
Quantified Derandomization:
How to Find Water in the

Ocean

Full text available at: http://dx.doi.org/10.1561/0400000108

Other titles in Foundations and Trends® in Theoretical Computer
Science

Complexity Theory, Game Theory, and Economics: The Barbados Lec-
tures
Tim Roughgarden
ISBN: 978-1-68083-654-7

Semialgebraic Proofs and Efficient Algorithm Design
Noah Fleming, Pravesh Kothari and Toniann Pitassi
ISBN: 978-1-68083-636-3

Higher-order Fourier Analysis and Applications
Hamed Hatami, Pooya Hatami and Shachar Lovett
ISBN: 978-1-68083-592-2

On Doubly-Efficient Interactive Proof Systems
Oded Goldreich
ISBN: 978-1-68083-424-6

Coding for Interactive Communication: A Survey
Ran Gelles
ISBN: 978-1-68083-346-1

Full text available at: http://dx.doi.org/10.1561/0400000108

Quantified Derandomization: How
to Find Water in the Ocean

Roei Tell
Institute for Advanced Study and DIMACS

roeitell@gmail.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0400000108

Foundations and Trends® in Theoretical Computer
Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

R. Tell. Quantified Derandomization: How to Find Water in the Ocean. Foundations
and Trends® in Theoretical Computer Science, vol. 15, no. 1, pp. 1–125, 2022.

ISBN: 978-1-63828-093-4
© 2022 R. Tell

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000108

Foundations and Trends® in Theoretical
Computer Science

Volume 15, Issue 1, 2022
Editorial Board

Editor-in-Chief
Salil Vadhan
Harvard University
United States

Editors

Bernard Chazelle
Princeton University

Oded Goldreich
Weizmann Institute

Shafi Goldwasser
Massachusetts Institute of Technology and Weizmann Institute

Sanjeev Khanna
University of Pennsylvania

Jon Kleinberg
Cornell University

László Lovász
Eötvös Loránd University

Christos Papadimitriou
University of California, Berkeley

Peter Shor
Massachusetts Institute of Technology

Eva Tardos
Cornell University

Avi Wigderson
AIS, Princeton University

Full text available at: http://dx.doi.org/10.1561/0400000108

Editorial Scope
Topics

Foundations and Trends® in Theoretical Computer Science publishes survey
and tutorial articles in the following topics:

• Algorithmic game theory
• Computational algebra
• Computational aspects of

combinatorics and graph
theory

• Computational aspects of
communication

• Computational biology
• Computational complexity
• Computational geometry
• Computational learning
• Computational Models and

Complexity
• Computational Number

Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of
algorithms

• Distributed computing

• Information retrieval

• Operations Research

• Parallel algorithms

• Quantum Computation

• Randomness in Computation

Information for Librarians

Foundations and Trends® in Theoretical Computer Science, 2022, Vol-
ume 15, 4 issues. ISSN paper version 1551-305X. ISSN online version
1551-3068. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000108

Contents

1 Introduction 3
1.1 The general question . 4
1.2 The role of error-reduction 6
1.3 Additional motivation . 7
1.4 Organization . 8

2 A Brief History, and Basic Notions 9

3 An Overview: What Do We Know? 12
3.1 Non-uniform quantified derandomization with no overhead 12
3.2 Hardness vs quantified randomness 14
3.3 Quantified derandomization of specific circuit classes . . . 16
3.4 Natural black-box techniques and their limitations 26
3.5 Arithmetic quantified derandomization 29
3.6 The connection to pseudoentropy 33

4 Preliminaries 36
4.1 Complete problems . 36
4.2 PRGs and HSGs for quantified derandomization 38
4.3 Extractors and samplers 39

5 Non-uniform Derandomization 42

Full text available at: http://dx.doi.org/10.1561/0400000108

6 Hardness vs Quantified Randomness 44
6.1 Lower bounds for SVN circuits imply very fast quantified

derandomization . 45
6.2 The common proof idea 46
6.3 PRGs for biased distinguishers imply circuit lower bounds . 48

7 Quantified Derandomization of Specific Circuit Classes 51
7.1 General Boolean circuits 51
7.2 A common algorithmic idea 55
7.3 Constant-depth circuits 55
7.4 Constant-depth circuits with threshold gates 61
7.5 De Morgan formulas . 64

8 Extractors, Restriction Procedures, and Their Limitations 71
8.1 Defining the black-box techniques 71
8.2 The application to derandomization and its limitations . . 72
8.3 Relaxations that do (and do not) suffice to bypass the

limitation . 77

9 Polynomials That Vanish Extremely Rarely 79
9.1 Upper bounds over F2 . 79
9.2 Lower bound over general finite fields 81
9.3 The connection to small sets with large degree-d closures . 82

10 Quantified Derandomization and Pseudoentropy 85

11 A Host of Concrete Challenges 89
11.1 Hardness to quantified randomness 89
11.2 Unconditional quantified derandomization of weak circuit

classes . 90
11.3 Polynomials that vanish rarely 91
11.4 Quantified derandomization and pseudoentropy 92

Acknowledgements 93

Full text available at: http://dx.doi.org/10.1561/0400000108

Appendices 94

A Error-reduction by Itself Is Not Enough 95

B Pseudorandom Restrictions for Low-depth Circuits and
Formulas 97
B.1 Width-dependent derandomization of Håstad’s switching

lemma . 97
B.2 Pseudorandom restrictions for threshold circuits 99
B.3 Pseudorandom restrictions for formulas 101

C Extractors Computable by Low-depth Circuits and
Formulas 103
C.1 Extractors computable by AC0 circuits 103
C.2 Extractors computable by extremely sparse threshold

circuits . 105
C.3 Dispersers computable by formulas of subquadratic size . . 105

D Quantified Derandomization of Logspace and of Proof
Systems 110
D.1 Quantified derandomization of logspace 110
D.2 Quantified derandomization of Merlin-Arthur protocols . . 112

References 115

Full text available at: http://dx.doi.org/10.1561/0400000108

Quantified Derandomization: How
to Find Water in the Ocean
Roei Tell

Institute for Advanced Study and DIMACS, New Jersey, USA;
roeitell@gmail.com

ABSTRACT

The focus of this survey is the question of quantified deran-
domization, which was introduced by Goldreich and Wigder-
son [44]: Does derandomization of probabilistic algorithms
become easier if we only want to derandomize algorithms
that err with extremely small probability? How small does
this probability need to be in order for the problem’s com-
plexity to be affected?

This question opens the door to studying natural relaxed
versions of the derandomization problem, and allows us to
construct algorithms that are more efficient than in the
general case as well as to make gradual progress towards
solving the general case. In the survey I describe the body
of knowledge accumulated since the question’s introduction,
focusing on the following directions and results:

1. Hardness vs “quantified” randomness: Assuming
sufficiently strong circuit lower bounds, we can de-
randomize probabilistic algorithms that err extremely
rarely while incurring essentially no time overhead.

2. For general probabilistic polynomial-time algorithms,
improving on the brute-force algorithm for quan-

Roei Tell (2022), “Quantified Derandomization: How to Find Water in the Ocean”,
Foundations and Trends® in Theoretical Computer Science: Vol. 15, No. 1, pp 1–125.
DOI: 10.1561/0400000108.
©2022 R. Tell

Full text available at: http://dx.doi.org/10.1561/0400000108

2

tified derandomization implies breakthrough cir-
cuit lower bounds, and this statement holds for any
given probability of error.

3. Unconditional algorithms for quantified deran-
domization of low-depth circuits and formulas,
as well as near-matching reductions of the general de-
randomization problem to quantified derandomization
for such models.

4. Arithmetic quantified derandomization, and in
particular constructions of hitting-set generators for
polynomials that vanish extremely rarely.

5. Limitations of certain black-box techniques in
quantified derandomization, as well as a tight connec-
tion between black-box quantified derandomization and
the classic notion of pseudoentropy.

Most of the results in the survey are from known works, but
several results are either new or are strengthenings of known
results. The survey also offers a host of concrete challenges
and open questions surrounding quantified derandomization.

Full text available at: http://dx.doi.org/10.1561/0400000108

1
Introduction

Does derandomization of probabilistic algorithms become
easier when the number of “bad” random inputs is extremely
small? (Goldreich and Wigderson [44])

The context for this survey is the question of derandomization: Can we
simulate randomness in a deterministic and efficient way? More accu-
rately, we ask which types of randomized algorithms can be simulated
in a deterministic way, and what is the precise cost of simulation. The
main focus in this study is on simulating randomized algorithms that
solve decision problems, which is the BPP vs P question.1 As we can
expect of one the main questions in complexity theory, progress on it
has been challenging, and we know that essentially any progress on
this question is closely related to progress on other central questions in
complexity theory.

The textbook definition of probabilistically solving a decision prob-
lem L ⊆ {0, 1}∗, which underlies the definition of BPP, considers a

1As usual, this focus is taken merely for simplicity, and there is an efficient search-
to-decision reduction in this setting (i.e., search problems that can be efficiently
solved by probabilistic algorithms, and for which solutions can be efficiently verified,
reduce to promise-BPP; see [42, Theorem 3.5]).

3

Full text available at: http://dx.doi.org/10.1561/0400000108

4 Introduction

randomized algorithm to be successful if it errs with probability at most
1/3 on every fixed input; that is, the fraction of random strings that
cause the algorithm to err is at most 1/3.

This survey is concerned with the seemingly innocent choice of error
bound 1/3. Going back to the original definition of BPP in [38], the class
was defined with an unspecified error bound that can be any constant
smaller than 1/2, such as .49. On the other hand, when we present
this topic to non-expert audiences, we sometimes choose a miniscule
constant such as 10−10 for dramatic effect. Of course, both formulations
are essentially equivalent, since we can apply error reduction to efficiently
reduce the error from 1/2 − n−O(1) to 2−poly(n) with only a polynomial
runtime overhead.

