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ABSTRACT

The focus of this survey is the question of quantified deran-
domization, which was introduced by Goldreich and Wigder-
son [44]: Does derandomization of probabilistic algorithms
become easier if we only want to derandomize algorithms
that err with extremely small probability? How small does
this probability need to be in order for the problem’s com-
plexity to be affected?

This question opens the door to studying natural relaxed
versions of the derandomization problem, and allows us to
construct algorithms that are more efficient than in the
general case as well as to make gradual progress towards
solving the general case. In the survey I describe the body
of knowledge accumulated since the question’s introduction,
focusing on the following directions and results:

1. Hardness vs “quantified” randomness: Assuming
sufficiently strong circuit lower bounds, we can de-
randomize probabilistic algorithms that err extremely
rarely while incurring essentially no time overhead.

2. For general probabilistic polynomial-time algorithms,
improving on the brute-force algorithm for quan-

Roei Tell (2022), “Quantified Derandomization: How to Find Water in the Ocean”,
Foundations and Trends® in Theoretical Computer Science: Vol. 15, No. 1, pp 1–125.
DOI: 10.1561/0400000108.
©2022 R. Tell
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tified derandomization implies breakthrough cir-
cuit lower bounds, and this statement holds for any
given probability of error.

3. Unconditional algorithms for quantified deran-
domization of low-depth circuits and formulas,
as well as near-matching reductions of the general de-
randomization problem to quantified derandomization
for such models.

4. Arithmetic quantified derandomization, and in
particular constructions of hitting-set generators for
polynomials that vanish extremely rarely.

5. Limitations of certain black-box techniques in
quantified derandomization, as well as a tight connec-
tion between black-box quantified derandomization and
the classic notion of pseudoentropy.

Most of the results in the survey are from known works, but
several results are either new or are strengthenings of known
results. The survey also offers a host of concrete challenges
and open questions surrounding quantified derandomization.
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1
Introduction

Does derandomization of probabilistic algorithms become
easier when the number of “bad” random inputs is extremely
small? (Goldreich and Wigderson [44])

The context for this survey is the question of derandomization: Can we
simulate randomness in a deterministic and efficient way? More accu-
rately, we ask which types of randomized algorithms can be simulated
in a deterministic way, and what is the precise cost of simulation. The
main focus in this study is on simulating randomized algorithms that
solve decision problems, which is the BPP vs P question.1 As we can
expect of one the main questions in complexity theory, progress on it
has been challenging, and we know that essentially any progress on
this question is closely related to progress on other central questions in
complexity theory.

The textbook definition of probabilistically solving a decision prob-
lem L ⊆ {0, 1}∗, which underlies the definition of BPP, considers a

1As usual, this focus is taken merely for simplicity, and there is an efficient search-
to-decision reduction in this setting (i.e., search problems that can be efficiently
solved by probabilistic algorithms, and for which solutions can be efficiently verified,
reduce to promise-BPP; see [42, Theorem 3.5]).

3
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4 Introduction

randomized algorithm to be successful if it errs with probability at most
1/3 on every fixed input; that is, the fraction of random strings that
cause the algorithm to err is at most 1/3.

This survey is concerned with the seemingly innocent choice of error
bound 1/3. Going back to the original definition of BPP in [38], the class
was defined with an unspecified error bound that can be any constant
smaller than 1/2, such as .49. On the other hand, when we present
this topic to non-expert audiences, we sometimes choose a miniscule
constant such as 10−10 for dramatic effect. Of course, both formulations
are essentially equivalent, since we can apply error reduction to efficiently
reduce the error from 1/2 − n−O(1) to 2−poly(n) with only a polynomial
runtime overhead.

Therefore, a common sentiment is that the precise choice of error
bound doesn’t really matter, as long as it is noticeably smaller than 1/2.2
But is this sentiment accurate even when we take a sub-constant error
bound very close to zero, focusing on algorithms that only err extremely
rarely? It turns out that in this setting, the precise choice of error bound
matters a lot. In fact, the problem is so sensitive to this choice that even
tiny changes in the error bound mark the difference between settings
in which efficient derandomization is known, and settings in which
showing even mild derandomization would yield dramatic consequences
in complexity theory.

1.1 The general question

Let’s start with a trivial extreme point: If we define a probabilistic
algorithm to be successful only if it never errs – that is, we set the
error bound in the definition of BPP to be zero – then we just defined
deterministic computation in a cumbersome way; needless to say, de-
randomization becomes trivial in this case. But what if we allow the
randomized algorithm to err on just a single random string, out of the
exponentially many possible choices for random strings? What if we

2Allowing error that is arbitrarily close to 1/2 is a different story. Such a choice
is less natural (since we are defining a negligible improvement over a random coin
toss as “successfully solving a problem”) and yields the very large complexity class
PP (recall that PPP = P#P ⊇ PH, using [104]).
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1.1. The general question 5

allow it to err on polynomially many strings? Where is the threshold
at which the derandomization problem stops being trivial, and what
happens beyond this threshold?

Several years ago Goldreich and Wigderson [44] asked these questions
in a broad and methodical way, leading to a fruitful study of what they
called quantified derandomization: This is the question of derandomizing
algorithms that err extremely rarely, where “extremely rarely” here refers
to the number of random strings that cause the probabilistic algorithm
to err. As they mention in their work, an early form of this question
was already considered long ago by Sipser [93], who considered the class
“strong R” of problems solvable with extremely small one-sided error.

Let us define the notion of probabilistically solving a decision problem
with error bound B, where the parameter B will quantify the number of
exceptional strings of random bits (i.e., the number of strings that, when
used by the algorithm as a sequence of coin tosses, cause the algorithm
to err). We will measure B as a function of the number of random coins
(rather than of the input length), since we are interested in comparing
the number of exceptional random strings to the total number of choices
for a random string. For simplicity of presentation, let us assume for
the moment that the number of random coins equals the running time.
(We will get rid of this simplifying assumption later on in Section 3.3.)

