Lower Bounds and Proof Search. We will discuss lower bounds for
semialgebraic proof systems in detail in Chapter 6. In terms of proof
search, both SA and SoS are degree automatizable refutation systems
(under some niceness conditions) which makes them extremely useful
for designing good approximation algorithms. Indeed developing this
connection is one of the main themes of this monograph.

1.5 Connection between algorithms and proofs

Having described the specific proof systems that will be the highlight of
the connection between proof complexity and algorithms, we will return
to the two themes underlying this connection.

Suppose that you have a correct algorithm A for solving SAT (or
some other NP-hard optimization problem). By correct we mean that
when run on a satisfiable instance, the algorithm will always output
“satisfiable” and when run on an unsatisfiable formula, the algorithm
will always output “unsatisfiable”. Since the algorithm is correct, on any
unsatisfiable formula f , we can view the computation of the algorithm
on input f as a proof of the unsatisfiability of f . Furthermore, if A’s
run on f is efficient (say polynomial-time), then A provides us with a
polynomial-length refutation that f is unsatisfiable. Moreover, the same
idea applies to approximation algorithms. That is, suppose that we have
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a correct 2-approximation algorithm for some optimization problem,
such as Independent Set. That is, for every graph G, it outputs an
independent set of size at least half of the size of the largest independent
set in G. If we run the algorithm on some graph G and it returns an
independent set of size s, this is a proof that G does not contain an
independent set of size greater than 2s.

Now speaking somewhat informally, if A is correct, then there is a
proof of A’s correctness. This proof of correctness of A, when applied to
each unsatisfiable f gives us a propositional proof that f is unsatisfiable,
in some proof system, let’s call it PA. Therefore, superpolynomial lower
bounds for this proof system show that there can be no polynomial-time
algorithm whose proof of correctness is based on PA.

As an example of this paradigm, we explained how state-of-the-
art complete algorithms for SAT are based on Resolution, and thus
Resolution lower bounds imply similar impossibility results for a broad
class of algorithms for SAT. For stronger proof systems such as Frege
and Extended Frege, what is the corresponding class of algorithms?
It turns out that Extended Frege proofs capture nearly all known
provably correct algorithms! Therefore, superpolynomial lower bounds
for Extended Frege systems would have far-reaching consequences: it
would essentially rule out almost all known algorithms and algorithmic
paradigms for efficiently solving any NP-hard problem.

Unfortunately, at present we do not know how to prove superpoly-
nomial Extended Frege lower bounds or superpolynomial Frege lower
bounds. But luckily, for many of the algebraic and semi-algebraic proof
systems, we can prove superpolynomial lower bounds, and at the same
time, the corresponding algorithms capture interesting and ubiquitous
families of algorithms. In particular, we will develop the proof system
Sherali-Adams (SA) from an algorithmic point of view, and see that SA
captures a large class of linear programming relaxations. We will see,
through the theory of linear programming duality, that SA derivations
(a syntactic object) are dual to points in the corresponding LP polytopes
(a semantic object), thus linking the SA proof complexity of proving
that a solution exists, to the algorithmic complexity of finding such a
solution. In a similar manner we will develop the SoS system, and see
that it captures semi-definite programming relaxations. Again, we will
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link SoS derivations to the points in the corresponding semi-definite
cone, thus linking SoS complexity of proving the existence of a solution
to the algorithmic complexity of finding such a solution.

In Chapter 5 we prove SoS and SA lower bounds for a particular
family of 3XOR and instances. Using the above connection, this implies
in a precise sense that no linear programming or semi-definite program
based on low-degree SoS can approximate 3XOR or MaxSAT better than
the trivial approximation. That is, we see an exact instance where a
proof complexity lower bound implies lower bounds for a large class of
approximation algorithms.

