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Abstract

Recent advances in Internet and Web technologies and the advent of

Web 2.0 have made it possible to share information and knowledge

surrounding human activities, which can be obtained from massively

deployed sensors and the Web resources. This survey provides a compre-

hensive overview of mining experiential knowledge bearing on human

activities, with an emphasis on the use of the Web. Starting from def-

initions of activities and experiences, we elaborate on various views of

human activities in cognitive science, including knowledge representa-

tion schemes. We then describe two activity detection techniques arising

from different types of information sources: sensor-driven approaches

for the physical space and text-driven approaches for the cyberspace.

Focusing on experiential knowledge of human activities that can be dis-

covered from unstructured text, we review and summarize the existing

body of literature on experiential knowledge filtering, context identi-

fication for knowledge, and knowledge distillation. There is no doubt
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that the vast amount of information on human experience including

activities is going to help detecting, recognizing, and understanding

human activities of various sorts. We illustrate potential applications

of experiential knowledge in different domains, such as information

retrieval, service recommendation, and semantic Web. Following the

survey of on-going research on capturing and utilizing human activi-

ties and experiences, we finally present challenging research issues for

further research.
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1

Introduction

Active user participations and interactive communications among

users in the Web 2.0 era have made it possible to elicit a vast amount

of user activity information and personal experiences from the Web.

User activity data are also available through ubiquitous sensors of

various kinds and mobile devices that have become a commodity.

At the same time, such accumulation of big data and their availability

call for a more advanced analytics technology that enables correct

understanding of individual and/or group activities, situations, and

intents of the users in various domains and applications. As human

activities of various sorts are expressed in natural language and

recorded on the Web in the form of weblogs, social network messages,

and even news articles and electronic boards, text mining and seman-

tically oriented techniques have become more critical than ever for

human-oriented decision making and intelligent applications. There is

no doubt that the knowledge distilled from the vast amount of human

experience data, most of which are available on the Web, is going to

help understanding human behaviors in general as well as in specific

contexts such as location and time, which are essential for intelligent

agents. Some recent studies have already begun to take a stab at

eliciting useful experiences from the Web [110, 169].

1
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2 Introduction

Our main motivation for this survey lies in the observation that we

are only on the verge of utilizing the vast amount of information on

human experiences stored on the Web. In other words, such precious

resource has not been explored and utilized enough for intelligent tasks.

In particular, our interests rest on human activity-related information

that has been recorded in the form of blog posts, online community ser-

vices, and online social media although increasing availability of more

structured sensor data will play a complementary role. As this kind

of information will continue to grow in the future with the increasing

social dynamics and mobility of computing and communication devices

such as smart phones, the time is ripe to investigate the possibility of

constructing an activity knowledge base out of the vast amount of tex-

tual data. While there are many challenging issues to be tackled in

natural language processing (NLP) before we can process free text and

generate error-free activity knowledge in a logical form, the current

state-of-the-art NLP technology allows us to extract key knowledge

elements that can be used for many intelligent applications that do not

require formal inference capabilities.

Moreover, understanding human activities in varying situations

would help in interpreting user behaviors and intents in various user

interactions involving online activities and social media as well as any

context-dependent mobile applications in daily lives. A major question

is how to turn the vast amount of activity-related information embed-

ded in text into a form that can be readily available with sufficiently

detailed granularity and utilized for various intelligence-enabled appli-

cations. An example along this effort is Activity Streams [4] that has

been adopted by Facebook, MySpace, etc.; it helps distinguishing peo-

ple’s activities such as blogging, updating status, and posting photos.

However, the major challenge that awaits technological innovations is

the process of identification, extraction, interpretation, abstraction, and

aggregation of elements of experience at various granularity levels.

To set the stage, we begin with a definition of experience, excerpted

from the Oxford Advanced Learner’s Dictionary:

• The things that have happened to you that influence the way

you think and behave
• An event or activity that affects you in some way

Full text available at: http://dx.doi.org/10.1561/1800000021



3

This definition has a few elements that affect the process of experience

mining and the associated techniques when it is done automatically.

First, something must “have happened” in the past if it is to be con-

sidered as experience. This is particularly important especially when a

textual description is analyzed and discerned for existence of an expe-

rience. Second, an experience must have a context because it must

have happened. A real event or activity, as in the second line, cannot

happen in a vacuum without a context regardless of whether or not

it is described explicitly or assumed implicitly. Third, in order for an

activity or event to become an experience, it must have influenced the

way the experiencer think or behave. This aspect has two ramifications

in detecting experience from text: there must be an experiencer, again

explicitly or implicitly, and the experiencer must have either perceived

the activity or event or participated in it. Without one of the condi-

tions, there is no way the experiencer would be affected either mentally

or physically.