Definition 1.1 (probabilistically solving a decision problem with error bound
B). For B : N → N, we say that Π = (Y, N) ⊆ {0, 1}∗ × {0, 1}∗ is in
prBPT IMEB [T ] if there exists a randomized algorithm that gets input
x ∈ {0, 1}∗, runs in time T = T (|x|), and:

1. If x ∈ Y, the algorithm accepts given all but at most B(T ) choices
of random strings.

2. If x ∈ N, the algorithm rejects given all but at most B(T ) choices
of random strings.

I stress again that that B(T ) is the absolute number of exceptional
random strings in Definition 1.1, rather than their fraction. Thus, and
since we assumed (for now) that the number of random coins equals the
running time T , the error probability of the algorithm in Definition 1.1

Full text available at: http://dx.doi.org/10.1561/0400000108



6 Introduction

is B(T )/2T . Indeed, the standard definition of prBPT IME [T ] is the
special case obtained by using B(T ) = 2T /3.

Trying to derandomize only algorithms that err extremely rarely
makes the challenge potentially easier; that is, Definition 1.1 opens the
door for a relaxation of the classical derandomization problem. However,
this relaxation entirely hinges on the choice of function B: For small
values of B (e.g., for B(T )) = O(1)) the corresponding derandomization
problem is easy, since we can just use the brute-force deterministic
simulation that runs the original algorithm using 2B(T ) + 1 fixed
choices of a random string; whereas for larger values of B (e.g., for
B(T ) = Ω(2T )) the derandomization problem is as challenging as the
original and general derandomization problem.

1.2 The role of error-reduction

As mentioned above, we can efficiently reduce the error of a probabilistic
algorithm. The naive way to do so is to repeat an algorithm that has
error 1/3 for k times and output the majority decision, which reduces
its error to 2−Ω(k). This naive method reduces B only mildly as a
function of the number of random coins, and using more sophisticated
tools we can reduce B to be (say) subexponential in the number of
random coins at a relatively low computational cost (see Section 4.3
for details).3 This means that, in high-level, general derandomization
reduces to quantified derandomization with relatively small values of B

and with a corresponding computational overhead.
The point is that, in contrast to a common mistaken intuition,

this does not trivialize the question of quantified derandomization, but
rather (to the contrary) highlights its importance. Specifically, this sug-
gests a natural approach to solve the general derandomization problem:
First reduce general derandomization to quantified derandomization
(e.g., by error-reduction), and then solve the corresponding quantified
derandomization problem. Indeed, when taking this approach what we

3To be more precise, let us measure B as a function of the number of random
coins R. Naive error-reduction only yields B(R) = 2(1−o(1))·R, since repeating an
algorithm with r = ω(1) coins for k times yields an algorithm with R = k · r coins
and error probability 2−Ω(k) = 2−Ω(R/r).
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1.3. Additional motivation 7

are actually asking is whether we can reduce general derandomization
to a target setting of quantified derandomization that we can efficiently
solve. This calls for developing efficient algorithms for quantified deran-
domization, as well as efficient approaches for error-reduction.4 We will
see both types of results in this survey.

1.3 Additional motivation

Derandomizing algorithms that err extremely rarely is, in my view, a
natural problem that is inherently interesting, and therefore it does not
need additional external motivations. (Indeed, recall that the problem
was considered as early as 1986 [93].) For example, one may ask what
is the precise time complexity of derandomizing algorithms that err
extremely rarely, or which assumptions are sufficient and necessary in
order to do so (as we will see, both questions have recently been studied).

Nevertheless, let me mention two additional motivations for studying
quantified derandomization, where both of them view this question as
a stepping-stone towards solving the general derandomization problem.
The first additional motivation is that, as explained in Section 1.2, a
natural approach to solve the general derandomization problem is to
reduce it to quantified derandomization and then solve the latter.

The second additional motivation is more generic: Studying a poten-
tially easy special case (i.e., quantified derandomization) may shed light
on the general case (i.e., general derandomization), and pave the way
for gradual progress towards solving the latter. It turns out that this
generic motivation materialized in a fruitful way in the case of quantified
derandomization: The results that we will see are surprising, rely on new
techniques, and point both at specific technical challenges that create
bottlenecks and at connections between quantified derandomization and
well-known questions in complexity theory (e.g., circuit lower bounds
and pseudoentropy).

4In general, applying standard black-box techniques for error-reduction and
then the brute-force algorithm for quantified derandomization does not yield a
non-trivial algorithm for general derandomization (see Appendix A). Thus, when
using this approach, we need either a better-than-brute-force algorithm for quantified
derandomization, or a non-standard technique for error-reduction.
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8 Introduction

Lastly, as pointed out by Avi Wigderson, the study of quantified
derandomization led to constructions of important pseudorandom ob-
jects. For example, Sipser’s [93] original work was one of the driving
forces behind the study of explicit randomness extractors (see, e.g., [28,
Acknowledgements]). Analogously, the recent introduction of quantified
derandomization in [44] led to constructions of pseudorandom restriction
algorithms for weak circuit classes, and to constructions of extractors
that are computable in weak circuit classes (see, e.g., Appendices B
and C, respectively).

1.4 Organization

An overview of the results that are included in this survey is presented
in Section 3. After stating preliminary definitions in Section 4, the
subsequent Sections 5, 6, 7, 8, 9, and 10 expand on each of the subsections
of Section 3, respectively, elaborating on the high-level results with more
technical details and explanations. A reader interested in open problems
in quantified derandomization will find numerous ones in Section 11.

Appendix A expands on Footnote (4) above. Appendices B and C
describe technical constructions that underlie some of the results de-
scribed in Section 3. Finally, Appendix D surveys two additional settings
for quantified derandomization that have been explored relatively less
so far.
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A
Error-reduction by Itself Is Not Enough

Can we construct a better-than-brute-force algorithm for CAPP via
the naive approach of first reducing CAPP to QDB using a standard
sampler-based error-reduction, and then using a brute-force algorithm
for QDB (i.e., solving quantified derandomization by evaluating the
given circuit over some fixed O(B(n)) inputs)?