In the other direction, in Chapter 4 we will see how SoS upper bounds
can lead to efficient algorithms.3 The high level idea is as follows. Start
with some optimization problem such as Independent Set. If we can man-
age to give a low degree SoS proof that for every graph G, there exists a
2-approximation, then by the degree automatizability of SoS, this implies
an efficient algorithm for actually finding the solution. This idea is very
powerful, and has been applied to many problems in machine learning.
The general approach is to obtain low-degree SoS proofs of polynomial
sample complexity bounds for the learning problem, and then by degree-
automatizability of SoS, this yields an efficient learning algorithm.

As a toy example to illustrate this connection, suppose that you are
given samples from an unknown Gaussian with mean µ and standard
deviation one, and want to approximately recover the true mean from
these samples. A necessary condition for succeeding in polynomial time
are sample complexity bounds — that is, polynomially many samples
must be enough to approximate the true mean information theoretically.
Now suppose that we can formalize and prove this sample complexity
bound with a low degree SoS proof. Then by degree automatizability of
SoS, this automatically gives a polynomial-time algorithm for solving
the learning problem! In Section 4.3, we discuss several instantiations of
this approach where state-of-the-art learning algorithms are obtained for:
dictionary learning, tensor decomposition, as well as learning mixtures
of Gaussians.

3We remark that there is a long history of related results in logic, showing strong
links between proofs and programs. In particular, in restricted systems of arithmetic,
programs/algorithms can be extracted from proofs of existence.
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Proof. Let φ be our random instance. For the soundness, we leave it as
an exercise to the reader to use the same argument as in the 3XOR case.
For completeness, we define φ⊕ to be a 3XOR instance as follows: for
each clause C : (xeii ∨x

ej
j ∨x

ek
k ), we have a constraint C ′ : xixjxk = aijk,

where aijk = (−1)ei+ej+ek . This is a random instance of 3XOR, as i, j, k
were chosen i.i.d. and (−1)ei+ej+ek is uniformly distributed over ±1.
Thus, with probability 0.99 there exists a pseudo-distribution satisifying
all constraints in φ⊕. The result follows by noting that if we transform
this pseudo-distribution back to {0, 1} valued variables via x → 1−x

2 ,
any assignment in the support of the pseudo-distribution satisfies C ′,
and any assignment satisfying C ′ also satisfies C.

Recently there has been a surge of works for showing SoS lower
bounds for average-case settings. [95] proved a sharp SoS lower bound
to precisely characterize the number of clauses required for refuting
a constraint satisfaction problem with a given predicate. Following
a sequence of work [111, 75], Barak et al. [18] proved an optimal
lower bound for the planted clique problem via the new technique of
pseudocalibration. This technique was later used in [74] to prove strong
lower bounds for optimizing random degree 3 polynomials over the unit
sphere and Sparse principal component analysis (PCA).

5.3 Applications of lower bounds

So far we have focused on using SoS degree bounds and integrality
gaps is to rule out LP and SDP relaxations of NP-hard optimization
problems. Quite surprisingly, SA and SoS lower bounds can also be used
to rule out other very general classes of algorithms. Again these proofs
are reductions, albeit much more sophisticated ones. The reductions we
discuss next are examples of hardness escalation whereby (SA or SoS)
lower bounds for computing (or approximating) a function in a weaker
model (LP or SDP) can be lifted via function composition to obtain
lower bounds in a stronger model of computation. Some of the early
examples of lifting include Sherstov’s pattern matrix method [141], and
Raz and McKenzie’s separation of the monotone NC hierarchy [128]. In
recent years, many lifting theorems have been discovered, and have in
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turn resolved a large number of open problems in circuit complexity,
game theory and proof complexity (i.e., [61, 60, 62, 56]). Unfortunately,
the ideas and even the setup for these results are beyond the scope of
this manuscript, so we will settle with at least mentioning some of the
main lifting theorems that use SA or SoS lower bounds as their starting
point.

First, SoS degree lower bounds, and more specifically Nullstellensatz
degree bounds, have been used to prove exponential size lower bounds
for monotone circuit models. Monotone span programs capture the
power of reasoning using linear algebra in order to compute monotone
functions [81]. [118] prove a lifting theorem between Nullstellensatz
degree and monotone span program size that implies exponential lower
bounds on the size of monotone span programs for several functions
(and over all fields). By the known equivalence between monotone span
programs and linear secret sharing schemes, this also implies exponential
lower bounds for the latter.