Therefore, a common sentiment is that the precise choice of error
bound doesn’t really matter, as long as it is noticeably smaller than 1/2.2
But is this sentiment accurate even when we take a sub-constant error
bound very close to zero, focusing on algorithms that only err extremely
rarely? It turns out that in this setting, the precise choice of error bound
matters a lot. In fact, the problem is so sensitive to this choice that even
tiny changes in the error bound mark the difference between settings
in which efficient derandomization is known, and settings in which
showing even mild derandomization would yield dramatic consequences
in complexity theory.

1.1 The general question

Let’s start with a trivial extreme point: If we define a probabilistic
algorithm to be successful only if it never errs – that is, we set the
error bound in the definition of BPP to be zero – then we just defined
deterministic computation in a cumbersome way; needless to say, de-
randomization becomes trivial in this case. But what if we allow the
randomized algorithm to err on just a single random string, out of the
exponentially many possible choices for random strings? What if we

2Allowing error that is arbitrarily close to 1/2 is a different story. Such a choice
is less natural (since we are defining a negligible improvement over a random coin
toss as “successfully solving a problem”) and yields the very large complexity class
PP (recall that PPP = P#P ⊇ PH, using [104]).

Full text available at: http://dx.doi.org/10.1561/0400000108

1.1. The general question 5

allow it to err on polynomially many strings? Where is the threshold
at which the derandomization problem stops being trivial, and what
happens beyond this threshold?

Several years ago Goldreich and Wigderson [44] asked these questions
in a broad and methodical way, leading to a fruitful study of what they
called quantified derandomization: This is the question of derandomizing
algorithms that err extremely rarely, where “extremely rarely” here refers
to the number of random strings that cause the probabilistic algorithm
to err. As they mention in their work, an early form of this question
was already considered long ago by Sipser [93], who considered the class
“strong R” of problems solvable with extremely small one-sided error.

Let us define the notion of probabilistically solving a decision problem
with error bound B, where the parameter B will quantify the number of
exceptional strings of random bits (i.e., the number of strings that, when
used by the algorithm as a sequence of coin tosses, cause the algorithm
to err). We will measure B as a function of the number of random coins
(rather than of the input length), since we are interested in comparing
the number of exceptional random strings to the total number of choices
for a random string. For simplicity of presentation, let us assume for
the moment that the number of random coins equals the running time.
(We will get rid of this simplifying assumption later on in Section 3.3.)

Definition 1.1 (probabilistically solving a decision problem with error bound
B). For B : N → N, we say that Π = (Y, N) ⊆ {0, 1}∗ × {0, 1}∗ is in
prBPT IMEB [T] if there exists a randomized algorithm that gets input
x ∈ {0, 1}∗, runs in time T = T (|x|), and:

1. If x ∈ Y, the algorithm accepts given all but at most B(T) choices
of random strings.

2. If x ∈ N, the algorithm rejects given all but at most B(T) choices
of random strings.

I stress again that that B(T) is the absolute number of exceptional
random strings in Definition 1.1, rather than their fraction. Thus, and
since we assumed (for now) that the number of random coins equals the
running time T , the error probability of the algorithm in Definition 1.1

Full text available at: http://dx.doi.org/10.1561/0400000108

6 Introduction

is B(T)/2T . Indeed, the standard definition of prBPT IME [T] is the
special case obtained by using B(T) = 2T /3.

Trying to derandomize only algorithms that err extremely rarely
makes the challenge potentially easier; that is, Definition 1.1 opens the
door for a relaxation of the classical derandomization problem. However,
this relaxation entirely hinges on the choice of function B: For small
values of B (e.g., for B(T)) = O(1)) the corresponding derandomization
problem is easy, since we can just use the brute-force deterministic
simulation that runs the original algorithm using 2B(T) + 1 fixed
choices of a random string; whereas for larger values of B (e.g., for
B(T) = Ω(2T)) the derandomization problem is as challenging as the
original and general derandomization problem.

1.2 The role of error-reduction

As mentioned above, we can efficiently reduce the error of a probabilistic
algorithm. The naive way to do so is to repeat an algorithm that has
error 1/3 for k times and output the majority decision, which reduces
its error to 2−Ω(k). This naive method reduces B only mildly as a
function of the number of random coins, and using more sophisticated
tools we can reduce B to be (say) subexponential in the number of
random coins at a relatively low computational cost (see Section 4.3
for details).3 This means that, in high-level, general derandomization
reduces to quantified derandomization with relatively small values of B

and with a corresponding computational overhead.
The point is that, in contrast to a common mistaken intuition,

this does not trivialize the question of quantified derandomization, but
rather (to the contrary) highlights its importance. Specifically, this sug-
gests a natural approach to solve the general derandomization problem:
First reduce general derandomization to quantified derandomization
(e.g., by error-reduction), and then solve the corresponding quantified
derandomization problem. Indeed, when taking this approach what we

3To be more precise, let us measure B as a function of the number of random
coins R. Naive error-reduction only yields B(R) = 2(1−o(1))·R, since repeating an
algorithm with r = ω(1) coins for k times yields an algorithm with R = k · r coins
and error probability 2−Ω(k) = 2−Ω(R/r).

Full text available at: http://dx.doi.org/10.1561/0400000108

1.3. Additional motivation 7

are actually asking is whether we can reduce general derandomization
to a target setting of quantified derandomization that we can efficiently
solve. This calls for developing efficient algorithms for quantified deran-
domization, as well as efficient approaches for error-reduction.4 We will
see both types of results in this survey.

1.3 Additional motivation

Derandomizing algorithms that err extremely rarely is, in my view, a
natural problem that is inherently interesting, and therefore it does not
need additional external motivations. (Indeed, recall that the problem
was considered as early as 1986 [93].) For example, one may ask what
is the precise time complexity of derandomizing algorithms that err
extremely rarely, or which assumptions are sufficient and necessary in
order to do so (as we will see, both questions have recently been studied).

Nevertheless, let me mention two additional motivations for studying
quantified derandomization, where both of them view this question as
a stepping-stone towards solving the general derandomization problem.
The first additional motivation is that, as explained in Section 1.2, a
natural approach to solve the general derandomization problem is to
reduce it to quantified derandomization and then solve the latter.

The second additional motivation is more generic: Studying a poten-
tially easy special case (i.e., quantified derandomization) may shed light
on the general case (i.e., general derandomization), and pave the way
for gradual progress towards solving the latter. It turns out that this
generic motivation materialized in a fruitful way in the case of quantified
derandomization: The results that we will see are surprising, rely on new
techniques, and point both at specific technical challenges that create
bottlenecks and at connections between quantified derandomization and
well-known questions in complexity theory (e.g., circuit lower bounds
and pseudoentropy).

4In general, applying standard black-box techniques for error-reduction and
then the brute-force algorithm for quantified derandomization does not yield a
non-trivial algorithm for general derandomization (see Appendix A). Thus, when
using this approach, we need either a better-than-brute-force algorithm for quantified
derandomization, or a non-standard technique for error-reduction.

Full text available at: http://dx.doi.org/10.1561/0400000108

8 Introduction

Lastly, as pointed out by Avi Wigderson, the study of quantified
derandomization led to constructions of important pseudorandom ob-
jects. For example, Sipser’s [93] original work was one of the driving
forces behind the study of explicit randomness extractors (see, e.g., [28,
Acknowledgements]). Analogously, the recent introduction of quantified
derandomization in [44] led to constructions of pseudorandom restriction
algorithms for weak circuit classes, and to constructions of extractors
that are computable in weak circuit classes (see, e.g., Appendices B
and C, respectively).

1.4 Organization

An overview of the results that are included in this survey is presented
in Section 3. After stating preliminary definitions in Section 4, the
subsequent Sections 5, 6, 7, 8, 9, and 10 expand on each of the subsections
of Section 3, respectively, elaborating on the high-level results with more
technical details and explanations. A reader interested in open problems
in quantified derandomization will find numerous ones in Section 11.

Appendix A expands on Footnote (4) above. Appendices B and C
describe technical constructions that underlie some of the results de-
scribed in Section 3. Finally, Appendix D surveys two additional settings
for quantified derandomization that have been explored relatively less
so far.

Full text available at: http://dx.doi.org/10.1561/0400000108

Acknowledgements

I’m grateful to Oded Goldreich for many valuable comments on a draft
of the survey, for elaborate discussions about the conceptual perspective,
and for pointing out the elementary proof of Theorem 3.1 (replacing
an original complicated proof). I thank Ryan Williams for encouraging
me to write the survey, for pointing out that Theorem 3.5 is a strict
generalization of his result [114], and for providing good writing advice.
I’m grateful to Avi Wigderson for several useful comments and additions,
and in particular for pointing out a flaw that existed in the definitions
in an early draft. I thank Lijie Chen for very useful comments, and
for suggesting the same elementary proof of Theorem 3.1 suggested
by Oded. And I’m grateful to William Hoza for sharing his proof of
Theorem D.1 and for his permission to include it in the survey.

I thank two anonymous reviewers for their useful suggestions about
the presentation and organization of the survey, as well as for pointing
out many minor inaccuracies.

Part of this work was conducted while I was supported by the
National Science Foundation under grant number CCF-1445755 and
under grant number CCF-1900460.

93

Full text available at: http://dx.doi.org/10.1561/0400000108

Appendices

Full text available at: http://dx.doi.org/10.1561/0400000108

A
Error-reduction by Itself Is Not Enough

Can we construct a better-than-brute-force algorithm for CAPP via
the naive approach of first reducing CAPP to QDB using a standard
sampler-based error-reduction, and then using a brute-force algorithm
for QDB (i.e., solving quantified derandomization by evaluating the
given circuit over some fixed O(B(n)) inputs)?

The following result shows a negative answer to this question: Any
such algorithm will be slower than the brute-force algorithm that simply
evaluates the original circuit on all of its inputs. The meaning of this
result is that when constructing CAPP algorithms that are based on an
initial step of sampler-based error-reduction, a non-trivial algorithm for
quantified derandomization is necessary. The statement below shows
that this is the case even for derandomization with one-sided error (i.e.,
for CAPP 1

2 ,0) and even when using dispersers rather than samplers.