The following result shows a negative answer to this question: Any
such algorithm will be slower than the brute-force algorithm that simply
evaluates the original circuit on all of its inputs. The meaning of this
result is that when constructing CAPP algorithms that are based on an
initial step of sampler-based error-reduction, a non-trivial algorithm for
quantified derandomization is necessary. The statement below shows
that this is the case even for derandomization with one-sided error (i.e.,
for CAPP 1

2 ,0) and even when using dispersers rather than samplers.

Definition A.1 (disperser). A function Disp : {0, 1}n̄ × {0, 1}ℓ → {0, 1}n

is a (k, ϵ)-disperser if for every T ⊆ {0, 1}n of density |T |/2n ≥ ϵ, for
all but at most 2k strings z ∈ {0, 1}n̄ there exists s ∈ {0, 1}ℓ such that
Disp(z, s) ∈ T .

Theorem A.1 (disperser-based error-reduction should be coupled with
non-trivial algorithms for quantified derandomization). Consider the follow-

95
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96 Error-reduction by Itself Is Not Enough

ing algorithm for CAPP 1
2 ,0. Given an n-bit circuit C, let Disp : {0, 1}n̄ ×

{0, 1}ℓ → {0, 1}n be an arbitrary (k, .01)-disperser for some value of
k ≤ n. The algorithm:

1. Constructs the circuit C ′ : {0, 1}n̄ → {0, 1} such that C ′(z) =∨
s∈{0,1}ℓ C(Disp(z, s)).1

2. Evaluates C ′ over (arbitrary) fixed 2k + 1 inputs.

3. Outputs “yes” if and only if C ′ accepted one of the inputs.

Then, the running time of this algorithm is larger than 2n · Õ(|C|).

Proof. Radhakrishnan and Ta-Shma [83] proved that for any (k, .01)-
disperser Disp : {0, 1}n̄ ×{0, 1}ℓ → {0, 1}n it holds that n ≤ k + ℓ−O(1)
(i.e., an entropy loss is inherent). Also note that the size of C ′ is
more than 2ℓ · |C|, even without taking into account the complexity of
Disp. Thus, the running time of the algorithm is

(
2k + 1

)
· Õ(|C ′|) >

2k+ℓ · Õ(|C|) ≥ 2n · Õ(|C|).

1That is, the circuit C′ gets input z ∈ {0, 1}n̄, computes the 2ℓ values
{Disp(z, s)}s∈{0,1}ℓ , evaluates C on each of these values, and outputs 1 iff there
is s ∈ {0, 1}ℓ such that C(Disp(z, s)) = 1.
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B
Pseudorandom Restrictions for Low-depth

Circuits and Formulas

In this section I describe the technical results underlying the algorithms
for quantified derandomization that were presented in Section 7. These
technical results assert the existence of efficient pseudorandom restric-
tion procedures that yield simplifier sets, in the sense of Definition 8.1.

B.1 Width-dependent derandomization of Håstad’s switching
lemma

Let me start with the class AC0. Using standard techniques following [47],
the problem of constructing a pseudorandom restriction procedure
reduces to the problem of derandomizing Håstad’s switching lemma [47];
that is, to the problem of constructing a pseudorandom distribution of
restrictions that simplifies every depth-2 formula into a decision tree of
bounded depth, with high probability (see, e.g., [101, Proof of Theorem
5.16] for an explanation).1

1We will focus on pseudorandom distributions that achieve the same bound
on the decision tree depth, and approximately the same error probability, as in
Håstad’s original result [47]. Pseudorandom restriction procedures that achieve worse
parameters but are more efficient are known (these date back to [5], with a recent
construction presented in [45]).

97
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98 Pseudorandom Restrictions for Low-depth Circuits and Formulas

Note that for our application (i.e., to construct an algorithm for
QDB) we want to pseudorandomly choose both the variables to fix
and the values for fixed variables. This should be distinguished from
applications for which we only need to pseudorandomly choose which
variables to fix, while leaving the choice of values to be completely
uniform. (A very recent result of Kelley [62] showed that the latter task
can be solved in polynomial time with seed length O(log(n)).)

To optimize the trade-off between B(n) and the seed length, we will
be interested in derandomization of the switching lemma for depth-two
formulas of bounded width (see [101] for an explanation of why this
is the case). We denote the formula size by m ≥ n and its width by
w, and for our application we can assume wlog that w ≤ O(log(m))
and we fix the error probability to be 1/poly(m) for a sufficiently large
polynomial.

For such parameters, Trevisan and Xue [106] constructed a pseu-
dorandom restriction algorithm with seed length Õ(w) · log2(m), and
Goldreich and Wigderson [44] constructed such an algorithm with seed
length Õ(2w) · log(m). The following result from [101] improved on both
these results by constructing a pseudorandom restriction algorithm with
seed length Õ(w2 · log(m)):2

Proposition B.1 (width-dependent derandomization of Håstad’s switching
lemma; see [101, Theorem 1.4]). Let m, n ∈ N, let w ≤ O(log(m)), and
let δ = δ(n) > 0. Then, there exists an algorithm that gets as input a
random seed of length Õ(w2 · log(mn/δ)), runs in time poly(n), and
outputs a restriction ρ ∈ {0, 1, ⋆}n such that for every n-bit depth-2
formula F of size m and width w, with probability 1−O(δ) the following
holds:

1. The number of variables kept alive by ρ is Ω(n/w).

2. There exist “lower-sandwiching” and “upper-sandwiching” formu-
las F low and F high for F 3 such that both F low↾ρ and F high↾ρ can
be computed by decision trees of depth O(log(1/δ)), and each of
the two formulas agrees with F ↾ρ on 1 − δ of the inputs.

2Strictly speaking, the result of [44] is still better in the case of w = O(1), since
it yields seed length O(log(n)) rather than Õ(log(n)).