Secondly, SoS degree lower bounds have been used to prove
exponential lower bounds for extended formulations [150]. More
specifically, SA degree bounds were shown to imply lower bounds for
LP extended formulations [40, 94] and similarly, SoS lower bounds were
shown to imply lower bounds for SDP extended formulations [98].

As mentioned above, all of these applications of SoS lower bounds are
instantiations of lifting theorems whereby query complexity lower bounds
for a particular search problem are lifted via composition with an inner
gadget, in order to obtain stronger communication complexity lower
bounds in the corresponding communication measure. For example, [128,
61] lift tree-like Resolution height (here the query measure is decision
tree height) to deterministic communication complexity, which in
turn is known to be equivalent to monotone formula size. [118] lift
Nullstellensatz degree (here the query measure is polynomial degree) to
its corresponding communication measure, which in turn is known to
be equivalent to monotone span program size. And [94] lift SA degree
(where the query measure is junta degree ) to the nonnegative rank of
the communication matrix, which in turn is known to be equivalent to
LP extension complexity [150]. Finally, [98] proved via a lifting theorem,
that SoS lower bounds imply SDP extension complexity lower bounds.
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Section 2.2.3 Missing Proofs

Claim 2.29. If there is a non-negative linear combination of the
constraints of SAd(P) equalling c0 ∈ R, then there exists a degree d SA
derivation of c0 from P.

Proof. Denote by L(y) the SA constraint corresponding to the mul-
tilinearization of Pi(x)JS,T (x) over the placeholder variables y, for
Pi(x) > 0 ∈ P ∪ {1 > 0}, and JS,T (x) a degree at most (d − deg(Pi))
non-negative junta. Suppose that there exists a non-negative linear
combination

ci
∑̀
i=1

L(y) = c0. (1)

We can translate this into a sum over the x-variables by replacing each
linearized L(y) by its corresponding term in the x variables, JSi,Ti(x) ·
Pi(x)

ci
∑̀
i=1

Pi(x) · JSi,Ti(x).

It may no longer be the case that this evaluates to c because terms
which previously cancelled in the linearized sum may no longer cancel
in this non-linearized sum. The axioms ±(xi − x2

i ) > 0 can be used

200
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to mimic the linearization. Each term c
∏
i∈[k] x

ai
i can be linearized by

introducing the following telescoping sum
k∑
i=1

ai−2∑
`=0

c(xi − x2
i )x`i

∏
j>i

x
aj
j

∏
j<i

xj

 .
Each term in this sum is of the form (x2

i − xi) · JS,T (x) for some S, T
with |S|+ |T | 6 d− 2, and therefore is a valid inequality for SA. The
degree of this proof is the maximum degree of among the constraints
being linearized, and therefore is bounded above by d.

Section 3.1 Missing Proofs

Lemma 3.41. For any set of polynomial inequalities P = {P1(x) >
0, . . . , Pm(x) > 0}, SOSd(P) satisfies the following properties:

1. 0 6 yJ 6 yI 6 1 for every I ⊆ J ⊆ [n] with |J | 6 d.

2.
∑
J⊆T (−1)|J |yS∪J > 0 for every non-negative d-junta JS,T (x).

3. If α ∈ {0, 1}n satisfies every Pi(x) > 0 ∈ P, then α ∈
proj[n] (SOSd(P)) for every d > deg(P).1

Proof. To prove (1), we will use the fact that the diagonal entries of a
symmetric PSD matrix are non-negative (Claim 3.5), and thatMd(y) is
symmetric PSD. First, let I ⊆ [n] with |I| 6 d. Observe that yI occurs
on the diagonal ofMd(y) and therefore yI > 0. To prove that yI 6 1,
define u ∈ R( n6d) as

uK =


1 if K = ∅,

−1 if K = I,

0 otherwise.