Definition A.1 (disperser). A function Disp : {0, 1}n̄ × {0, 1}ℓ → {0, 1}n

is a (k, ϵ)-disperser if for every T ⊆ {0, 1}n of density |T |/2n ≥ ϵ, for
all but at most 2k strings z ∈ {0, 1}n̄ there exists s ∈ {0, 1}ℓ such that
Disp(z, s) ∈ T .

Theorem A.1 (disperser-based error-reduction should be coupled with
non-trivial algorithms for quantified derandomization). Consider the follow-

95

Full text available at: http://dx.doi.org/10.1561/0400000108

96 Error-reduction by Itself Is Not Enough

ing algorithm for CAPP 1
2 ,0. Given an n-bit circuit C, let Disp : {0, 1}n̄ ×

{0, 1}ℓ → {0, 1}n be an arbitrary (k, .01)-disperser for some value of
k ≤ n. The algorithm:

1. Constructs the circuit C ′ : {0, 1}n̄ → {0, 1} such that C ′(z) =∨
s∈{0,1}ℓ C(Disp(z, s)).1

2. Evaluates C ′ over (arbitrary) fixed 2k + 1 inputs.

3. Outputs “yes” if and only if C ′ accepted one of the inputs.

Then, the running time of this algorithm is larger than 2n · Õ(|C|).

Proof. Radhakrishnan and Ta-Shma [83] proved that for any (k, .01)-
disperser Disp : {0, 1}n̄ ×{0, 1}ℓ → {0, 1}n it holds that n ≤ k + ℓ−O(1)
(i.e., an entropy loss is inherent). Also note that the size of C ′ is
more than 2ℓ · |C|, even without taking into account the complexity of
Disp. Thus, the running time of the algorithm is

(
2k + 1

)
· Õ(|C ′|) >

2k+ℓ · Õ(|C|) ≥ 2n · Õ(|C|).

1That is, the circuit C′ gets input z ∈ {0, 1}n̄, computes the 2ℓ values
{Disp(z, s)}s∈{0,1}ℓ , evaluates C on each of these values, and outputs 1 iff there
is s ∈ {0, 1}ℓ such that C(Disp(z, s)) = 1.

Full text available at: http://dx.doi.org/10.1561/0400000108

B
Pseudorandom Restrictions for Low-depth

Circuits and Formulas

In this section I describe the technical results underlying the algorithms
for quantified derandomization that were presented in Section 7. These
technical results assert the existence of efficient pseudorandom restric-
tion procedures that yield simplifier sets, in the sense of Definition 8.1.

B.1 Width-dependent derandomization of Håstad’s switching
lemma

Let me start with the class AC0. Using standard techniques following [47],
the problem of constructing a pseudorandom restriction procedure
reduces to the problem of derandomizing Håstad’s switching lemma [47];
that is, to the problem of constructing a pseudorandom distribution of
restrictions that simplifies every depth-2 formula into a decision tree of
bounded depth, with high probability (see, e.g., [101, Proof of Theorem
5.16] for an explanation).1

1We will focus on pseudorandom distributions that achieve the same bound
on the decision tree depth, and approximately the same error probability, as in
Håstad’s original result [47]. Pseudorandom restriction procedures that achieve worse
parameters but are more efficient are known (these date back to [5], with a recent
construction presented in [45]).

97

Full text available at: http://dx.doi.org/10.1561/0400000108

98 Pseudorandom Restrictions for Low-depth Circuits and Formulas

Note that for our application (i.e., to construct an algorithm for
QDB) we want to pseudorandomly choose both the variables to fix
and the values for fixed variables. This should be distinguished from
applications for which we only need to pseudorandomly choose which
variables to fix, while leaving the choice of values to be completely
uniform. (A very recent result of Kelley [62] showed that the latter task
can be solved in polynomial time with seed length O(log(n)).)

To optimize the trade-off between B(n) and the seed length, we will
be interested in derandomization of the switching lemma for depth-two
formulas of bounded width (see [101] for an explanation of why this
is the case). We denote the formula size by m ≥ n and its width by
w, and for our application we can assume wlog that w ≤ O(log(m))
and we fix the error probability to be 1/poly(m) for a sufficiently large
polynomial.

For such parameters, Trevisan and Xue [106] constructed a pseu-
dorandom restriction algorithm with seed length Õ(w) · log2(m), and
Goldreich and Wigderson [44] constructed such an algorithm with seed
length Õ(2w) · log(m). The following result from [101] improved on both
these results by constructing a pseudorandom restriction algorithm with
seed length Õ(w2 · log(m)):2

Proposition B.1 (width-dependent derandomization of Håstad’s switching
lemma; see [101, Theorem 1.4]). Let m, n ∈ N, let w ≤ O(log(m)), and
let δ = δ(n) > 0. Then, there exists an algorithm that gets as input a
random seed of length Õ(w2 · log(mn/δ)), runs in time poly(n), and
outputs a restriction ρ ∈ {0, 1, ⋆}n such that for every n-bit depth-2
formula F of size m and width w, with probability 1−O(δ) the following
holds:

1. The number of variables kept alive by ρ is Ω(n/w).

2. There exist “lower-sandwiching” and “upper-sandwiching” formu-
las F low and F high for F 3 such that both F low↾ρ and F high↾ρ can
be computed by decision trees of depth O(log(1/δ)), and each of
the two formulas agrees with F ↾ρ on 1 − δ of the inputs.

2Strictly speaking, the result of [44] is still better in the case of w = O(1), since
it yields seed length O(log(n)) rather than Õ(log(n)).

3That is, for every x ∈ {0, 1}n it holds that F low(x) ≤ F (x) ≤ F high(x).

Full text available at: http://dx.doi.org/10.1561/0400000108

B.2. Pseudorandom restrictions for threshold circuits 99

Proposition B.1 is the main technical result underlying the algorithm
for QDB in Theorem 3.6. Observe that, crucially, both F low and F high

agree with F on 1 − δ of the inputs in the subcube that corresponds to ρ;
that is, they approximate F after the restriction. Also, we can take δ

to be an arbitrarily large polynomial in m without noticeably affecting
the seed length.

B.2 Pseudorandom restrictions for threshold circuits

For constant-depth linear threshold circuits (LTF circuits), even ran-
dom restriction procedures (let alone pseudorandom procedures) are
relatively new. Impagliazzo, Paturi, and Saks [57] showed a random
restriction procedure in which neither the fixed variables nor their values
are chosen uniformly; this procedure sufficed to show worst-case lower
bounds, but does not suffice for many applications, such as proving
average-case lower bounds or constructing quantified derandomization
algorithms.

Several years ago Chen, Santhanam, and Srinivasan [26] (relying
on results developed in [30], [88] and other works) showed a random
restriction procedure for LTF circuits in which the variables are cho-
sen in an adaptive way that depends on the given circuit, but values
for fixed variables are chosen uniformly; they used this procedure to
deduce average-case lower bounds for LTF circuits. This restriction
procedure was subsequently derandomized and refined in [100], yield-
ing the following result, which is the main technical result underlying
Theorem 3.7:

Proposition B.2 (pseudorandom restrictions for LTF circuits; see [100,
Proposition 3.1]). Let c, d ≥ 1, let ϵ > 0 be a sufficiently small constant,
and let δ = d · 30d−1 · ϵ. Then, there exists a polynomial-time algorithm
that for every n ∈ N, when given as input an LTF circuit over n input
bits of depth d with at most n1+ϵ wires, and a random seed of length
O(log(n) · loglog(n)), with probability at least 1 − n−ϵ/2 outputs the
following:

1. A restriction ρ that keeps at least n1−δ variables alive.

2. An LTF that is (1 − n−c)-close to C↾ρ.

Full text available at: http://dx.doi.org/10.1561/0400000108

100 Pseudorandom Restrictions for Low-depth Circuits and Formulas

Note that the original statement in [100] only asserts that Φ is
(9/10)-close to C↾ρ, but the proof already shows that the closeness is
1−n−c for every desired constant c ∈ N. (To see this, note that in Claim
5.11.1 of the full version, the bound on the closeness of each biased gate
to the corresponding constant after all the restriction is stated to be
δt = 1 − n−c for an arbitrary constant c ∈ N.)

Let me also note that another pseudorandom restriction procedure
for LTF circuits was very recently shown by Hatami et al. [51]. In this
procedure the failure probaiblity is exp(−nΩ(1)) instead of n−Ω(1), but
only the variables to be fixed are chosen pseudorandomly, whereas values
for fixed variables are chosen uniformly.

Kabanets and Lu [60] showed a result analogous to Proposition B.2
that holds for the stronger class of PTF circuits of low degree; this is the
main technical result underlying the algorithm for QDB of PTF circuits
in Theorem 7.12. They also showed a similar result for PTF circuits in
which each gate computes a sparse polynomial (i.e., a polynomial with
n∆ monomials for a small constant ∆).

Proposition B.3 (pseudorandom restrictions for low-degree PTF circuits;
see [60, Proof of Theorem 4.4]). Let c, d ≥ 1, let E ≥ 11, and let
∆: N → N such that ∆ ≪

√
ϵd · log(n)/loglog(n), where ϵd = E−2(d−1).

Let Cn be the class of PTF circuits over n input bits of depth d with
n1+ϵd wires in which each gate computes a PTF with degree at most
∆(n). Then, there exists an algorithm that gets as input C ∈ Cn and
a random seed of length log(n)O(∆(n)2), and with probability at least
1 − nΩ(1) outputs the following:

1. A restriction ρ that keeps at least n1−6/E variables alive.

2. A PTF with at most nϵd·∆(n) monomials that is (1 − n−c)-close to
C↾ρ.

Proposition B.3 is not explicitly stated in [60] (which is a conference
version), but as explained there after the statement of Theorem 4.7,
this result follows immediately by mimicking the proof of Theorem
4.4 (which is an analogous result for PTF circuits in which each gate
computes a sparse polynomial). Also, similarly to Proposition B.2, in [60]

Full text available at: http://dx.doi.org/10.1561/0400000108

B.3. Pseudorandom restrictions for formulas 101

the closeness parameter is taken to be 9/10 rather than 1 −n−c, but the
latter value is immediate from their proof. (To see this, in the proof of
Theorem 4.4, instantiate Lemma 4.5 with an arbitrarily large constant
c ≥ 1 instead of with c = 1.)