3That is, for every x ∈ {0, 1}n it holds that F low(x) ≤ F (x) ≤ F high(x).
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Proposition B.1 is the main technical result underlying the algorithm
for QDB in Theorem 3.6. Observe that, crucially, both F low and F high

agree with F on 1 − δ of the inputs in the subcube that corresponds to ρ;
that is, they approximate F after the restriction. Also, we can take δ

to be an arbitrarily large polynomial in m without noticeably affecting
the seed length.

B.2 Pseudorandom restrictions for threshold circuits

For constant-depth linear threshold circuits (LTF circuits), even ran-
dom restriction procedures (let alone pseudorandom procedures) are
relatively new. Impagliazzo, Paturi, and Saks [57] showed a random
restriction procedure in which neither the fixed variables nor their values
are chosen uniformly; this procedure sufficed to show worst-case lower
bounds, but does not suffice for many applications, such as proving
average-case lower bounds or constructing quantified derandomization
algorithms.

Several years ago Chen, Santhanam, and Srinivasan [26] (relying
on results developed in [30], [88] and other works) showed a random
restriction procedure for LTF circuits in which the variables are cho-
sen in an adaptive way that depends on the given circuit, but values
for fixed variables are chosen uniformly; they used this procedure to
deduce average-case lower bounds for LTF circuits. This restriction
procedure was subsequently derandomized and refined in [100], yield-
ing the following result, which is the main technical result underlying
Theorem 3.7:

Proposition B.2 (pseudorandom restrictions for LTF circuits; see [100,
Proposition 3.1]). Let c, d ≥ 1, let ϵ > 0 be a sufficiently small constant,
and let δ = d · 30d−1 · ϵ. Then, there exists a polynomial-time algorithm
that for every n ∈ N, when given as input an LTF circuit over n input
bits of depth d with at most n1+ϵ wires, and a random seed of length
O(log(n) · loglog(n)), with probability at least 1 − n−ϵ/2 outputs the
following:

1. A restriction ρ that keeps at least n1−δ variables alive.

2. An LTF that is (1 − n−c)-close to C↾ρ.
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Note that the original statement in [100] only asserts that Φ is
(9/10)-close to C↾ρ, but the proof already shows that the closeness is
1−n−c for every desired constant c ∈ N. (To see this, note that in Claim
5.11.1 of the full version, the bound on the closeness of each biased gate
to the corresponding constant after all the restriction is stated to be
δt = 1 − n−c for an arbitrary constant c ∈ N.)

Let me also note that another pseudorandom restriction procedure
for LTF circuits was very recently shown by Hatami et al. [51]. In this
procedure the failure probaiblity is exp(−nΩ(1)) instead of n−Ω(1), but
only the variables to be fixed are chosen pseudorandomly, whereas values
for fixed variables are chosen uniformly.

Kabanets and Lu [60] showed a result analogous to Proposition B.2
that holds for the stronger class of PTF circuits of low degree; this is the
main technical result underlying the algorithm for QDB of PTF circuits
in Theorem 7.12. They also showed a similar result for PTF circuits in
which each gate computes a sparse polynomial (i.e., a polynomial with
n∆ monomials for a small constant ∆).

Proposition B.3 (pseudorandom restrictions for low-degree PTF circuits;
see [60, Proof of Theorem 4.4]). Let c, d ≥ 1, let E ≥ 11, and let
∆: N → N such that ∆ ≪

√
ϵd · log(n)/loglog(n), where ϵd = E−2(d−1).

Let Cn be the class of PTF circuits over n input bits of depth d with
n1+ϵd wires in which each gate computes a PTF with degree at most
∆(n). Then, there exists an algorithm that gets as input C ∈ Cn and
a random seed of length log(n)O(∆(n)2), and with probability at least
1 − nΩ(1) outputs the following:

1. A restriction ρ that keeps at least n1−6/E variables alive.

2. A PTF with at most nϵd·∆(n) monomials that is (1 − n−c)-close to
C↾ρ.

Proposition B.3 is not explicitly stated in [60] (which is a conference
version), but as explained there after the statement of Theorem 4.7,
this result follows immediately by mimicking the proof of Theorem
4.4 (which is an analogous result for PTF circuits in which each gate
computes a sparse polynomial). Also, similarly to Proposition B.2, in [60]
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the closeness parameter is taken to be 9/10 rather than 1 −n−c, but the
latter value is immediate from their proof. (To see this, in the proof of
Theorem 4.4, instantiate Lemma 4.5 with an arbitrarily large constant
c ≥ 1 instead of with c = 1.)

The restriction procedures are non-black-box. The algorithms in
Propositions B.2 and B.3 both work in a non-black-box fashion: They
get as input a circuit C, and tailor a restriction that is specifically
designed to simplify C. However, as mentioned in Section 8, a key com-
ponent in these procedures is already “somewhat black-box” (i.e., going
layer-by-layer, these restrictions are pseudorandom distributions that
simplify each of the gates in the layer with high marginal probability).
Moreover, both procedures can be made fully black-box at the expense
of simplifying the circuit not to a single LTF or PTF, but rather to the
more complicated model of a relatively shallow decision tree with LTFs
or PTFs at its leaves; see [51] for an explanation.

B.3 Pseudorandom restrictions for formulas

Random restrictions for De Morgan formulas have been extensively
studied since the 1960’s, focusing on the well-known implication that
a formula is expected to shrink (in size) under such restrictions (see,
e.g., [48], [56], [81], [94], [96]). However, only in the last decade have
pseudorandom versions been constructed.

Impagliazzo, Meka, and Zuckerman [55] constructed a pseudorandom
restriction procedure that shrinks any formula of size s to be of size
p2 · s1+o(1), with probability 1 − n−O(1); this procedure has seed length
2O(log2/3(s)) = so(1). Hatami et al. [51] showed a pseudorandom retriction
procedure that supports a much smaller failure probability ϵ ≪ s−O(1),
but shrinks any formula to a decision tree of depth so(1) · polylog(1/ϵ)
with formulas of size p2−o(1) · s at its leaves; the seed length for this
procedure is so(1) · polylog(n/ϵ).

