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ABSTRACT

Kleibergen and Zhan (2020) propose a new approach to test
consumption-based asset pricing models that is robust to the “useless”
factor problem, i.e., concluding too often that a factor is priced when
the factor is actually uncorrelated with the test assets and is not priced.
I show that even when factor correlation is economically large and
significant (think of 0.40 and larger), their testing approach lacks
power in small samples to detect sufficient factor correlation or to find
that a factor is priced. I propose simple remedies that help to achieve
robust and powerful asset pricing tests.
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Kleibergen and Zhan (2020) worry that recently proposed alternative consumption
measures (Jagannathan and Wang, 2007; Kroencke, 2017; Parker and Julliard,
2005; Savov, 2011) are only poorly correlated with stock returns. They claim
that the popular textbook methods (Campbell, 2017; Campbell et al., 1997;
Cochrane, 2005; Ferson, 2019) cannot be trusted when risk factors are “useless”
(i.e., uncorrelated with stock returns) and when the sample size is small (as
is often the case in consumption-based pricing). In considering these claims,
they propose a new testing methodology that is robust to “useless” factors. They
illustrate their method on a short sample of the dataset studied in Kroencke (2017).
Using this new methodology, they can neither confirm nor reject the idea that
the consumption factor helps explain stock returns (Kleibergen and Zhan, 2020,
p. 547).

For the empirical application they consider, I show that their methodology lacks
the power to provide inference on the factor correlation, the coefficient of relative
risk aversion, or the price of risk. At the same time, traditional inference using
GMM-based tests of the non-linear model, or Fama–MacBeth/Shanken t-statistics
for the linearized model, perform considerably better than is stated in Kleibergen
and Zhan (2020). The textbook methods are often (but not always) trustworthy
and are always more powerful in detecting “useful” factors. Furthermore, simple
bootstrap confidence intervals are always trustworthy and remain powerful. This
paper aims to illustrate the properties of the different methods in empirically
relevant cases so that applied researchers can make informed decisions on which
method to use in consumption-based asset pricing.

GMM-based tests of the non-linear model: Kleibergen and Zhan (2020) con-
sider GMM-based tests (Hansen, 1982) of the non-linear version of the
consumption-based model when the market excess return is the only test asset.
If an estimate of the coefficient of relative risk aversion is significantly different
from zero, in an economically plausible range, and the pricing error is small, such
a finding is interpreted as evidence that the consumption factor helps to explain
the equity premium. The core of the problem is that the coefficient of relative risk
aversion cannot be identified when the factor is “useless.” Estimates will come
with a non-standard distribution, which is also wider than the distribution of a
“useful” factor. Because GMM standard errors assume that a factor is “useful,” one
might too often conclude that the factor helps to explain the equity premium when
the factor is actually “useless.”

Kleibergen and Zhan (2020) claim that the correlation of alternative con-
sumption measures is indeed insufficient to trust GMM standard errors, even
though factor correlation is economically and statistically significant for several
of the consumption measures considered.1 My paper shows that their test for

1For example, the garbage measure (Savov, 2011) comes with a correlation coefficient as large as
0.58, with a bootstrapped 95% confidence interval of 〈0.3, 0.7〉. For unfiltered consumption (Kroencke,
2017) the correlation coefficient is 0.45 〈0.2,0.6〉 (see Table 1).
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sufficient factor correlation (called the GMM-rank test) is almost impossible to pass,
regardless of whether a factor is “useless” or “useful” and highly correlated with
asset returns.

I illustrate the issue in Figure 1, where I report simulation results of the GMM-
rank test executed with the same code and the same settings as in Kleibergen
and Zhan (2020). The y-axis shows the simulation-based probability to reject the
null hypothesis that a factor is “useless.” The x-axis varies the population factor
correlation coefficient with the consumption factor from zero (“useless”) up to
1.00 (the “most useful” factor one can hope for).2 The flat line shows that the
GMM-rank test is unable to detect sufficient factor correlation for any amount
of factor correlation, even when factor correlation is perfect.3 Insufficient factor
correlation cannot be the problem.

Instead, I show that the failure to detect “useful” factors is due to a bad GMM
objective function. It has two corner solutions, where the statistical software used
reaches the limit of numerical precision and rounds the GMM objective functions
arbitrary to zero. Because the test statistic is arbitrary set to zero somewhere, it
is impossible to find a test statistic larger than the critical value and reject the
hypothesis that there is a lack of factor correlation. The situation is known as the
“GMM trap” (see Figure 2 for an illustration with the empirical data).4

The “GMM trap” also plagues the novel method for robust estimation of the
coefficient of relative risk aversion in consumption-based asset pricing models.
Kleibergen and Zhan (2020) propose replacing standard GMM-based inference
with the GMM-Anderson-Rubin (GMM-AR) test to obtain a “useless” factor robust
test. The GMM-AR test searches for all possible values of the coefficient of rela-
tive risk aversion where a test of a zero moment condition (the “J-test”) cannot
be rejected. This region is then used to determine confidence intervals for the
coefficient of relative risk aversion.