The restriction procedures are non-black-box. The algorithms in
Propositions B.2 and B.3 both work in a non-black-box fashion: They
get as input a circuit C, and tailor a restriction that is specifically
designed to simplify C. However, as mentioned in Section 8, a key com-
ponent in these procedures is already “somewhat black-box” (i.e., going
layer-by-layer, these restrictions are pseudorandom distributions that
simplify each of the gates in the layer with high marginal probability).
Moreover, both procedures can be made fully black-box at the expense
of simplifying the circuit not to a single LTF or PTF, but rather to the
more complicated model of a relatively shallow decision tree with LTFs
or PTFs at its leaves; see [51] for an explanation.

B.3 Pseudorandom restrictions for formulas

Random restrictions for De Morgan formulas have been extensively
studied since the 1960’s, focusing on the well-known implication that
a formula is expected to shrink (in size) under such restrictions (see,
e.g., [48], [56], [81], [94], [96]). However, only in the last decade have
pseudorandom versions been constructed.

Impagliazzo, Meka, and Zuckerman [55] constructed a pseudorandom
restriction procedure that shrinks any formula of size s to be of size
p2 · s1+o(1), with probability 1 − n−O(1); this procedure has seed length
2O(log2/3(s)) = so(1). Hatami et al. [51] showed a pseudorandom retriction
procedure that supports a much smaller failure probability ϵ ≪ s−O(1),
but shrinks any formula to a decision tree of depth so(1) · polylog(1/ϵ)
with formulas of size p2−o(1) · s at its leaves; the seed length for this
procedure is so(1) · polylog(n/ϵ).

For quantified derandomization we do not need the strong concen-
tration bounds above on the shrinkage of the formula, and shrinkage in
expectation suffices. For this application, Chen, Jin, and Williams [19]

Full text available at: http://dx.doi.org/10.1561/0400000108

102 Pseudorandom Restrictions for Low-depth Circuits and Formulas

showed a procedure that uses seed length only O(log(n)) and indeed
obtains shrinkage in expectation:

Proposition B.4 (pseudorandom restrictions for formulas; see [19]). Let
p : N → N. Then, there exists an algorithm that gets as input a random
seed of length O(log(n)), runs in time poly(n), and outputs a restriction
ρ ∈ {0, 1, ⋆}n such that:

1. With probability at least 2/3 it holds that ρ keeps at least pn/2
variables alive.

2. For every n-variable formula it holds that

E[L(F ↾ρ)] ≤
(

p2 · L(F) + p ·
√

L(F)
)

· nc/loglog(n) ,

where c > 1 is a universal constant.

Proposition B.4 is the main technical result underlying the algorithm
for QDB of formulas in Theorem 3.8. In addition, the pseudorandom
restriction in [19] is even stronger, since it guarantees the existence of
a circuit C of size polylog(n) that gets as input the random seed (of
length O(log(n))) and an index i ∈ [n] of an output, an prints the ith

coordinate of the restriction ρ.

Full text available at: http://dx.doi.org/10.1561/0400000108

C
Extractors Computable by Low-depth Circuits

and Formulas

In this section I describe the technical results underlying the reductions
of CAPP to QDB that were presented in Section 7. These technical
results are constructions of extractors that are computable in weak
circuit classes. The precise notion of being computable in a weak circuit
class will differ across the constructions presented below, but in general
it will be at least as strict as the one in Definition 8.2 (and hence
the limitation in Theorem 8.1 applies to the results that use these
constructions).

In general, there are very efficient constructions of extractors with
good parameters: For example, each output bit of Trevisan’s [105]
extractor (and of its improvement in [84]) is just a parity of the input.
However, in the following results we will be interested in computing
extractors by circuits or formulas that are too weak to even compute the
parity of their input.

C.1 Extractors computable by AC0 circuits

Goldreich and Wigderson [44, Theorem 3.4 in the full version] con-
structed an AC0 circuit computing a function that can be thought
of as a middle-point between a standard extractor (which outputs a

103

Full text available at: http://dx.doi.org/10.1561/0400000108

104 Extractors Computable by Low-depth Circuits and Formulas

distribution close to uniform) and a non-black-box extractor as referred
to in Section 8.3 (which outputs a distribution that only looks uniform
to a circuit whose description is given to the non-black-box extractor).
Specifically, the output distribution of their function looks uniform to
any AC0 observer; this is equivalent to a sampler that only samples
correctly subsets that are decidable by AC0 circuits. Their function was
computable by P-uniform AC0 circuits, had n0 = nΩ(1) output bits,
and supported min-entropy k = 2n/polylog(n).

Their construction was later superseded by a construction of stan-
dard extractors that are computable by P-uniform AC0 circuits, which
was shown by Cheng and Li [27]. (That is, the construction of [27] is of
a standard extractor rather than of a non-black-box one, and also has
better parameters than the one in [44].) In fact, there are various differ-
ent such constructions in [27], supporting different trade-offs between
the parameters; let me mention one such construction of theirs:

Proposition C.1 (extractors in uniform AC0; see [27, Theorem 4.11]). For
any d ≥ 7 there exists an extractor family

{
Extn : {0, 1}n × {0, 1}ℓ →

{0, 1}n0
}

n∈N with seed length ℓ = O(log(n)), output length n0 =⌊
n1/3600

⌋
, min-entropy k = Θ(n/ logd−7(n)), and error n−1/600, such

that the function mapping (z, s) ∈ {0, 1}n × {0, 1}ℓ to Extn(z, s) is
computable by P-uniform AC0 circuits of depth d and size poly(n).

The parameters of Proposition C.1 are close to the best possible
(and various optimizations and tradeoffs appear in [27]). This follows
from a lower bound of Viola [109] (see also [43]), which asserts that
AC0 circuits of size poly(n) and depth d can compute extractors for
min-entropy at most k = n/ logd−1(n), even if the seed is very long
compared to the output length (i.e., even if the seed is of length n.999

0).
A similar lower bound follows by combining Theorem 8.1 with Håstad’s
switching lemma [47]. (In fact, Theorem 8.1 yields a more general
approach for showing such lower bounds, since the simplifier set need
not be a subcube and may even partially depend on the circuit that it
simplifies (as explained in Section 8).)

Full text available at: http://dx.doi.org/10.1561/0400000108

C.2. Extractors computable by extremely sparse threshold circuits 105

C.2 Extractors computable by extremely sparse threshold circuits

Recall that the parity function can be computed by LTF circuits of
depth d and size n1+c−d

⊕ , for some constant c⊕ ≥ 1+
√

5
2 (see [9], [82]).

Thus, if we instantiate Trevisan’s [105] extractor Ext with seed length
close to log(n) and output length nϵ for a small constant ϵ > 0, we
can compute the mapping z 7→ {Ext(z, s)}s by a uniform T C0 circuit of
super-quadratic size. (This is since this extractor only computes parities
of the input, and since for these parameters the circuit that prints the
outputs of the extractor on all seeds has n1+O(ϵ) output bits.)

As far as I know, the first extractor that is computable by uniform
T C0 circuits of super-linear size was constructed in [100]; each output
bit of this extractor is still a parity of the input, but these parities
are computed “in a batch” rather than paying n1+c−d

⊕ per each output
bit. This construction was later improved by Chen and the current
author [22], who showed a construction with seed length and output
length as above that uses only n1+c−d wires, for any c < c⊕; that is:

Proposition C.2 (extractors in uniform T C0 of super-linear size). For
any d ≥ 7 and c < c⊕ there exists an extractor family

{
Extn : {0, 1}n×

{0, 1}ℓ → {0, 1}n0
}

n∈N with seed length ℓ = (1 + exp(−d)) · log(n),
output length n0 = nexp(−d), min-entropy k = n1−exp(−d), and error
ϵ > 0, such that the following holds: The function mapping z ∈ {0, 1}n

to the output-set (Extn(z, s))s∈{0,1}ℓ is computable by P-uniform T C0

circuits of depth d and size n1+c−d .

Note that the circuits in Proposition C.2 are T C0 circuits rather than
LTF circuits; that is, to compute the extractor we only use unweighted
majority gates rather than (the stronger) linear threshold functions.

C.3 Dispersers computable by formulas of subquadratic size

Recall that the parity function can be computed by formulas of size
O(n2). Thus, a naive implmentation of Trevisan’s extractor with seed
length close to log(n) and output length nϵ for a small constant ϵ > 0
yields formulas of size O(n3+O(ϵ)).

Full text available at: http://dx.doi.org/10.1561/0400000108

106 Extractors Computable by Low-depth Circuits and Formulas

The reduction of CAPP to QDB by Chen, Jin, and Williams [19]
yields formulas of sub-quadratic size, using two ideas. The first idea is to
combine a standard linear extractor with naive error reduction; the addi-
tion of naive error reduction yields slightly poorer extraction properties,
but also reduces the computational complexity (intuiviely, since naive
error reduction has very low complexity but poor extractor properties).
In particular, the combination yields the following construction:

Proposition C.3 (dispersers computable by uniform sub-quadratic formu-
las). For any ϵ ∈ (0, 1) and δ > 0 there exists a family of functions
D̂ispn : {0, 1}n × {0, 1}O(log(n)) → {0, 1}n0 , where n0 = nΩδ,ϵ(1), that
satisfies the following:

1. Seeds are pairs. The seed of D̂isp is a pair (s, i) ∈ {0, 1}O(log(n))×
{0, 1}ϵ·log(n).

2. Computable by formulas of sub-quadratic size: For each
fixed s ∈ {0, 1}O(log(n)), the mapping of x ∈ {0, 1}n to the tuple
(D̂ispn(x, (s, i)))i∈{0,1}ϵ·log(n) is computable by P-uniform formulas
of size n2−ϵ+δ.