For quantified derandomization we do not need the strong concen-
tration bounds above on the shrinkage of the formula, and shrinkage in
expectation suffices. For this application, Chen, Jin, and Williams [19]
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showed a procedure that uses seed length only O(log(n)) and indeed
obtains shrinkage in expectation:

Proposition B.4 (pseudorandom restrictions for formulas; see [19]). Let
p : N → N. Then, there exists an algorithm that gets as input a random
seed of length O(log(n)), runs in time poly(n), and outputs a restriction
ρ ∈ {0, 1, ⋆}n such that:

1. With probability at least 2/3 it holds that ρ keeps at least pn/2
variables alive.

2. For every n-variable formula it holds that

E[L(F ↾ρ)] ≤
(

p2 · L(F ) + p ·
√

L(F )
)

· nc/loglog(n) ,

where c > 1 is a universal constant.

Proposition B.4 is the main technical result underlying the algorithm
for QDB of formulas in Theorem 3.8. In addition, the pseudorandom
restriction in [19] is even stronger, since it guarantees the existence of
a circuit C of size polylog(n) that gets as input the random seed (of
length O(log(n))) and an index i ∈ [n] of an output, an prints the ith

coordinate of the restriction ρ.
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C
Extractors Computable by Low-depth Circuits

and Formulas

In this section I describe the technical results underlying the reductions
of CAPP to QDB that were presented in Section 7. These technical
results are constructions of extractors that are computable in weak
circuit classes. The precise notion of being computable in a weak circuit
class will differ across the constructions presented below, but in general
it will be at least as strict as the one in Definition 8.2 (and hence
the limitation in Theorem 8.1 applies to the results that use these
constructions).

In general, there are very efficient constructions of extractors with
good parameters: For example, each output bit of Trevisan’s [105]
extractor (and of its improvement in [84]) is just a parity of the input.
However, in the following results we will be interested in computing
extractors by circuits or formulas that are too weak to even compute the
parity of their input.

C.1 Extractors computable by AC0 circuits

Goldreich and Wigderson [44, Theorem 3.4 in the full version] con-
structed an AC0 circuit computing a function that can be thought
of as a middle-point between a standard extractor (which outputs a
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distribution close to uniform) and a non-black-box extractor as referred
to in Section 8.3 (which outputs a distribution that only looks uniform
to a circuit whose description is given to the non-black-box extractor).
Specifically, the output distribution of their function looks uniform to
any AC0 observer; this is equivalent to a sampler that only samples
correctly subsets that are decidable by AC0 circuits. Their function was
computable by P-uniform AC0 circuits, had n0 = nΩ(1) output bits,
and supported min-entropy k = 2n/polylog(n).

Their construction was later superseded by a construction of stan-
dard extractors that are computable by P-uniform AC0 circuits, which
was shown by Cheng and Li [27]. (That is, the construction of [27] is of
a standard extractor rather than of a non-black-box one, and also has
better parameters than the one in [44].) In fact, there are various differ-
ent such constructions in [27], supporting different trade-offs between
the parameters; let me mention one such construction of theirs:

Proposition C.1 (extractors in uniform AC0; see [27, Theorem 4.11]). For
any d ≥ 7 there exists an extractor family

{
Extn : {0, 1}n × {0, 1}ℓ →

{0, 1}n0
}

n∈N with seed length ℓ = O(log(n)), output length n0 =⌊
n1/3600

⌋
, min-entropy k = Θ(n/ logd−7(n)), and error n−1/600, such

that the function mapping (z, s) ∈ {0, 1}n × {0, 1}ℓ to Extn(z, s) is
computable by P-uniform AC0 circuits of depth d and size poly(n).

The parameters of Proposition C.1 are close to the best possible
(and various optimizations and tradeoffs appear in [27]). This follows
from a lower bound of Viola [109] (see also [43]), which asserts that
AC0 circuits of size poly(n) and depth d can compute extractors for
min-entropy at most k = n/ logd−1(n), even if the seed is very long
compared to the output length (i.e., even if the seed is of length n.999

0 ).
A similar lower bound follows by combining Theorem 8.1 with Håstad’s
switching lemma [47]. (In fact, Theorem 8.1 yields a more general
approach for showing such lower bounds, since the simplifier set need
not be a subcube and may even partially depend on the circuit that it
simplifies (as explained in Section 8).)
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C.2 Extractors computable by extremely sparse threshold circuits

Recall that the parity function can be computed by LTF circuits of
depth d and size n1+c−d

⊕ , for some constant c⊕ ≥ 1+
√

5
2 (see [9], [82]).

Thus, if we instantiate Trevisan’s [105] extractor Ext with seed length
close to log(n) and output length nϵ for a small constant ϵ > 0, we
can compute the mapping z 7→ {Ext(z, s)}s by a uniform T C0 circuit of
super-quadratic size. (This is since this extractor only computes parities
of the input, and since for these parameters the circuit that prints the
outputs of the extractor on all seeds has n1+O(ϵ) output bits.)

As far as I know, the first extractor that is computable by uniform
T C0 circuits of super-linear size was constructed in [100]; each output
bit of this extractor is still a parity of the input, but these parities
are computed “in a batch” rather than paying n1+c−d

⊕ per each output
bit. This construction was later improved by Chen and the current
author [22], who showed a construction with seed length and output
length as above that uses only n1+c−d wires, for any c < c⊕; that is:

Proposition C.2 (extractors in uniform T C0 of super-linear size). For
any d ≥ 7 and c < c⊕ there exists an extractor family

{
Extn : {0, 1}n×

{0, 1}ℓ → {0, 1}n0
}

n∈N with seed length ℓ = (1 + exp(−d)) · log(n),
output length n0 = nexp(−d), min-entropy k = n1−exp(−d), and error
ϵ > 0, such that the following holds: The function mapping z ∈ {0, 1}n

to the output-set (Extn(z, s))s∈{0,1}ℓ is computable by P-uniform T C0

circuits of depth d and size n1+c−d .

