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ABSTRACT

The approximate degree of a Boolean function f captures
how well f can be approximated pointwise by low-degree
polynomials. This monograph surveys what is known about
approximate degree and illustrates its applications in theo-
retical computer science.

A particular focus of the survey is a method of proving
lower bounds via objects called dual polynomials. These
represent a reformulation of approximate degree using linear
programming duality. We discuss in detail a recent, powerful
technique for constructing dual polynomials, called “dual
block composition”.
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1
Introduction

The ability (or inability) to represent or approximate Boolean functions
by polynomials is a central concept in complexity theory, underlying
interactive and probabilistically checkable proof systems, circuit lower
bounds, quantum complexity theory, and more. In this monograph,
we survey what is known about a particularly natural notion of ap-
proximation by polynomials, capturing pointwise approximation over
the real numbers. The ε-approximate degree of a Boolean function
f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least total degree of a
real polynomial p : {−1, 1}n → R such that

|f(x) − p(x)| ≤ ε for all x ∈ {−1, 1}n. (1.1)

By total degree of p, we refer to the maximum sum of the degrees of
all variables appearing in any monomial. For example, p(x1, x2, x3) =
x2

1x2x
2
3 + x1x

3
2 has total degree 5.

Every Boolean function is approximated to error ε = 1 by the
constant 0 function, implying that d̃eg1(f) = 0 for all such f . However,
whenever ε is strictly less than 1, d̃egε(f) is a fascinating notion with a
rich theory and applications throughout theoretical computer science.

2
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3

Applications of approximate degree lower bounds. The study of
approximate degree is itself a “proto-complexity theory” [2], with point-
wise approximation by real polynomials serving as a rudimentary model
of computation, and degree acting as a measure of complexity. Moreover,
when f has large (say, nΩ(1)) approximate degree, it is also hard to
compute in a variety of other computational models. Different mod-
els correspond to different settings of the error parameter ε with two
regimes of particular interest. First, if d̃eg1/3(f) is large, then f cannot
be efficiently evaluated by bounded-error quantum query algorithms
[16].1 This connection is often referred to as the “polynomial method in
quantum computing.”

Second, if d̃egε(f) is large for every ε < 1, then f is difficult to
compute by unbounded-error randomized (or quantum) query algorithms
(see, e.g., [56, Lemma 6]). These are randomized algorithms that are only
required to do slightly better than random guessing, and correspond
to the complexity class PP (short for probabilistic polynomial time)
defined by Gill [63]. This connection has been used to answer long-
standing questions in relativized complexity, e.g., in studying the power
of statistical zero-knowledge proofs (Section 7.2), and in communication
complexity (Section 10). Approximability of f in this error regime,
wherein the error ε is allowed to be arbitrarily close to (but strictly less
than) 1,2 is captured by a notion termed threshold degree and denoted
deg±(f).

Applications of approximate degree upper bounds. As just discussed,
lower bounds on d̃egε(f) imply hardness results for computing f . There
are also many applications of upper bounds on d̃egε(f), typically in the
design of fast algorithms in areas such as learning theory [71], [75] (see
Section 11.2) and differential privacy [51], [127].

1The choice of constant 1/3 is made for aesthetic reasons. Replacing ε = 1/3
with any other constant in (0, 1) changes the ε-approximate degree of f by at most
a constant factor.

2Approximate degree is a meaningful notion even for error parameters ϵ that
are doubly-exponentially close to 1. In particular, for any degree bound d, there are
known Boolean functions that can be approximated by degree-d polynomials to error
1 − 2−nΘ(d)

but not to smaller error [48], [98], [99].
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4 Introduction

In addition to algorithmic applications, approximate degree upper
bounds have also been used to prove complexity lower bounds. Here is
an illustrative example. Suppose one shows that every circuit over n-bit
inputs in a class C can be approximated to error ε < 1 by a polynomial
of degree o(n). We know that simple functions f such as Majority
and Parity require approximate degree Ω(n), and therefore cannot be
computed by circuits in C. In fact, if ε = 1/3, then one can even conclude
that C is not powerful enough to compute these functions on average,
meaning that for every circuit C ∈ C, we have Prx∼{−1,1}n [C(x) =
f(x)] ≤ 1/2 + 1

nω(1) [43], [125]. This principle underlies several state-
of-the-art lower bounds for frontier problems in circuit complexity
(Section 11.3).