Then,

u>Md(y)u =
[
1 −1

] [y∅ yI

yI yI

] [
1
−1

]
= y∅ − yI > 0,

1Recall that proj[n] (P) =
{
α �y{1},...,y{n} : α ∈ P

}
, the orthogonal projection of

P to the first n variables.
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where the final inequality follows becauseMd(y) � 0. Finally, because
y∅ = 1, we have 1 − yI > 0. Now, for any I ⊆ J ⊆ [n] with |J | 6 2d,
define u′ ∈ Rn2d+1 as

u′K =


1 if K = I,

−1 if K = J ,

0 otherwise.

Then, as before,

u′>Md(y)u′ =
[
1 −1

] [yI yJ

yJ yJ

] [
1
−1

]
= yI − yJ > 0.

Therefore, we have 0 6 yJ 6 yI 6 1.
For (2), let

∑
J⊆T (−1)|J |yS∪T be the y-variable representation of

some non-negative d-junta JS,T (x). Define the vector v ∈ R( n6d) as vI = 1
if yI occurs positively in the junta, vI = −1 if yI occurs negatively, and
vI = 0 if yI is absent from the junta. We claim that

v>Md(y)v =
∑
J⊆T

(−1)|J |yS∪T .

Indeed, multiplying by v is equivalent to multiplying the principal
submatrix M ofMd(y) corresponding to rows and columns indexed by
{I : vI 6= 0} by the vector v′ := v �vI 6=0. First, let’s look at the vector
v′>M . The first entry of this vector, corresponding to multiplying v′>
by the column indexed by S, is

∑
J⊆T (−1)|J |yS∪T . We claim that the

rest of the entries in this vector are 0. To prove this, we will use the
following property of juntas JS,T (x): for any i ∈ T , because T is disjoint
from S, we can write∑

J⊆T
(−1)|J |yS∪T =

∑
J⊆T :i∈J

(−1)|J |yS∪J −
∑

J⊆T :i6∈J
(−1)|J |yS∪J ,

as well as the observation that the only non-zero entries vL are such
that S ⊆ L ⊆ S ∪ T . Now, consider an entry, other than the first, in
the vector v′>M . For this entry to be included in v′>M , it must be
non-zero in v>Md(y), and so by the definition of v it must correspond
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to a column ofMd(y) indexed by S ∪K for some K ⊆ T with K 6= ∅.
Denote this entry by (v′>M)S∪K , and let i ∈ K ∩ T . Then,

(v′>M)S∪K =
∑
J⊆T

(−1)|J |yS∪T∪K ,

=
∑

J⊆T :i∈J
(−1)|J |yS∪J∪K −

∑
J⊆T :i6∈J

(−1)|J |yS∪J∪K = 0.

Therefore,

v>Md(y)v = v′>Mv′ =

∑
J⊆T

(−1)|J |yS∪T , 0, 0, . . . , 0

 v′
=
∑
J⊆T

(−1)|J |yS∪T > 0,

where the last equality follows because the first entry of v′ is the entry
vS = 1.

For (3), let α ∈ {0, 1}n such that Pi(α) > 0 for every Pi(x) > 0 ∈
P. The moment matrix corresponding to α is defined as M(α)I,J =∏
i∈I αi

∏
j∈J αj for every |I|, |J | 6 d with I ∩ J = ∅, and M(α, Pi)

is defined analogously. Extend α to an
( n
6d
)
-dimensional vector α̃ by

defining α̃I =
∏
i∈I αI . Then, for any v ∈ R( n6d),

v>M(α̃)v = v>α̃α̃>v = (v>α̃)2 > 0,

and so M(α̃) � 0. To see that M(α̃, Pi) � 0, define the vector p
where pI = Pi(α)

∏
j∈I αj for |I| 6 d − deg(Pi)/2, and observe that

pp> =M(α̃, Pi). Therefore v>M(α̃, Pi)v = (v>p)2 > 0.
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