Note that the circuits in Proposition C.2 are T C0 circuits rather than
LTF circuits; that is, to compute the extractor we only use unweighted
majority gates rather than (the stronger) linear threshold functions.

C.3 Dispersers computable by formulas of subquadratic size

Recall that the parity function can be computed by formulas of size
O(n2). Thus, a naive implmentation of Trevisan’s extractor with seed
length close to log(n) and output length nϵ for a small constant ϵ > 0
yields formulas of size O(n3+O(ϵ)).
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The reduction of CAPP to QDB by Chen, Jin, and Williams [19]
yields formulas of sub-quadratic size, using two ideas. The first idea is to
combine a standard linear extractor with naive error reduction; the addi-
tion of naive error reduction yields slightly poorer extraction properties,
but also reduces the computational complexity (intuiviely, since naive
error reduction has very low complexity but poor extractor properties).
In particular, the combination yields the following construction:

Proposition C.3 (dispersers computable by uniform sub-quadratic formu-
las). For any ϵ ∈ (0, 1) and δ > 0 there exists a family of functions
D̂ispn : {0, 1}n × {0, 1}O(log(n)) → {0, 1}n0 , where n0 = nΩδ,ϵ(1), that
satisfies the following:

1. Seeds are pairs. The seed of D̂isp is a pair (s, i) ∈ {0, 1}O(log(n))×
{0, 1}ϵ·log(n).

2. Computable by formulas of sub-quadratic size: For each
fixed s ∈ {0, 1}O(log(n)), the mapping of x ∈ {0, 1}n to the tuple
(D̂ispn(x, (s, i)))i∈{0,1}ϵ·log(n) is computable by P-uniform formulas
of size n2−ϵ+δ.

3. Disperser with density Ω(n−ϵ): For every T ⊆ {0, 1}n0 such
that |T |/2n0 ≥ 9/10, for all but at most 2nϵ inputs x ∈ {0, 1}n

there exists i ∈ {0, 1}ϵ·log(n) such that Prs

[
D̂isp(x, (s, i)) ∈ T

]
≥

2/3.

Proof. For two constants α > 0 and β < 1 that will be defined
below, and for n1 = nβ, let Ext : {0, 1}n1 × {0, 1}O(log(n1)) → {0, 1}n0

be the extractor that is implicit in the work of Li [69, Theorem 3.14]
and was explicitly stated in [19, Theorem 4.1], where n0 = n

α/2
1 ; the

min-entropy of Ext is nα
1 , its error is n−α

1 , and it can be computed
by P-uniform formulas of size n2+α

1 . We think of any n-bit string x

as a sequence of r = n/n1 disjoint substrings x1, ..., xr of length n1,
and define D̂isp(x, (s, i)) = Ext(xi, s); that is, the random seed of D̂isp
consists of an index i ∈ [r] and of a seed s for Ext, and D̂isp applies Ext
with seed s to the ith substring of n1 bits in its input x.

The seed length of D̂isp is (1 − β) · log(n) + O(log(n)), and its
output length is n0 = nβ·α/2. Also, for each fixed s, the mapping x 7→
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(D̂ispn(x, (s, i)))i∈[r] is computable by P-uniform formulas of size r ·n2+α
1 .

Now, let T ⊆ {0, 1}n0 be of density at least 9/10. For every fixed i ∈ [r]
there exist at most 2nα

1 strings xi ∈ {0, 1}n1 such that Pr[Ext(xi, s) ∈
T ] < 9/10 − n−α. Thus, the number of strings x = (x1, ..., xr) such that
for all i ∈ [r] it holds that Pr[Ext(xi, s) ∈ T ] < 9/10 − n−α is at most
2nα

1 ·r. Hence, for all but at most 2nα
1 ·r of the strings x ∈ {0, 1}n there

exists i ∈ [r] such that Pr[D̂isp(x, (s, i)) ∈ T ] = Pr[Ext(xi, s) ∈ T ] ≥
9/10 − o(1) > 2/3.

To conclude we need to choose α > 0 and β < 1 such that nα
1 ·r ≤ nϵ

(for the number of exceptional inputs) and r ·n2+α
1 ≤ n2−ϵ+δ (for the size

bound) and (1 − β) · log(n) < ϵ · log(n) (for the seed length). Choosing
β = 1−ϵ

1−α and a sufficiently small α = αϵ,δ > 0 suffices.

The second idea of [19] is that in their reduction, instead of the
standard approach of reducing CAPP of a formula F to QDB for F ′(x) =∨

s,i F (D̂isp(x, (s, i))), they reduce CAPP of F to QDB for a probabilistic
formula, defined as follows:

F(x) =
∨

i∈[r]
F (D̂isp(x, (s, i))) ,

where s (i.e., the first part of the seed) is the only random choice
made by the probabilistic formula F. By Proposition C.3, each formula
in the support of F is of size n2−ϵ+δ, and if F accepts at least 9/10
of its inputs, then for all but 2nϵ of the inputs x for F it holds that
Pr[F(x) = 1] ≥ 2/3.

The limitation in Theorem 8.1 still applies to this construction.
The limitation in Theorem 8.1 is proved under the hypothesis that
the distribution of simplifier sets simplifies every circuit in the class
(in the current setting this will refer to every formula of bounded
size) with probability at least 1/2. This hypothesis suffices to deduce a
limitation on extractor-based construction. In the setting of formulas the
known distribution of simplifier sets has a considerably higher success
probability (i.e., 1 − n−O(1) instead of 1/2), and thus its existence
suffices to deduce a limitation also on disperser-based constructions as
in Proposition C.3.

Full text available at: http://dx.doi.org/10.1561/0400000108



108 Extractors Computable by Low-depth Circuits and Formulas

In particular, the following claim asserts that a disperser construction
as in Proposition C.3 cannot be computed by formulas of size n2−2ϵ+o(1)

(as in Corollary 7.16) instead of n2−ϵ+δ. The claim even rules out
a weaker disperser construction, in which we do not have a density
guarantee (as in Item (3)) and in which only require the disperser to
be computable by formulas of the corresponding size on each fixed seed
(rather than requiring a batch-computation property as in Item (2)).