Goals of this survey. This survey covers recent progress on proving
approximate degree lower and upper bounds and describes some appli-
cations of the new bounds to oracle separations, quantum query and
communication complexity, and circuit complexity. On the lower bounds
side, progress has followed from an approach called the method of dual
polynomials, which seeks to prove approximate degree lower bounds by
constructing solutions to (the dual of) a certain linear program that
captures the approximate degree of any function. This survey explains
how several of these advances have been unlocked by a particularly
simple and elegant technique—called dual block composition—for con-
structing solutions to this dual linear program. We also provide concise
coverage of even more recent lower bound technique based on a new
complexity measure called spectral sensitivity.

On the upper bounds side, recent explicit constructions of approxi-
mating polynomials have been inspired by quantum query algorithms.
These constructions also involve new techniques that first express the
approximations as sums of exponentially many high-degree terms, and
then replace each term with a low-degree approximation that is accurate
to exponentially small error.

Roadmap and suggestions for reading the survey. After covering
preliminaries (Section 2), we begin in Sections 3 and 4 by covering

Full text available at: http://dx.doi.org/10.1561/0400000107



5

approximate degree upper bounds, i.e., techniques for constructing low-
degree approximations to Boolean functions. We then turn to lower
bound techniques, starting with the simpler and older technique of
symmetrization (Section 5) before turning to the method of dual poly-
nomials (Section 6). The next two sections provide progressively more
sophisticated developments of this technique, with Section 7 introducing
dual block composition as a technique for lower bounding the approxi-
mate degree of block-composed functions, and Section 8 moving beyond
block-composed functions. Section 9 covers approximate degree lower
bounds via spectral sensitivity.

The survey then turns to applications of approximate degree upper
and lower bounds. Section 10 covers (a variant of) the so-called pattern
matrix method for translating approximate degree lower bounds into
approximate-rank and communication lower bounds. Section 11 covers
assorted additional applications of both upper and lower bounds on
approximate degree.

We have primarily organized the survey by technique. For example,
all upper bounds that we cover appear in Sections 3 and 4, with the
exception of the approximate degree upper bound for a function called
Surjectivity that appears in Section 8.1. This organization maximizes
technical and conceptual continuity, but does have some downsides.
The results are not covered in increasing order of difficulty, e.g., the
easiest lower bounds come after the most challenging upper bounds. It
also means that for any specific function or class of functions, the tight
upper and lower bounds appear in different parts of the survey.

Readers may wish to skip some of the more technical results that we
cover on a first reading. Prominent examples include the upper bound
for a function called Element Distinctness in Section 4.4, the proof
of Theorem 7.7 in Section 7.2 on a state-of-the-art lower bound for
block-composed functions, the entirety of Section 8.5 on lower bounds
for problems called Collision and Permutation Testing, and the proof
of Theorem 10.23 in Section 10.5, which constructs a dual witness for
the high threshold-degree of an AC0 function with certain “smoothness”
properties that are important for applications in communication- and
circuit-complexity.
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2Õ(n1/3),” Journal of Computer and System Sciences, vol. 68,
no. 2, 2004, pp. 303–318.

[76] A. R. Klivans and A. A. Sherstov, “A lower bound for agnos-
tically learning disjunctions,” in International Conference on
Computational Learning Theory, Springer, pp. 409–423, 2007.

Full text available at: http://dx.doi.org/10.1561/0400000107

https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.4230/LIPIcs.CCC.2020.15
https://doi.org/10.4230/LIPIcs.CCC.2020.15
https://doi.org/10.1109/CCC.2003.1214415


References 191

[77] K.-I. Ko, Constructing oracles by lower bound techniques for
circuits, 1989.

[78] I. Kremer, Quantum communication. Citeseer, 1995.
[79] T. Lee, “A note on the sign degree of formulas,” arXiv preprint

arXiv:0909.4607, 2009.
[80] T. Lee and A. Shraibman, “An approximation algorithm for

approximation rank,” in 2009 24th Annual IEEE Conference on
Computational Complexity, IEEE, pp. 351–357, 2009.

[81] T. Lee and A. Shraibman, “Lower bounds in communication com-
plexity,” Foundations and Trends in Theoretical Computer Sci-
ence, vol. 3, no. 4, 2009, pp. 263–399. doi: 10.1561/0400000040.

[82] T. Lee and S. Zhang, “Composition theorems in communication
complexity,” in Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, ser. Lecture Notes in
Computer Science, vol. 6198, pp. 475–489, Springer, 2010. doi:
10.1007/978-3-642-14165-2\_41.

[83] N. Linial and A. Shraibman, “Learning complexity vs commu-
nication complexity,” Comb. Probab. Comput., vol. 18, no. 1-2,
2009, pp. 227–245. doi: 10.1017/S0963548308009656.

[84] N. Linial and A. Shraibman, “Lower bounds in communication
complexity based on factorization norms,” Random Struct. Algo-
rithms, vol. 34, no. 3, 2009, pp. 368–394. doi: 10.1002/rsa.20232.