3. Disperser with density Ω(n−ϵ): For every T ⊆ {0, 1}n0 such
that |T |/2n0 ≥ 9/10, for all but at most 2nϵ inputs x ∈ {0, 1}n

there exists i ∈ {0, 1}ϵ·log(n) such that Prs

[
D̂isp(x, (s, i)) ∈ T

]
≥

2/3.

Proof. For two constants α > 0 and β < 1 that will be defined
below, and for n1 = nβ, let Ext : {0, 1}n1 × {0, 1}O(log(n1)) → {0, 1}n0

be the extractor that is implicit in the work of Li [69, Theorem 3.14]
and was explicitly stated in [19, Theorem 4.1], where n0 = n

α/2
1 ; the

min-entropy of Ext is nα
1 , its error is n−α

1 , and it can be computed
by P-uniform formulas of size n2+α

1 . We think of any n-bit string x

as a sequence of r = n/n1 disjoint substrings x1, ..., xr of length n1,
and define D̂isp(x, (s, i)) = Ext(xi, s); that is, the random seed of D̂isp
consists of an index i ∈ [r] and of a seed s for Ext, and D̂isp applies Ext
with seed s to the ith substring of n1 bits in its input x.

The seed length of D̂isp is (1 − β) · log(n) + O(log(n)), and its
output length is n0 = nβ·α/2. Also, for each fixed s, the mapping x 7→

Full text available at: http://dx.doi.org/10.1561/0400000108

C.3. Dispersers computable by formulas of subquadratic size 107

(D̂ispn(x, (s, i)))i∈[r] is computable by P-uniform formulas of size r ·n2+α
1 .

Now, let T ⊆ {0, 1}n0 be of density at least 9/10. For every fixed i ∈ [r]
there exist at most 2nα

1 strings xi ∈ {0, 1}n1 such that Pr[Ext(xi, s) ∈
T] < 9/10 − n−α. Thus, the number of strings x = (x1, ..., xr) such that
for all i ∈ [r] it holds that Pr[Ext(xi, s) ∈ T] < 9/10 − n−α is at most
2nα

1 ·r. Hence, for all but at most 2nα
1 ·r of the strings x ∈ {0, 1}n there

exists i ∈ [r] such that Pr[D̂isp(x, (s, i)) ∈ T] = Pr[Ext(xi, s) ∈ T] ≥
9/10 − o(1) > 2/3.

To conclude we need to choose α > 0 and β < 1 such that nα
1 ·r ≤ nϵ

(for the number of exceptional inputs) and r ·n2+α
1 ≤ n2−ϵ+δ (for the size

bound) and (1 − β) · log(n) < ϵ · log(n) (for the seed length). Choosing
β = 1−ϵ

1−α and a sufficiently small α = αϵ,δ > 0 suffices.

The second idea of [19] is that in their reduction, instead of the
standard approach of reducing CAPP of a formula F to QDB for F ′(x) =∨

s,i F (D̂isp(x, (s, i))), they reduce CAPP of F to QDB for a probabilistic
formula, defined as follows:

F(x) =
∨

i∈[r]
F (D̂isp(x, (s, i))) ,

where s (i.e., the first part of the seed) is the only random choice
made by the probabilistic formula F. By Proposition C.3, each formula
in the support of F is of size n2−ϵ+δ, and if F accepts at least 9/10
of its inputs, then for all but 2nϵ of the inputs x for F it holds that
Pr[F(x) = 1] ≥ 2/3.

The limitation in Theorem 8.1 still applies to this construction.
The limitation in Theorem 8.1 is proved under the hypothesis that
the distribution of simplifier sets simplifies every circuit in the class
(in the current setting this will refer to every formula of bounded
size) with probability at least 1/2. This hypothesis suffices to deduce a
limitation on extractor-based construction. In the setting of formulas the
known distribution of simplifier sets has a considerably higher success
probability (i.e., 1 − n−O(1) instead of 1/2), and thus its existence
suffices to deduce a limitation also on disperser-based constructions as
in Proposition C.3.

Full text available at: http://dx.doi.org/10.1561/0400000108

108 Extractors Computable by Low-depth Circuits and Formulas

In particular, the following claim asserts that a disperser construction
as in Proposition C.3 cannot be computed by formulas of size n2−2ϵ+o(1)

(as in Corollary 7.16) instead of n2−ϵ+δ. The claim even rules out
a weaker disperser construction, in which we do not have a density
guarantee (as in Item (3)) and in which only require the disperser to
be computable by formulas of the corresponding size on each fixed seed
(rather than requiring a batch-computation property as in Item (2)).

Claim C.1. For any ϵ > 0, there does not exist an (nϵ, .01)-disperser
Disp : {0, 1}n × {0, 1}O(log(n)) → {0, 1}n0 , where n0 = nΩ(1), such that
for every fixed s ∈ {0, 1}O(log(n)) it holds that Disp(s)(x) = Disp(x, s) is
computable by a formula of size n2−2ϵ+o(1).

Proof. Assume towards a contradiction that such construction exists,
and let φ = φ(ϵ) > 0 be a sufficiently small constant. For p = n−1+ϵ+φ,
let X be a distribution over subcubes X ⊂ {0, 1}n of size at least
2p·n/2 = 2nϵ+φ/2 that shrinks every formula of size S to be of size
p2 · S1+o(1), with probability at least 1 − S−c for an arbitrarily large
constant c > 1 (see [55, Lemma 4.8]).1

Let F =
{

Disp(s)
}

s∈{0,1}O(log(n))
. Note that there are poly(n) func-

tions in F , and each function has n0 = nΩ(1) output bits. Taking the
constant c > 1 in the error bound above to be sufficiently large, there
exists X ∼ X such that the formula size of every function Disp(s) ∈ F
decreases by a factor of p2 ·no(1); in particular, each Disp(s) is computable
by a formula of size p2 · n2−2ϵ+o(1) = n2φ+o(1).2

1The subsets in the support of the distribution from [55] are of size p · n/2 only
with very high probability (rather than always). I ignore this issue for simplicity, as
we can always modify the distribution such that it is supported only on subsets of
sufficiently large size p · n/2, while preserving the property that each size-S formula
is simplified with probability at least 1 − S−c.

2To elaborate, each Disp(s) is a multi-output function computable by a collection
of n0 formulas. Let S be the sub-collection of formulas of size less than nφ/n0,
and let L be the sub-collection of formulas of size at least nφ/n0. For each F ∈
L, with probability 1 − 1/poly(n) its size decreased by a multplicative factor of
p2 · no(1); and the total contribution to size of the formulas in S is at most nφ. Thus,
with probability 1 − 1/poly(n) the size of Disp(s) after the restriction is at most
p2 · S1+o(1) + nφ ≤ n2φ+o(1).

Full text available at: http://dx.doi.org/10.1561/0400000108

C.3. Dispersers computable by formulas of subquadratic size 109

It follows that on the subset X, each function Disp(s) ∈ F is sensitive
to less than n2φ+o(1) input bits. Hence, the support size of Disp when
given inputs from X satisfies∣∣∣ ⋃

x∈X,s∈{0,1}O(log(n))

Disp(x, s)
∣∣∣ ≤ poly(n) · 2n2φ+o(1) ≤ 2n2φ+o(1) .

Taking φ to be sufficiently small such that n2φ <
√

n0, there exists a
set T ⊆ {0, 1}n0 of size more than 2n0 − 2

√
n0 = (1 − o(1)) · 2n0 that

avoids Disp on a set X ⊆ {0, 1}n of size 2nϵ+Ω(1) , a contradiction to the
hypothesized properties of Disp.

Full text available at: http://dx.doi.org/10.1561/0400000108

D
Quantified Derandomization of Logspace and of

Proof Systems

In this appendix I mention two interesting directions that were raised
in the original work of Goldreich and Wigderson [44] but have not been
explored further so far.

D.1 Quantified derandomization of logspace

Can we simulate probabilisitic logspace machine in deterministic
logspace if the number of exceptional random strings is extremely
small? As reported in [44], Mike Saks showed in the 1990s that this is
indeed possible, even when the number of exceptional random strings
is relatively not that small:

Theorem D.1 (quantified derandomization of logspace; attributed to
Saks [44, Appendix A of the Full Version]). Let L ⊆ {0, 1}∗ be decidable
by a probabilistic logspace machine M such that for some constant
ϵ > 0, on n-bit inputs M uses T = T (n) bits of randomness and errs
on at most B(T) = 2(1−ϵ)·T random choices. Then, L ∈ L.

The number B(T) = 2(1−Ω(1))·T of exceptional random strings in
Theorem D.1 matches the non-uniform derandomization in Theorem 3.1,
and is indeed significantly larger than in all other settings in this survey

110

Full text available at: http://dx.doi.org/10.1561/0400000108

D.1. Quantified derandomization of logspace 111

(i.e., in all other settings the number of exceptional random strings was
B(T) = 2o(T)).

Saks’ original quantified derandomization algorithm was non-black-
box: Given as input a description of a polynomial-sized read-once
branching program (ROBP), the algorithm relies on the description
to find its most likely output. (Recall that the ROBP represents the
computation of a probabilistic logspace machine on a fixed input as
a function of the random coins.) William Hoza [52] strengthened this
result by constructing a black-box algorithm (i.e., a PRG for biased
ROBPs) that yields the same parameters; the proof below presents
Hoza’s construction.