The three characteristics of experience mentioned above are critical

in an operational setting. To illustrate this point, let us take a look at

the following sentences.

(1) “I thought I was going to walk up Table Mountain today,

but Kees and Ian, a couple staying at the guest house asked

me to go to the vineyards with them today.”

(2) “One day Chris and Levi took a drive out to Milton Florida

to visit Chris’ family at his farm.”

(3) “I saw people playing FIFA on a TV here.”

The three boldfaced parts in the first sentence are candidates for

an experience, but the second one is the only one to be qualified as

an experience because the first and third one did not actually happen.

The sentence in (2) illustrates the second point in that the phrases,

“One day” and “Milton Florida,” serve as the temporal and directional

contexts for the driving activity. Note that “his farm” is not a locational

context for the activity because it is part of the description for the

purpose. The final point about the characteristics of experience is shown

in the sentence (3) where both “I” and “people” are the experiencers.
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4 Introduction

However, they are affected differently: the former mentally via visual

perception but the latter physically by actually playing a game.

The next issue we must address is how to define experiential knowl-

edge, which is the eventual goal to elicit from data and the product

of the mining process to be used in applications. The current version

of Wikipedia defines experiential knowledge as “knowledge gained

through experience as opposed to a priori (before experience) knowl-

edge” or “knowledge that can only be acquired through experience.”

For our discussion in this survey, we posit that experiential knowledge

is obtained by aggregating individual experience instances and distilled

into tendency through abstraction, grounding, organization, and link-

ing in such a way that the result can be used more directly with a

reasonable level of confidence for decision making. This operational

characterization of experiential knowledge is based on the characteris-

tics of experience so that the distillation process is also described in

terms of experience mining.

As in the definition of experience, human activities and events where

people are engaged in are the major sources from which human expe-

rience can be extracted. As such, we begin Section 2 with an intro-

duction to Activity Theory to provide a framework for understanding

human experiences in a socio-cognitive mind set. At the same time,

it makes it amenable to view and assess existing data collections and

mining techniques and develop future technologies with an eye on their

fundamental appropriateness. Also introduced in the section are the

notions of episodic memory and activity frames that have been devel-

oped primarily for artificial intelligence. Episodic memory constructed

from episodes (experience instances) is rooted in earlier studies of the

script theory and conceptual structures. These early studies done on a

small scale are significant enough to give an insight on more contem-

porary research for which a much larger amount of data and various

advanced statistical techniques are available to generate more practical

results.

Section 3 introduces key issues in capturing, recording, and process-

ing human activity- or experience-related data in physical space. Such

data have been produced by a variety of sensor technology and made
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available for direct consumption by ubiquitous systems or for analysis

to understand human behaviors or to develop intelligent applications.

While the research community in this area has been largely separated

from that of text mining or NLP, our expectation is that they need to

be merged together to complement each other. The ubiquitous com-

puting community that has been transformed into the IOT (Internet of

Things) among others, for example, can benefit greatly from research

in text mining and vice versa. The difference in data granularity has

called for different technology and goals, but they need to help each

other as the data on each side is far from being complete in under-

standing human behaviors and developing useful and robust applica-

tions. Also included in this section is a discussion of what kinds of Web

resources are available from the data acquisition point of view to set

the stage for the next section devoted to a comprehensive discussion of

experience knowledge mining techniques and related issues.

This book culminates in Section 4 which introduces a variety of text

mining techniques that are related to experiential knowledge mining

one way or another. Its coverage spans from linguistically oriented

techniques to statistically based machine learning techniques for dif-

ferent purposes, such as event and activity extraction, named entity

recognition, and context identification, which are essential techniques

for experience mining, which is a prerequisite for experiential knowl-

edge mining. The final two subsections of this section are devoted to

the techniques for relational and procedural knowledge mining, which

are considered as experiential knowledge mining proper as opposed to

component techniques.

Having introduced all the underlying theories and key techniques

for experiential knowledge mining, Section 5 attempts to show how

such knowledge can be used in practical applications. Experiential

knowledge would be useful for virtually all possible domains where

experienced humans play a certain role. Even in the art and design

area, which requires human ingenuity and creativity, experiential

knowledge can usefully provide the data necessary for verifying con-

jectures, observations, and assumptions that may go into the creative

processes [165]. Aside from these areas, experiential knowledge can

Full text available at: http://dx.doi.org/10.1561/1800000021



6 Introduction

play a central role in directly helping humans perform their tasks

by, for example, making intelligent recommendations tailored to

the right context and situation. Even for mundane applications like

search engines and community question answering, availability of past

experiences garnered from Web resources provides essential evidence

to support decision making.
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