[85] N. Littlestone, “Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm,” Machine learning,
vol. 2, no. 4, 1988, pp. 285–318.

[86] S. V. Lokam, “Complexity lower bounds using linear algebra,”
Foundations and Trends in Theoretical Computer Science, vol. 4,
no. 1-2, 2009, pp. 1–155. doi: 10.1561/0400000011.

[87] N. S. Mande, J. Thaler, and S. Zhu, “Improved approximate
degree bounds for k-distinctness,” in Theory of Quantum Com-
putation, Communication and Cryptography, vol. 158, 2:1–2:22,
2020.

[88] N. S. Mande, “Communication complexity of xor functions,”
Ph.D. dissertation, Tata Institute of Fundamental Research
Mumbai, 2018.

Full text available at: http://dx.doi.org/10.1561/0400000107

https://doi.org/10.1561/0400000040
https://doi.org/10.1007/978-3-642-14165-2\_41
https://doi.org/10.1017/S0963548308009656
https://doi.org/10.1002/rsa.20232
https://doi.org/10.1561/0400000011


192 References

[89] A. A. Markov, “On a question by DI Mendeleev,” Zapiski Im-
peratorskoi Akademii Nauk, vol. 62, no. 1-24, 1890.

[90] C. Marriott and J. Watrous, “Quantum Arthur–Merlin games,”
Computational Complexity, vol. 14, no. 2, 2005, pp. 122–152.

[91] M. Minsky and S. Papert, Perceptrons: An introduction to com-
putational geometry. MIT Press, 1969.

[92] S. Muroga, I. Toda, and S. Takasu, “Theory of majority switching
elements,” J. Franklin Institute, vol. 271, no. 5, 1961, pp. 376–
418.

[93] N. Nisan, “The communication complexity of threshold gates,”
Combinatorics, Paul Erdos is Eighty, vol. 1, 1993, pp. 301–315.

[94] N. Nisan and M. Szegedy, “On the degree of Boolean functions
as real polynomials,” Computational Complexity, vol. 4, no. 4,
1994, pp. 301–313.

[95] R. O’Donnell, Linear and semidefinite programming (advanced
algorithms) fall 2011 lecture notes, 2011.

[96] R. Paturi, “On the degree of polynomials that approximate sym-
metric boolean functions (preliminary version),” in Symposium
on Theory of Computing, pp. 468–474, 1992.

[97] R. Paturi and J. Simon, “Probabilistic communication complex-
ity,” Journal of Computer and System Sciences, vol. 33, no. 1,
1986, pp. 106–123.

[98] V. V. Podolskii, “A uniform lower bound on weights of percep-
trons,” in International Computer Science Symposium in Russia,
Springer, pp. 261–272, 2008.

[99] V. V. Podolskii, “Perceptrons of large weight,” Problems of
Information Transmission, vol. 45, no. 1, 2009, pp. 46–53.

[100] A. A. Razborov, “Lower bounds on the size of bounded depth
circuits over a complete basis with logical addition,” Mathemati-
cal Notes of the Academy of Sciences of the USSR, vol. 41, no. 4,
1987, pp. 333–338.

[101] A. A. Razborov, “Quantum communication complexity of sym-
metric predicates,” Izvestiya: Mathematics, vol. 67, no. 1, 2003.

[102] A. A. Razborov and A. A. Sherstov, “The sign-rank of AC0,”
SIAM Journal on Computing, vol. 39, no. 5, 2010, pp. 1833–1855.

Full text available at: http://dx.doi.org/10.1561/0400000107



References 193

[103] B. Reichardt, “Reflections for quantum query algorithms,” in Pro-
ceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, Califor-
nia, USA, January 23-25, 2011, pp. 560–569, SIAM, 2011. doi:
10.1137/1.9781611973082.44.

[104] F. Rosenblatt, “Principles of neurodynamics. perceptrons and
the theory of brain mechanisms,” Cornell Aeronautical Lab Inc
Buffalo NY, Tech. Rep., 1961.

[105] B. Rossman, R. A. Servedio, and L. Tan, “Complexity theory col-
umn 89: The polynomial hierarchy, random oracles, and boolean
circuits,” SIGACT News, vol. 46, no. 4, 2015, pp. 50–68. doi:
10.1145/2852040.2852052.

[106] A. A. Sherstov, “Halfspace matrices,” Computational Complexity,
vol. 17, no. 2, 2008, pp. 149–178.

[107] A. A. Sherstov, “The pattern matrix method,” SIAM Journal
on Computing, vol. 40, no. 6, 2011, pp. 1969–2000.