When the factor is “useful,” and the sample is large enough, there should be
a single parameter region where the J-test cannot be rejected, which results in
a bounded confidence interval. Unbounded (or disjointed) confidence intervals
mean that the J-test cannot be rejected in a single region, which is interpreted as
evidence of insufficient factor correlation. Again, because the objective function
is arbitrarily set to zero at multiple regions, the GMM-AR confidence intervals
are likely to appear unbounded. But these unbounded confidence sets do not
necessarily reflect poor factor correlation but rather the ill-conditioned GMM
objective function. While the GMM-AR test is robust to the “useless” factor problem,
this approach lacks the power to detect “useful” factors in empirical applications

2The model does not even predict a correlation of 1.00. Individual assets are allowed to have
(large) idiosyncratic risk. It is the optimum one can hope for from a purely statistical perspective.

3Increasing the sample size to a hypothetical 200 years does not change this conclusion (Appendix,
Figure A.1).

4See also Cochrane (2005), Chapter 11.5, for a detailed discussion of this frequent problem in the
context of asset pricing.
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Figure 1: The Power of GMM-Rank Tests.

Description: This figure shows the Monte Carlo simulation-based probability of finding a “significant
factor correlation” such that the coefficient of relative risk aversion can be identified and GMM
standard errors are expected to be reliable. Results are based on 10,000 draws of multivariate normally
distributed data calibrated to the market excess return (N = 1) and a hypothetical consumption factor
with T = 55 years of time-series observations. Results on the far left show the rejection probability of
a consumption factor that is in the population uncorrelated with the market excess return (“useless”
factor). These results can be interpreted as the size of a test. Moving from the left to the right
increases the population correlation coefficient from zero to 1.00 (“useful” factors). These results can
be interpreted as the power of the tests. The vertical lines indicate the sample correlation coefficient
of alternative consumption measures (see Table 1 for further details). The first line in the legend
corresponds to the GMM-rank test as reported in Kleibergen and Zhan (2020). The second line in the
legend corresponds to a modified version of the GMM-rank test and is proposed in this paper. The
third line in the legend corresponds to a direct test of the correlation coefficient, as in Savov (2011).

Interpretation: The GMM-rank test as in Kleibergen and Zhan (2020) has no power to detect “useful”
factors. The reason is that the GMM objective function of this test is numerically ill-conditioned and
usually comes with two arbitrary corner solutions. I propose a corrected version that has a unique
solution and avoids the issue. This version of the GMM-rank test has some power to detect “useful”
factors. However, in short samples with limited time-series observations, a direct test of the correlation
coefficient has the highest power to detect “useful” factors.

(Figure 3). This brings me to the main critique of this paper. A “useless” factor
robust test procedure is not helpful for applied research if the test does not allow
for the detection of a “useful” factor.

I discuss remedies that allow one to conduct inference that is “useless” factor
robust and powerful. (1) I propose to use a modified test for sufficient factor
correlation (GMM-rank test). This version does not weight the moment condi-
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tion(s) and has no corner solutions. A simulation experiment shows that the
corrected GMM-rank test is more accurate and can differentiate between “useless”
and “useful” factors (see Figure 1). A direct test of the correlation coefficient,
similar to the one reported in Savov (2011), is even more powerful in detecting
“useful” factors (see Figure 1). (2) I show that applying the GMM-AR test to the
linearized version of the consumption-based asset pricing model limits the risk of
encountering an ill-conditioned GMM objective function. However, the confidence
intervals of the GMM-AR test are large, which indicates a relatively low power
of this approach. (3) I point out that there is an easy-to-implement alternative
available. Bootstrapped confidence intervals, as implemented in Burnside (2011)
for linear models, are robust to the “useless” factor problem and come with more
power to detect “useful” factors (Figure 3). If a factor is “useful,” the bootstrapped
confidence interval will be comparable to those based on asymptotic inference
(if the sample size is large enough). If a factor is “useless,” the bootstrapped
estimates will be non-standard distributed but still centered around zero (Figure
4). Confidence intervals based on the bootstrap distribution are large and likely to
include the value of zero. Importantly, the bootstrap confidence intervals do not
over-reject the coefficient of relative risk aversion being different from zero as one
benchmarks the point estimate with the distribution of a “useless” factor and not
with that of a “useful” factor (as would be the case when relying on asymptotic
standard errors).