Proof of Theorem D.1 by William Hoza. For any ϵ = ϵ(n) > 0
and any B(n) ≤ ϵ · 2n, we construct an ϵ-PRG for of B-biased ROBPs

over n input bits of w, whose seed length is ℓ = ℓ(n) = n
n−log(B) ·

log(2nw/ϵ). Given seed s ∈ {0, 1}ℓ, the PRG simply outputs the n-bit
string (s, s, s, ..., s) ∈ ({0, 1}ℓ)n/ℓ (for simplicity we assume that n/ℓ is
an integer). Note that this PRG is indeed computable in logspace, and
that for B(n) = 2(1−Ω(1))·n its seed length satisfies ℓ(n) = O(log(nw/ϵ)).

To see that this construction works, fix an ROBP as above, and
let σ ∈ {0, 1} be its less likely output. Index the layers of the ROBP
by 0, ..., n where 0 is the layer of the starting vertex and n is the last
layer, and consider the vertices at layers indexed 0, ℓ, ..., i · ℓ, ..., n. For
each such vertex v, denote by pv the probability that a random walk
starting from v reaches a vertex in the last layer labeled with σ, and
for s ∈ {0, 1}ℓ denote by v(s) the vertex reached when starting from
v and walking according to s. (For vertices v in the last layer we will
only care about pv, which is either 0 or 1.)

Note that pv = Es∈{0,1}ℓ

[
pv(s)

]
, and hence (by Markov’s inequality)

Pr
s

[
pv(s) ≥ pv · (2nw/ϵ)

]
≤ ϵ/(2nw) .

By a union-bound over the (n + 1) · w/ℓ < 2nw vertices in the relevant
layers, with probability more than 1 − ϵ over choice of s ∈ {0, 1}ℓ, for
every vertex in these layers we have that pv(s) < pv · (2nw/ϵ). In this
case, when starting from the initial vertex v0 in the ROBP and walking

Full text available at: http://dx.doi.org/10.1561/0400000108

112 Quantified Derandomization of Logspace and of Proof Systems

according to the n-bit string (s, s, s, ..., s) we pass through vertices
v1, vℓ, ... and reach a vertex vn, and by induction for each i ∈ [n/ℓ] we
have

pvi = pvi−1(s) < pvi−1 · (2nw/ϵ) < ... < pv1 · (2nw/ϵ)i .

In particular, applying the above for i = n and recalling that pv1 ≤ B/2n,
we have that pvn < pv1 · (2nw/ϵ)n/ℓ ≤ B/2n · (2nw/ϵ)n/ℓ < 1, where the
last inequality relied on our choice of ℓ. Hence, vn is labeled with the
more likely output ¬σ of the ROBP.

The above proves that with probability at least 1 − ϵ over choice of
seed s for the PRG, the ROBP evaluates to its more likely output. The
pseudorandomness of this PRG follows because the probability over a
uniform input that the ROBP evaluates to its more likely output is at
least 1 − B/2n ≥ 1 − ϵ.

The proof above (as well as Saks’ original proof) is elementary,
and does not rely on the vast literature concerning derandomization of
logspace (or of ROBP). Nevertheless, improving on the result that it
yields is still an open problem:

Open Problem 9: Quantified derandomization of logspace
with B(T) = 2(1−o(1))·T . Strengthen Theorem D.1 to work with B(T) =
2T −s(T) for some sub-linear function s, or show that such an improve-
ment implies that BPL = L.

D.2 Quantified derandomization of Merlin-Arthur protocols

We are interested in derandomizing Merlin-Arthur protocols, and partic-
ularly in derandomizing MA and AM (see, e.g., [7, Section 8.2] for the
standard definitions of these classes). Recall that assuming sufficiently
strong lower bounds, both of these classes can be derandomized and
equal N P (see [64]).

Goldreich and Wigderson asked if derandomizing MA or AM
becomes easier when the verifier is extremely unlikely to err (i.e., to
accept an incorrect proof or to reject a correct proof). They showed
two complementary results, the first of which is the following quantified
derandomization algorithm for a subclass of MA.

Full text available at: http://dx.doi.org/10.1561/0400000108

D.2. Quantified derandomization of Merlin-Arthur protocols 113

Definition D.1 (MA with restricted verifiers). For a circuit class C =
{Cn}n∈N, we say that L ⊆ {0, 1}∗ can be decided by an MA protocol with
C-verifiers if there exists an MA verifier V that decides L such that the
following holds: For every input x ∈ {0, 1}∗ and proof w ∈ {0, 1}poly(|x|),
the decision of V at x with proof w as a function of the m = poly(n)
random coins can be computed by a circuit in Cm.

Theorem D.2 (quantified derandomization of MA with AC0 verifiers;
see [44, Theorem 7.3 in the Full Version]). Assume that L ⊆ {0, 1}∗ can
be decided by an MA protocol with AC0 verifiers such that the verifier
always errs on at most B(T) = 2T 1−ϵ random choices. Then L ∈ N P.

Theorem D.2 may appear weak, because it only refers to MA
verifiers whose decision as a function of the random coins is an AC0

circuit. However, if an analogous result holds for AM verifiers, then
AM = N P ! In fact, this conclusion holds even if the verifier’s decision
is only a CNF, and even for smaller values of B(T) = 2T ϵ .

Definition D.2 (AM with restricted verifiers). For a circuit class C =
{Cn}n∈N, we say that L ⊆ {0, 1}∗ can be decided by an AM protocol with
C-verifiers if there exists a deterministic procedure V and a polynomial
p : N → N such that the following holds:

• For every x ∈ L it holds that Prr∈{0,1}p(n) [∃w ∈ {0, 1}p(n),

V (x, w, r) = 1] ≥ 2/3.

• For every x /∈ L it holds that Prr∈{0,1}p(n) [∀w ∈ {0, 1}p(n),

V (x, w, r) = 0] ≥ 2/3.

• On n-bit inputs V can be computed by a circuit from Cn+2p(n).

Theorem D.3 (threshold values for quantified derandomization of AM
with CNF verifiers; see [44, Theorem 7.4 in the Full Version]). Assume
that for some ϵ ∈ (0, 1) the following holds: For any L ⊆ {0, 1}∗ that
can be decided by an AM protocol with CNF verifiers such that the
verifier always errs on at most B(T) = 2T ϵ random choices, we have
that L ∈ N P. Then AM = N P.

To make sense of Theorems D.2 and D.3, recall that derandomization
of AM is in general a harder problem than derandomization of MA

Full text available at: http://dx.doi.org/10.1561/0400000108

114 Quantified Derandomization of Logspace and of Proof Systems

(since AM ⊇ MA). Nevertheless, the contrast between the two results
is still striking.

The proof of Theorem D.2 amounts to applying the quantified
derandomization algorithm of Theorem 7.4 to the verifier’s residual
decision as a function of the random coins, when the input and the
proof are fixed. Similar results can be obtained for analogous classes of
MA with restricted verifiers (such as verifiers computable by formulas)
using Theorems 7.5, 7.10, 7.12, and 7.15. However, this approach does
not use the power of interaction for the quantified derandomization
algorithm, but rather only applies a known quantified derandomization
algorithm to the verifier’s decision.

Open Problem 10: Quantified derandomization of MA using
the power of interaction. For any class C, let MAC be the set of
problems solvable by MA protocols in which the verifier’s decision as a
function of the random coins is computable in C. Can we construct a
quantified derandomization algorithm for MAC with better parameters
than the known quantified derandomization algorithm for C, using the
interaction with the prover?

Full text available at: http://dx.doi.org/10.1561/0400000108

References

[1] S. Aaronson, “P
?= NP ,” in Open Problems in Mathematics,

J. F. Nash Jr. and M. T. Rassias, Eds., Springer International
Publishing, 2016, pp. 1–122.

[2] E. Abbe, A. Shpilka, and A. Wigderson, “Reed-Muller codes for
random erasures and errors,” IEEE Transactions on Information
Theory, vol. 61, no. 10, 2015, pp. 5229–5252.

[3] L. Adleman, “Two theorems on random polynomial time,” in
Proc. 19th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1978, pp. 75–83.

[4] M. Ajtai, “Σ1
1-formulae on finite structures,” Annals of Pure and

Applied Logic, vol. 24, no. 1, 1983, pp. 1–48.
[5] M. Ajtai and A. Wigderson, “Deterministic simulation of prob-

abilistic constant depth circuits,” in Proc. 26th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1985.

[6] A. E. Andreev, “On a method for obtaining more than quadratic
effective lower bounds for the complexity of π-schemes,” Vestnik
Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika,
no. 1, 1987, pp. 70–73, 103.

[7] S. Arora and B. Barak, Computational complexity: A modern
approach. Cambridge University Press, Cambridge, 2009.

115

Full text available at: http://dx.doi.org/10.1561/0400000108

116 References

[8] B. Barak, R. Shaltiel, and A. Wigderson, “Computational ana-
logues of entropy,” in Proc. 7th International Workshop on Ran-
domization and Approximation Techniques in Computer Science
(RANDOM), 2003, pp. 200–215.

[9] P. Beame, E. Brisson, and R. Ladner, “The complexity of com-
puting symmetric functions using threshold circuits,” Theoretical
Computer Science, vol. 100, no. 1, 1992, pp. 253–265.

[10] E. Ben-Sasson and E. Viola, “Short PCPs with projection
queries,” in Proc. 41st International Colloquium on Automata,
Languages and Programming (ICALP), 2014, pp. 163–173.

[11] M. Bläser, M. Hardt, and D. Steurer, “Asymptotically optimal
hitting sets against polynomials,” in Proceedings of the 35th Inter-
national Colloquium on Automata, Languages and Programming,
Part I, ser. Proc. 35th International Colloquium on Automata,
Languages and Programming (ICALP), pp. 345–356, 2008.

[12] M. Bläser and A. Pandey, “Polynomial identity testing for low
degree polynomials with optimal randomness,” in Proc. 24th
International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), Art. No. 8, 13,
2020.

[13] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudo-random bits,” SIAM Journal of Com-
puting, vol. 13, no. 4, 1984, pp. 850–864.

[14] A. Bogdanov, “Pseudorandom generators for low degree poly-
nomials,” in Proc. 37th Annual ACM Symposium on Theory of
Computing (STOC), 2005, pp. 21–30.