Claim C.1. For any ϵ > 0, there does not exist an (nϵ, .01)-disperser
Disp : {0, 1}n × {0, 1}O(log(n)) → {0, 1}n0 , where n0 = nΩ(1), such that
for every fixed s ∈ {0, 1}O(log(n)) it holds that Disp(s)(x) = Disp(x, s) is
computable by a formula of size n2−2ϵ+o(1).

Proof. Assume towards a contradiction that such construction exists,
and let φ = φ(ϵ) > 0 be a sufficiently small constant. For p = n−1+ϵ+φ,
let X be a distribution over subcubes X ⊂ {0, 1}n of size at least
2p·n/2 = 2nϵ+φ/2 that shrinks every formula of size S to be of size
p2 · S1+o(1), with probability at least 1 − S−c for an arbitrarily large
constant c > 1 (see [55, Lemma 4.8]).1

Let F =
{

Disp(s)
}

s∈{0,1}O(log(n))
. Note that there are poly(n) func-

tions in F , and each function has n0 = nΩ(1) output bits. Taking the
constant c > 1 in the error bound above to be sufficiently large, there
exists X ∼ X such that the formula size of every function Disp(s) ∈ F
decreases by a factor of p2 ·no(1); in particular, each Disp(s) is computable
by a formula of size p2 · n2−2ϵ+o(1) = n2φ+o(1).2

1The subsets in the support of the distribution from [55] are of size p · n/2 only
with very high probability (rather than always). I ignore this issue for simplicity, as
we can always modify the distribution such that it is supported only on subsets of
sufficiently large size p · n/2, while preserving the property that each size-S formula
is simplified with probability at least 1 − S−c.

2To elaborate, each Disp(s) is a multi-output function computable by a collection
of n0 formulas. Let S be the sub-collection of formulas of size less than nφ/n0,
and let L be the sub-collection of formulas of size at least nφ/n0. For each F ∈
L, with probability 1 − 1/poly(n) its size decreased by a multplicative factor of
p2 · no(1); and the total contribution to size of the formulas in S is at most nφ. Thus,
with probability 1 − 1/poly(n) the size of Disp(s) after the restriction is at most
p2 · S1+o(1) + nφ ≤ n2φ+o(1).
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It follows that on the subset X, each function Disp(s) ∈ F is sensitive
to less than n2φ+o(1) input bits. Hence, the support size of Disp when
given inputs from X satisfies∣∣∣ ⋃

x∈X,s∈{0,1}O(log(n))

Disp(x, s)
∣∣∣ ≤ poly(n) · 2n2φ+o(1) ≤ 2n2φ+o(1) .

Taking φ to be sufficiently small such that n2φ <
√

n0, there exists a
set T ⊆ {0, 1}n0 of size more than 2n0 − 2

√
n0 = (1 − o(1)) · 2n0 that

avoids Disp on a set X ⊆ {0, 1}n of size 2nϵ+Ω(1) , a contradiction to the
hypothesized properties of Disp.
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D
Quantified Derandomization of Logspace and of

Proof Systems

In this appendix I mention two interesting directions that were raised
in the original work of Goldreich and Wigderson [44] but have not been
explored further so far.

D.1 Quantified derandomization of logspace

Can we simulate probabilisitic logspace machine in deterministic
logspace if the number of exceptional random strings is extremely
small? As reported in [44], Mike Saks showed in the 1990s that this is
indeed possible, even when the number of exceptional random strings
is relatively not that small:

Theorem D.1 (quantified derandomization of logspace; attributed to
Saks [44, Appendix A of the Full Version]). Let L ⊆ {0, 1}∗ be decidable
by a probabilistic logspace machine M such that for some constant
ϵ > 0, on n-bit inputs M uses T = T (n) bits of randomness and errs
on at most B(T ) = 2(1−ϵ)·T random choices. Then, L ∈ L.

The number B(T ) = 2(1−Ω(1))·T of exceptional random strings in
Theorem D.1 matches the non-uniform derandomization in Theorem 3.1,
and is indeed significantly larger than in all other settings in this survey
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(i.e., in all other settings the number of exceptional random strings was
B(T ) = 2o(T )).

Saks’ original quantified derandomization algorithm was non-black-
box: Given as input a description of a polynomial-sized read-once
branching program (ROBP), the algorithm relies on the description
to find its most likely output. (Recall that the ROBP represents the
computation of a probabilistic logspace machine on a fixed input as
a function of the random coins.) William Hoza [52] strengthened this
result by constructing a black-box algorithm (i.e., a PRG for biased
ROBPs) that yields the same parameters; the proof below presents
Hoza’s construction.

Proof of Theorem D.1 by William Hoza. For any ϵ = ϵ(n) > 0
and any B(n) ≤ ϵ · 2n, we construct an ϵ-PRG for of B-biased ROBPs

over n input bits of w, whose seed length is ℓ = ℓ(n) = n
n−log(B) ·

log(2nw/ϵ). Given seed s ∈ {0, 1}ℓ, the PRG simply outputs the n-bit
string (s, s, s, ..., s) ∈ ({0, 1}ℓ)n/ℓ (for simplicity we assume that n/ℓ is
an integer). Note that this PRG is indeed computable in logspace, and
that for B(n) = 2(1−Ω(1))·n its seed length satisfies ℓ(n) = O(log(nw/ϵ)).

To see that this construction works, fix an ROBP as above, and
let σ ∈ {0, 1} be its less likely output. Index the layers of the ROBP
by 0, ..., n where 0 is the layer of the starting vertex and n is the last
layer, and consider the vertices at layers indexed 0, ℓ, ..., i · ℓ, ..., n. For
each such vertex v, denote by pv the probability that a random walk
starting from v reaches a vertex in the last layer labeled with σ, and
for s ∈ {0, 1}ℓ denote by v(s) the vertex reached when starting from
v and walking according to s. (For vertices v in the last layer we will
only care about pv, which is either 0 or 1.)