There is a shortcoming to using bootstrap confidence intervals from an econo-
metric point of view. This method is not identification robust, as it is explained
by Burnside (2011). If the factor is “useless,” the parameter of interest cannot
be identified from the data. This means that the bootstrap confidence interval is
uninformative about the parameter and does not tell us so directly. I believe that
this is a minor issue in applied research in the case of consumption-based asset
pricing. When results indicate that a factor is not priced with an economically rea-
sonable coefficient of relative risk aversion, such an outcome is usually interpreted
as evidence against the model. For example, in the case of reported consumption,
it is well known that unreasonably large point estimates of the coefficient of rela-
tive risk aversion are required to fit the equity premium due to a lack of factor
correlation. At least since Mehra and Prescott (1985), the usual conclusion taken
from this finding is that the model does not explain the equity premium. They did
not conclude that the model does a good job in explaining the equity premium
but that investors have a large coefficient of relative risk aversion. This example
illustrates that it is advisable to look at the test results in the context of economic
theory and not confine the interpretation to a purely econometric perspective.
Statistical inferences should go hand in hand with economicinference.5

5Identification robust inference might be a considerably more critical property in other applications,
for example, when there is little theoretical guidance on what magnitude of the parameter to expect.
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Fama–MacBeth methodology and the linear model: In another set of results,
Kleibergen and Zhan (2020) consider methods that evaluate whether a factor
can help explain a cross-section of 31 portfolio excess returns using a linearized
version of the consumption-based model. To this end, Kleibergen and Zhan (2020)
propose replacing inference on the price of risk based on the standard Fama and
MacBeth (1973)/Shanken (1992) methodology with the GRS-Factor Anderson-
Rubin (GRS-FAR) test (which works analogous to the GMM-AR test).

I mainly criticize two aspects of their discussion: First, they overstate the
“useless” factor problem in the context of the Fama–MacBeth/Shanken approach
when the sample size is small. In line with Kan and Zhang (1999), I show that
the “useless” factor problem is a large sample issue and not a small sample one.
But the considered consumption factors are annually sampled and are a prime
example of a small sample.

Second, if the asset pricing model is “misspecified” and cannot explain the
data perfectly, the GRS-FAR test is expected to be unable to provide inference on
the price of risk and cannot be expected to detect “useful” but imperfect factors
(Figure 5). However, previous research has concluded that the model does not
explain the data perfectly and is at best regarded as “misspecified” (Kroencke,
2017; Savov, 2011). Again, I argue that a test procedure that is robust against
“useless” factors is not helpful for applied research if the test does not allow for the
detection of “useful” factors.

As before, an easy-to-implement alternative is to report bootstrap confidence
intervals of the price of risk, as has been done by Burnside (2011). However, the
same caveats described above regarding identification robustness apply.

What this paper is not about: This paper is not a general defense of the consump-
tion-based asset pricing model and the alternative consumption measures. I do
not think this is necessary. The alternative consumption measures are unlikely to
explain all of the equity premium, and are unable to explain the cross-sectional
dispersion in mean excess returns of many anomaly portfolios (e.g., Kroencke,
2017; Savov, 2011). The alternative consumption measures are also unable to
capture the time-series variation in the price-dividend ratio (e.g., Kroencke, 2017,
2022). Recent survey-based evidence that has emerged at the investor level has
been disappointing (Chinco et al., 2022; Choi and Robertson, 2020). But when
we want to point out the weaknesses of the simple consumption-based model, we
want do so based on powerful tests.

Outline: The outline of the paper is as follows. Section 1 describes the consump-
tion-based model and the data, and offers a preliminary analysis that comes with
a minimum of assumptions. Section 2 studies GMM-based inference for the non-
linear model, while Section 3 compares the Fama–MacBeth methodology with
the proposed alternatives for the linearized version of the model. I conclude in
Section 4. I skip a repetition of most of the formulas used for the econometric
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tests. These are provided in detail in the Online Appendix to Kroencke (2017)
and the paper by Kleibergen and Zhan (2020).6

1 Model, Data, Preliminary Analysis

1.1 The Consumption-Based Model

The basic model: The central pricing equation in asset pricing is

E
�

Mt+1Re
t

�

= 0, (1)

where Mt+1 is the stochastic discount factor (SDF) and Re
t is an asset return in

excess of the risk-free rate. A large part of the asset pricing literature tests how
well different SDFs “fit” the pricing equation.

In the classic consumption-based asset pricing model, the non-linear SDF is7

Mt+1 = δ
�

Ct+1

Ct

�−γ
, (2)

where Ct+1/Ct = 1+4Ct+1 is consumption growth, δ is a time preference param-
eter that should be around one, and γ is the coefficient of relative risk aversion.8

A log-linearized version of the SDF is

Mt+1 t 1− γ4eCt+1. (3)

In this equation, 4eCt+1 is de-meaned consumption growth.9 Using the lin-
earized SDF, the pricing equation can be re-formulated so that the expected excess
return is on the left-hand side of the equation

E
�

Re
t

�

= γ× Cov(Re
t , 4eCt+1). (4)

The coefficient of relative risk aversion is not a free parameter. It describes
investors’ willingness to take a risk. For risk-averse investors, this parameter must
be strictly positive. It also cannot be arbitrarily large. As pointed out by Grossman
and Shiller (1980) and Mehra and Prescott (1985), among many others, large

6In addition, the replication code and data used in this paper can be found on the website of the
author and the journal.