[15] A. Bogdanov, “Small bias requires large formulas,” in Proc.
45th International Colloquium on Automata, Languages and
Programming (ICALP), 22:1–22:12, 2018.

[16] A. Bogdanov and E. Viola, “Pseudorandom bits for polynomials,”
SIAM Journal of Computing, vol. 39, no. 6, 2010, pp. 2464–2486.

[17] N. H. Bshouty, “Testers and their applications [extended ab-
stract],” in Proc. 5th Conference on Innovations in Theoretical
Computer Science (ITCS), pp. 327–351, 2014.

Full text available at: http://dx.doi.org/10.1561/0400000108

References 117

[18] L. Chen, “Non-deterministic quasi-polynomial time is average-
case hard for ACC circuits,” in Proc. 60th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2019.

[19] L. Chen, C. Jin, and R. R. Williams, “Sharp threshold results
for computational complexity,” in Proc. 52nd Annual ACM
Symposium on Theory of Computing (STOC), pp. 1335–1348,
2020.

[20] L. Chen, X. Lyu, and R. R. Williams, “Almost-everywhere circuit
lower bounds from non-trivial derandomization,” in Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2020.

[21] L. Chen and H. Ren, “Strong average-case lower bounds from non-
trivial derandomization,” in Proc. 52th Annual ACM Symposium
on Theory of Computing (STOC), pp. 1327–1334, 2020.

[22] L. Chen and R. Tell, “Bootstrapping results for threshold circuits
“just beyond” known lower bounds,” in Proc. 51st Annual ACM
Symposium on Theory of Computing (STOC), pp. 34–41, 2019.

[23] L. Chen and R. Tell, “Hardness vs randomness, revised: Uniform,
non-black-box, and instance-wise,” Electronic Colloquium on
Computational Complexity: ECCC, vol. 28, 2021, p. 080.

[24] L. Chen and R. Tell, “Simple and fast derandomization from
very hard functions: Eliminating randomness at almost no cost,”
in Proc. 53st Annual ACM Symposium on Theory of Computing
(STOC), 2021.

[25] L. Chen and R. R. Williams, “Stronger Connections Between
Circuit Analysis and Circuit Lower Bounds, via PCPs of Proxim-
ity,” in Proc. 34th Annual IEEE Conference on Computational
Complexity (CCC), 19:1–19:43, 2019.

[26] R. Chen, R. Santhanam, and S. Srinivasan, “Average-case lower
bounds and satisfiability algorithms for small threshold circuits,”
in Proc. 31st Annual IEEE Conference on Computational Com-
plexity (CCC), 1:1–1:35, 2016.

[27] K. Cheng and X. Li, “Randomness extraction in AC0 and with
small locality,” Electronic Colloquium on Computational Com-
plexity: ECCC, vol. 23, 2016, p. 18.

Full text available at: http://dx.doi.org/10.1561/0400000108

118 References

[28] A. Cohen and A. Wigderson, “Dispersers, deterministic am-
plification, and weak random sources,” in Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 14–19, 1989.

[29] G. Cohen and A. Ta-Shma, “Pseudorandom generators for low
degree polynomials from algebraic geometry codes,” Electronic
Colloquium on Computational Complexity: ECCC, vol. 20, 2013,
p. 155.

[30] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E.
Viola, “Bounded independence fools halfspaces,” SIAM Journal
of Computing, vol. 39, no. 8, 2010, pp. 3441–3462.

[31] I. Dinur and O. Meir, “Toward the KRW composition conjecture:
Cubic formula lower bounds via communication complexity,”
Computational Complexity, vol. 27, no. 3, 2018, pp. 375–462.

[32] D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman, “Nearly
optimal pseudorandomness from hardness,” in Proc. 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
2020.

[33] D. Doron, A. Ta-Shma, and R. Tell, “On hitting-set generators
for polynomials that vanish rarely,” in Proc. 24th International
Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), Art. 7–22, 2020.

[34] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, “Extensions to
the method of multiplicities, with applications to Kakeya sets
and mergers,” SIAM Journal of Computing, vol. 42, no. 6, 2013,
pp. 2305–2328.

[35] B. Fefferman, R. Shaltiel, C. Umans, and E. Viola, “On beat-
ing the hybrid argument,” Theory of Computing, vol. 9, 2013,
pp. 809–843.

[36] M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and
the polynomial-time hierarchy,” Mathematical Systems Theory,
vol. 17, no. 1, 1984, pp. 13–27.

[37] A. Gál, A. Tal, and A. T. Nuñez, “Cubic formula size lower
bounds based on compositions with majority,” in Proc. 10th
Conference on Innovations in Theoretical Computer Science
(ITCS), Art. No. 35, 13, 2019.

Full text available at: http://dx.doi.org/10.1561/0400000108

References 119

[38] J. T. Gill III, “Computational complexity of probabilistic Turing
machines,” in Proc. 6th Annual ACM Symposium on Theory of
Computing (STOC), pp. 91–95, 1974.

[39] M. Goldmann, J. Håstad, and A. Razborov, “Majority gates vs.
general weighted threshold gates,” in Proc. 7th Annual Structure
in Complexity Theory Conference, pp. 2–13, 1992.

[40] M. Goldmann and M. Karpinski, “Simulating threshold circuits
by majority circuits,” SIAM Journal of Computing, vol. 27, no. 1,
1998, pp. 230–246.

[41] O. Goldreich, Computational Complexity: A Conceptual Perspec-
tive. New York, NY, USA: Cambridge University Press, 2008.

[42] O. Goldreich, “In a world of P=BPP,” in Studies in Complexity
and Cryptography. Miscellanea on the Interplay Randomness and
Computation, 2011, pp. 191–232.

[43] O. Goldreich, E. Viola, and A. Wigderson, “On randomness
extraction in AC0,” in Proc. 30th Annual IEEE Conference on
Computational Complexity (CCC), pp. 601–668, 2015.

[44] O. Goldreich and A. Widgerson, “On derandomizing algorithms
that err extremely rarely,” in Proc. 46th Annual ACM Symposium
on Theory of Computing (STOC), 2014, pp. 109–118.

[45] P. Gopalan, R. Meka, and O. Reingold, “Dnf sparsification and
a faster deterministic counting algorithm,” Computational Com-
plexity, vol. 22, no. 2, 2013, pp. 275–310.

[46] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy
codes,” Journal of the ACM, vol. 56, no. 4, 2009, Art. 20, 34.

[47] J. Håstad, Computational Limitations of Small-depth Circuits.
MIT Press, 1987.

[48] J. Håstad, “The shrinkage exponent of De Morgan formulas is
2,” SIAM Journal of Computing, vol. 27, no. 1, 1998, pp. 48–64.

[49] J. Håstad, “On the correlation of parity and small-depth circuits,”
SIAM Journal of Computing, vol. 43, no. 5, 2014, pp. 1699–1708.

[50] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseu-
dorandom generator from any one-way function,” SIAM Journal
of Computing, vol. 28, no. 4, 1999, pp. 1364–1396.

Full text available at: http://dx.doi.org/10.1561/0400000108

120 References

[51] P. Hatami, W. M. Hoza, A. Tal, and R. Tell, “Fooling constant-
depth threshold circuits,” Electronic Colloquium on Computa-
tional Complexity: ECCC, vol. 28, 2021, p. 002.

[52] W. M. Hoza, Private Communication, 2021.
[53] R. Impagliazzo and V. Kabanets, “Fourier concentration from

shrinkage,” Computational Complexity, vol. 26, no. 1, 2017,
pp. 275–321.

[54] R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search of
an easy witness: Exponential time vs. probabilistic polynomial
time,” Journal of Computer and System Sciences, vol. 65, no. 4,
2002, pp. 672–694.

[55] R. Impagliazzo, R. Meka, and D. Zuckerman, “Pseudorandom-
ness from shrinkage,” in Proc. 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2012, pp. 111–119.

[56] R. Impagliazzo and N. Nisan, “The effect of random restrictions
on formula size,” Random Structures & Algorithms, vol. 4, no. 2,
1993, pp. 121–133.

[57] R. Impagliazzo, R. Paturi, and M. E. Saks, “Size-depth tradeoffs
for threshold circuits,” SIAM Journal of Computing, vol. 26,
no. 3, 1997, pp. 693–707.

[58] R. Impagliazzo and A. Wigderson, “P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma,” in Proc.
29th Annual ACM Symposium on Theory of Computing (STOC),
1999, pp. 220–229.

[59] V. Kabanets and R. Impagliazzo, “Derandomizing polynomial
identity tests means proving circuit lower bounds,” Computa-
tional Complexity, vol. 13, no. 1-2, 2004, pp. 1–46.

[60] V. Kabanets and Z. Lu, “Satisfiability and derandomization for
small polynomial threshold circuits,” in Proc. 22nd International
Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), Art. No. 46, 19, 2018.

[61] T. Kaufman, S. Lovett, and E. Porat, “Weight distribution and
list-decoding size of Reed-Muller codes,” IEEE Transactions on
Information Theory, vol. 58, no. 5, 2012, pp. 2689–2696.

Full text available at: http://dx.doi.org/10.1561/0400000108

References 121

[62] Z. Kelley, “An improved derandomization of the switching
lemma,” in Proc. 53rd Annual ACM Symposium on Theory
of Computing (STOC), 2021.

[63] V. M. Khrapčenko, “A certain method of obtaining estimates
from below of the complexity of π-schemes,” Matematicheskie
Zametki, vol. 10, 1971, pp. 83–92.

[64] A. R. Klivans and D. van Melkebeek, “Graph nonisomorphism
has subexponential size proofs unless the polynomial-time hi-
erarchy collapses,” SIAM Journal of Computing, vol. 31, no. 5,
2002, pp. 1501–1526.

[65] A. R. Klivans and D. Spielman, “Randomness efficient identity
testing of multivariate polynomials,” in Proc. 33rd Annual ACM
Symposium on Theory of Computing (STOC), pp. 216–223, 2001.