Note that pv = Es∈{0,1}ℓ

[
pv(s)

]
, and hence (by Markov’s inequality)

Pr
s

[
pv(s) ≥ pv · (2nw/ϵ)

]
≤ ϵ/(2nw) .

By a union-bound over the (n + 1) · w/ℓ < 2nw vertices in the relevant
layers, with probability more than 1 − ϵ over choice of s ∈ {0, 1}ℓ, for
every vertex in these layers we have that pv(s) < pv · (2nw/ϵ). In this
case, when starting from the initial vertex v0 in the ROBP and walking
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according to the n-bit string (s, s, s, ..., s) we pass through vertices
v1, vℓ, ... and reach a vertex vn, and by induction for each i ∈ [n/ℓ] we
have

pvi = pvi−1(s) < pvi−1 · (2nw/ϵ) < ... < pv1 · (2nw/ϵ)i .

In particular, applying the above for i = n and recalling that pv1 ≤ B/2n,
we have that pvn < pv1 · (2nw/ϵ)n/ℓ ≤ B/2n · (2nw/ϵ)n/ℓ < 1, where the
last inequality relied on our choice of ℓ. Hence, vn is labeled with the
more likely output ¬σ of the ROBP.

The above proves that with probability at least 1 − ϵ over choice of
seed s for the PRG, the ROBP evaluates to its more likely output. The
pseudorandomness of this PRG follows because the probability over a
uniform input that the ROBP evaluates to its more likely output is at
least 1 − B/2n ≥ 1 − ϵ.

The proof above (as well as Saks’ original proof) is elementary,
and does not rely on the vast literature concerning derandomization of
logspace (or of ROBP). Nevertheless, improving on the result that it
yields is still an open problem:

Open Problem 9: Quantified derandomization of logspace
with B(T ) = 2(1−o(1))·T . Strengthen Theorem D.1 to work with B(T ) =
2T −s(T ) for some sub-linear function s, or show that such an improve-
ment implies that BPL = L.

D.2 Quantified derandomization of Merlin-Arthur protocols

We are interested in derandomizing Merlin-Arthur protocols, and partic-
ularly in derandomizing MA and AM (see, e.g., [7, Section 8.2] for the
standard definitions of these classes). Recall that assuming sufficiently
strong lower bounds, both of these classes can be derandomized and
equal N P (see [64]).

Goldreich and Wigderson asked if derandomizing MA or AM
becomes easier when the verifier is extremely unlikely to err (i.e., to
accept an incorrect proof or to reject a correct proof). They showed
two complementary results, the first of which is the following quantified
derandomization algorithm for a subclass of MA.
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Definition D.1 (MA with restricted verifiers). For a circuit class C =
{Cn}n∈N, we say that L ⊆ {0, 1}∗ can be decided by an MA protocol with
C-verifiers if there exists an MA verifier V that decides L such that the
following holds: For every input x ∈ {0, 1}∗ and proof w ∈ {0, 1}poly(|x|),
the decision of V at x with proof w as a function of the m = poly(n)
random coins can be computed by a circuit in Cm.

Theorem D.2 (quantified derandomization of MA with AC0 verifiers;
see [44, Theorem 7.3 in the Full Version]). Assume that L ⊆ {0, 1}∗ can
be decided by an MA protocol with AC0 verifiers such that the verifier
always errs on at most B(T ) = 2T 1−ϵ random choices. Then L ∈ N P.

Theorem D.2 may appear weak, because it only refers to MA
verifiers whose decision as a function of the random coins is an AC0

circuit. However, if an analogous result holds for AM verifiers, then
AM = N P ! In fact, this conclusion holds even if the verifier’s decision
is only a CNF, and even for smaller values of B(T ) = 2T ϵ .

Definition D.2 (AM with restricted verifiers). For a circuit class C =
{Cn}n∈N, we say that L ⊆ {0, 1}∗ can be decided by an AM protocol with
C-verifiers if there exists a deterministic procedure V and a polynomial
p : N → N such that the following holds:

• For every x ∈ L it holds that Prr∈{0,1}p(n) [∃w ∈ {0, 1}p(n),

V (x, w, r) = 1] ≥ 2/3.

• For every x /∈ L it holds that Prr∈{0,1}p(n) [∀w ∈ {0, 1}p(n),

V (x, w, r) = 0] ≥ 2/3.

• On n-bit inputs V can be computed by a circuit from Cn+2p(n).

Theorem D.3 (threshold values for quantified derandomization of AM
with CNF verifiers; see [44, Theorem 7.4 in the Full Version]). Assume
that for some ϵ ∈ (0, 1) the following holds: For any L ⊆ {0, 1}∗ that
can be decided by an AM protocol with CNF verifiers such that the
verifier always errs on at most B(T ) = 2T ϵ random choices, we have
that L ∈ N P. Then AM = N P.

To make sense of Theorems D.2 and D.3, recall that derandomization
of AM is in general a harder problem than derandomization of MA
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(since AM ⊇ MA). Nevertheless, the contrast between the two results
is still striking.

The proof of Theorem D.2 amounts to applying the quantified
derandomization algorithm of Theorem 7.4 to the verifier’s residual
decision as a function of the random coins, when the input and the
proof are fixed. Similar results can be obtained for analogous classes of
MA with restricted verifiers (such as verifiers computable by formulas)
using Theorems 7.5, 7.10, 7.12, and 7.15. However, this approach does
not use the power of interaction for the quantified derandomization
algorithm, but rather only applies a known quantified derandomization
algorithm to the verifier’s decision.

Open Problem 10: Quantified derandomization of MA using
the power of interaction. For any class C, let MAC be the set of
problems solvable by MA protocols in which the verifier’s decision as a
function of the random coins is computable in C. Can we construct a
quantified derandomization algorithm for MAC with better parameters
than the known quantified derandomization algorithm for C, using the
interaction with the prover?
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