[108] A. A. Sherstov, “Making polynomials robust to noise,” in Sym-
posium on Theory of Computing, pp. 747–758, 2012.

[109] A. A. Sherstov, “Strong direct product theorems for quantum
communication and query complexity,” SIAM Journal on Com-
puting, vol. 41, no. 5, 2012, pp. 1122–1165.

[110] A. A. Sherstov, “Approximating the AND-OR tree,” Theory of
Computing, vol. 9, no. 1, 2013, pp. 653–663.

[111] A. A. Sherstov, “Optimal bounds for sign-representing the in-
tersection of two halfspaces by polynomials,” Combinatorica,
vol. 33, no. 1, 2013, pp. 73–96.

[112] A. A. Sherstov, “The intersection of two halfspaces has high
threshold degree,” SIAM Journal on Computing, vol. 42, no. 6,
2013, pp. 2329–2374.

[113] A. A. Sherstov, “Communication lower bounds using directional
derivatives,” Journal of the ACM (JACM), vol. 61, no. 6, 2014,
pp. 1–71.

[114] A. A. Sherstov, “Algorithmic polynomials,” in Symposium on
Theory of Computing, pp. 311–324, 2018.

Full text available at: http://dx.doi.org/10.1561/0400000107

https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1145/2852040.2852052


194 References

[115] A. A. Sherstov, “Breaking the Minsky–Papert barrier for
constant-depth circuits,” SIAM Journal on Computing, vol. 47,
no. 5, 2018, pp. 1809–1857.

[116] A. A. Sherstov, “On multiparty communication with large versus
unbounded error,” Theory of Computing, vol. 14, no. 1, 2018,
pp. 1–17.

[117] A. A. Sherstov, “The power of asymmetry in constant-depth
circuits,” SIAM Journal on Computing, vol. 47, no. 6, 2018,
pp. 2362–2434.

[118] A. A. Sherstov, “The hardest halfspace,” computational complex-
ity, vol. 30, no. 2, 2021, pp. 1–85.

[119] A. A. Sherstov, “The approximate degree of dnf and cnf formu-
las,” in Proceedings of the 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pp. 1194–1207, 2022.

[120] A. A. Sherstov and J. Thaler, “Vanishing-error approximate
degree and qma complexity,” arXiv preprint arXiv:1909.07498,
2019.

[121] A. A. Sherstov and P. Wu, “Near-optimal lower bounds on the
threshold degree and sign-rank of AC0,” in Symposium on Theory
of Computing, pp. 401–412, 2019.

[122] A. A. Sherstov, “Separating AC0 from depth-2 majority circuits,”
SIAM Journal on Computing, vol. 38, no. 6, 2009, pp. 2113–2129.

[123] Y. Shi and Y. Zhu, “Quantum communication complexity of
block-composed functions,” Quantum Information & Computa-
tion, vol. 9, no. 5, 2009, pp. 444–460.

[124] R. Špalek, “A dual polynomial for OR,” arXiv preprint arXiv:
0803.4516, 2008.

[125] A. Tal, “Formula lower bounds via the quantum method,” in
Symposium on Theory of Computing, pp. 1256–1268, 2017.

[126] J. Thaler, “Lower bounds for the approximate degree of block-
composed functions,” in 43rd International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2016), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[127] J. Thaler, J. Ullman, and S. Vadhan, “Faster algorithms for
privately releasing marginals,” in International Colloquium on
Automata, Languages, and Programming, pp. 810–821, 2012.

Full text available at: http://dx.doi.org/10.1561/0400000107



References 195

[128] L. G. Valiant, “A theory of the learnable,” Communications of
the ACM, vol. 27, no. 11, 1984, pp. 1134–1142.

[129] V. V. Vazirani, Approximation algorithms, vol. 1. Springer, 2001.
[130] M. Vyalyi, “QMA= PP implies that PP contains PH,” in EC-

CCTR: Electronic Colloquium on Computational Complexity,
technical reports, Citeseer, 2003.

[131] R. de Wolf, “A note on quantum algorithms and the minimal
degree of epsilon-error polynomials for symmetric functions,”
arXiv preprint arXiv:0802.1816, 2008.

[132] A. C.-C. Yao, “Quantum circuit complexity,” in Proceedings of
1993 IEEE 34th Annual Foundations of Computer Science, IEEE,
pp. 352–361, 1993.

[133] M. Zhandry, “A note on the quantum collision and set equal-
ity problems,” Quantum Information & Computation, vol. 15,
no. 7&8, 2015, pp. 557–567.

Full text available at: http://dx.doi.org/10.1561/0400000107