[66] I. Komargodski and R. Raz, “Average-case lower bounds for
formula size,” in Proc. 45th Annual ACM Symposium on Theory
of Computing (STOC), pp. 171–180, 2013.

[67] I. Komargodski, R. Raz, and A. Tal, “Improved average-case
lower bounds for De Morgan formula size: Matching worst-case
lower bound,” SIAM Journal of Computing, vol. 46, no. 1, 2017,
pp. 37–57.

[68] D. Lewin and S. Vadhan, “Checking polynomial identities over
any field: Towards a derandomization?” In Proc. 30th An-
nual ACM Symposium on Theory of Computing (STOC), 1998,
pp. 438–447.

[69] X. Li, “Improved two-source extractors, and affine extractors for
polylogarithmic entropy,” in Proc. 57th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 168–177, 2016.

[70] Y. Liu and R. Pass, “Characterizing Derandomization Through
Hardness of Levin-Kolmogorov Complexity,” in Proc. 37th An-
nual IEEE Conference on Computational Complexity (CCC),
vol. 234, 35:1–35:17, 2022.

[71] S. Lovett, “Unconditional pseudorandom generators for low-
degree polynomials,” Theory of Computing, vol. 5, 2009, pp. 69–
82.

Full text available at: http://dx.doi.org/10.1561/0400000108

122 References

[72] C.-J. Lu, “Hitting set generators for sparse polynomials over
any finite fields,” in Proc. 27th Annual IEEE Conference on
Computational Complexity (CCC), 2012, pp. 280–286.

[73] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson, “Extractors:
Optimal up to constant factors,” in Proc. 35th Annual ACM
Symposium on Theory of Computing (STOC), pp. 602–611, 2003.

[74] M. Luby, B. Velickovic, and A. Wigderson, “Deterministic ap-
proximate counting of depth-2 circuits,” in Proc. 2nd Israel
Symposium on Theory and Computing Systems, pp. 18–24, 1993.

[75] P. B. Miltersen and N. V. Vinodchandran, “Derandomizing
Arthur-Merlin games using hitting sets,” Computational Com-
plexity, vol. 14, no. 3, 2005, pp. 256–279.

[76] C. Murray and R. Williams, “Circuit lower bounds for nondeter-
ministic quasi-polytime: An easy witness lemma for np and nqp,”
in Proc. 50th Annual ACM Symposium on Theory of Computing
(STOC), 2018.

[77] J. Naor and M. Naor, “Small-bias probability spaces: Efficient
constructions and applications,” SIAM Journal of Computing,
vol. 22, no. 4, 1993, pp. 838–856.

[78] Z. Nie and A. Y. Wang, “Hilbert functions and the finite degree
Zariski closure in finite field combinatorial geometry,” Journal
of Combinatorial Theory. Series A, vol. 134, 2015, pp. 196–220.

[79] N. Nisan, “Pseudorandom bits for constant depth circuits,”
Combinatorica, vol. 11, no. 1, 1991, pp. 63–70.

[80] N. Nisan and A. Wigderson, “Hardness vs. randomness,” Journal
of Computer and System Sciences, vol. 49, no. 2, 1994, pp. 149–
167.

[81] M. S. Paterson and U. Zwick, “Shrinkage of De Morgan formulae
under restriction,” Random Structures & Algorithms, vol. 4, no. 2,
1993, pp. 135–150.

[82] R. Paturi and M. E. Saks, “Approximating threshold circuits
by rational functions,” Information and Computation, vol. 112,
no. 2, 1994, pp. 257–272.

[83] J. Radhakrishnan and A. Ta-Shma, “Bounds for dispersers, ex-
tractors, and depth-two superconcentrators,” SIAM Journal of
Computing, vol. 13, no. 1, 2000, pp. 2–24.

Full text available at: http://dx.doi.org/10.1561/0400000108

References 123

[84] R. Raz, O. Reingold, and S. Vadhan, “Extracting all the random-
ness and reducing the error in Trevisan’s extractors,” Journal of
Computer and System Sciences, vol. 65, no. 1, 2002, pp. 97–128.

[85] R. Santhanam, “Fighting perebor: New and improved algorithms
for formula and QBF satisfiability,” in Proc. 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2010,
pp. 183–192.

[86] R. Santhanam and R. Williams, “On medium-uniformity and
circuit lower bounds,” in Proc. 28th Annual IEEE Conference
on Computational Complexity (CCC), 2013, pp. 15–23.

[87] R. Servedio and L.-Y. Tan, “Deterministic search for CNF sat-
isfying assignments in almost polynomial time,” in Proc. 58th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2017.

[88] R. A. Servedio, “Every linear threshold function has a low-weight
approximator,” Computational Complexity, vol. 16, no. 2, 2007,
pp. 180–209.

[89] R. A. Servedio and L.-Y. Tan, “Luby-Veličković-Wigderson revis-
ited: Improved correlation bounds and pseudorandom generators
for depth-two circuits,” in Proc. 22nd International Workshop
on Randomization and Approximation Techniques in Computer
Science (RANDOM), vol. 116, 2018, Art. No. 56, 20.

[90] R. A. Servedio and L.-Y. Tan, “Improved pseudorandom genera-
tors from pseudorandom multi-switching lemmas,” in Proc. 23rd
International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), Art. No. 45, 23,
2019.

[91] R. Shaltiel and C. Umans, “Simple extractors for all min-
entropies and a new pseudorandom generator,” Journal of the
ACM, vol. 52, no. 2, 2005, pp. 172–216.

[92] A. Ta-Shma, C. Umans, and D. Zuckerman, “Lossless condensers,
unbalanced expanders, and extractors,” Combinatorica, vol. 27,
no. 2, 2007, pp. 213–240.

[93] M. Sipser, “Expanders, randomness, or time versus space,” in
Proc. Conference on Structure in Complexity Theory, pp. 325–
329, 1986.

Full text available at: http://dx.doi.org/10.1561/0400000108

124 References

[94] B. A. Subbotovskaja, “Realization of linear functions by formu-
las using ∨, &, −,” Soviet Mathematics. Doklady, vol. 2, 1961,
pp. 110–112.

[95] M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom genera-
tors without the XOR lemma,” Journal of Computer and System
Sciences, vol. 62, no. 2, 2001, pp. 236–266.

[96] A. Tal, “Shrinkage of De Morgan formulae by spectral tech-
niques,” in Proc. 55th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 551–560, 2014.

[97] A. Tal, “Formula lower bounds via the quantum method,” in
Proc. 49th Annual ACM Symposium on Theory of Computing
(STOC), pp. 1256–1268, 2017.

[98] A. Tal, “Tight bounds on the fourier spectrum of AC0,” in Proc.
32nd Annual IEEE Conference on Computational Complexity
(CCC), 15:1–15:31, 2017.

[99] R. Tell, “A note on the limitations of two black-box techniques
in quantified derandomization,” Electronic Colloquium on Com-
putational Complexity: ECCC, vol. 24, 2017, p. 187.

[100] R. Tell, “Quantified derandomization of linear threshold circuits,”
in Proc. 50th Annual ACM Symposium on Theory of Computing
(STOC), pp. 855–865, 2018.

[101] R. Tell, “Improved bounds for quantified derandomization of
constant-depth circuits and polynomials,” Computational Com-
plexity, vol. 28, no. 2, 2019, pp. 259–343.

[102] R. Tell, “Proving that prBPP = prP is as hard as proving
that “almost N P” is not contained in P/poly,” Information
Processing Letters, vol. 152, 2019, p. 105 841.

[103] R. Tell, On implications of better sub-exponential lower bounds
for AC0, 2020.

[104] S. Toda, “PP is as hard as the polynomial-time hierarchy,” SIAM
Journal of Computing, vol. 20, no. 5, 1991, pp. 865–877.

[105] L. Trevisan, “Extractors and pseudorandom generators,” Journal
of the ACM, vol. 48, no. 4, 2001, pp. 860–879.

Full text available at: http://dx.doi.org/10.1561/0400000108

References 125

[106] L. Trevisan and T. Xue, “A derandomized switching lemma and
an improved derandomization of AC0,” in Proc. 28th Annual
IEEE Conference on Computational Complexity (CCC), 2013,
pp. 242–247.

[107] C. Umans, “Pseudo-random generators for all hardnesses,” Jour-
nal of Computer and System Sciences, vol. 67, no. 2, 2003,
pp. 419–440.

[108] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends® in
Theoretical Computer Science, vol. 7, no. 1-3, 2012, pp. 1–336.

[109] E. Viola, “The complexity of constructing pseudorandom gener-
ators from hard functions,” Computational Complexity, vol. 13,
no. 3-4, 2005, pp. 147–188.

[110] E. Viola, “On approximate majority and probabilistic time,”
Computational Complexity, vol. 18, no. 3, 2009, pp. 337–375.

[111] E. Viola, “The sum of d small-bias generators fools polynomials
of degree d,” Computational Complexity, vol. 18, no. 2, 2009,
pp. 209–217.

[112] E. Warning, “Bemerkung zur vorstehenden arbeit von herrn
chevalley,” Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, no. 11, 1935, pp. 76–83.

[113] R. Williams, “Non-uniform ACC circuit lower bounds,” in Proc.
26th Annual IEEE Conference on Computational Complexity
(CCC), 2011, pp. 115–125.

[114] R. Williams, “Improving exhaustive search implies superpolyno-
mial lower bounds,” SIAM Journal of Computing, vol. 42, no. 3,
2013, pp. 1218–1244.

[115] R. Williams, “Algorithms for circuits and circuits for algorithms:
Connecting the tractable and intractable,” in Proc. International
Congress of Mathematicians (ICM), pp. 659–682, 2014.

[116] A. C.-C. Yao, “Separating the polynomial-time hierarchy by
oracles,” in Proc. 26th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 1–10, 1985.

[117] A. C. Yao, “Theory and application of trapdoor functions,” in
Proc. 23rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 80–91, 1982.

Full text available at: http://dx.doi.org/10.1561/0400000108