7See, for example, Breeden et al. (1989), Cochrane (2005), Jagannathan and Wang (2007),
Burnside (2011).

8In empirical work, consumption growth is usually measured as real per capita and returns are
real. In principle, one could also test a nominal version of the model.

9Depending on the type of approximation chosen, consumption growth can be measured as simple
(e.g., Jagannathan and Wang, 2007) or in logs (e.g., Breeden et al., 1989). The difference between
both approximations is usually small in empirical data. I use simple growth rates.
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values imply an implausibly large degree of risk aversion.10 Grossman and Shiller
(1980) consider values for γ up to 6 as plausible. Mehra and Prescott (1985)
argue that γ= 10 is the highest level of risk aversion that can be considered as
economically plausible. Cov(Re

t , 4eCt+1) captures the riskiness of an asset. A large
covariance suggests that the asset has low returns in bad times when consumption
growth is also low (and marginal utility is high), for example, during recessions.
Such an asset will have a low price and a high expected excess return, everything
else being equal. It is probably this simple prediction that gives the model its
appeal.

In empirical work, the return-beta representation is popular for testing

E
�

Re
t

�

= βC
︸︷︷︸

Cov(Re
t ,4eCt+1)

Var(4eCt+1)

× λ
︸︷︷︸

γVar(4eCt+1)

, (5)

where βC is the consumption beta, and λ is the “price of risk.” λ is the same for
all assets and is determined by investor preferences for risk (γ) and the amount of
fundamental (non-diversifiable) risk in the economy (Var(4eCt+1)). βC can vary
between assets and is also called factor loading.

It is worth noting what the model does not predict. In particular, it does not
predict that βC 6= 0 holds for all assets. An asset with βC = 0 just earns a zero
excess return (i.e., the risk-free rate): E(Re

t) = 0. Therefore, a test that indicates
βC = 0 does not necessarily contradict the model or indicate a “useless” factor in
the economic sense.11 The model also does not predict a particularly large time-
series regression R2, as it describes a relationship between mean excess returns and
consumption covariances. However, in line with Eq. (4), the time-series regression
R2 should be distinct from zero if the mean excess return is different from zero.

The alternatives: The basic model is a strong simplification of the real world and
it is reasonable to think about possible alternatives. A more realistic SDF might be
written as

Mt+1 t 1− ζγ4eCt+1 −φ f (st+1) (6)

where f (st+1) captures a function over a vector of additional drivers (st+1) of the
SDF. Setting ζ = 1 and φ = 0 nests the basic model. In fact, there is a rich and
fruitful literature that provides evidence in favor of the existence of additional
(or alternative) drivers of the SDF. Examples include Campbell and Cochrane

10Another way to illustrate the problem of a large γ is to report the implied risk-free rate, as
proposed by Savov (2011), log(R f ) = −log(β) + γE (log(1+4Ct+1))−

1
2γ

2Var (log(1+4Ct+1)).
Because consumption variance is relatively small, large γ usually implies an unrealistically large
risk-free rate, which is also known as the risk-free rate puzzle of Weil (1989). Lengwiler (2004)
provides a detailed discussion and a review of the literature.

11In principle, small betas might indicate “useless” test assets and not a “useless” factor. The mean
excess returns or the dispersion of mean excess returns may be too small for the identification of λ
or γ. Tests for identification are not tests of asset pricing models.
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(1999), Bansal and Yaron (2004), Yogo (2006), Piazzesi et al. (2007), Wachter
(2013), Schreindorfer (2020), and many more, including models that incorporate
investor heterogeneity, ambiguity, learning, institutional frictions, and outright
irrationality.12

From an empirical point of view, consumption growth is already challenging to
measure. But the potential other factors st+1 are arguably even more challenging
to capture in an empirical analysis. Importantly, according to many advanced
models, the consumption factor is not unrelated with the additional factors st+1.
Often, f (st+1) captures some mechanism that amplifies basic consumption growth
risk. For example, in the habit model of Campbell and Cochrane (1999), a slow-
moving habit changes investors’ attitude toward risk. It can amplify the price
reaction to large drops in dividends and consumption. Bansal et al. (2012) propose
a calibration of the long-run risk model that requires a significant portion of “short-
run” consumption risk. A test of the basic model can also be interpreted as a
“partial” test of a more advanced model.

For that reason, it is economically interesting to empirically test the basic
model even if one does not think that it is literally true. Because a researcher can
be almost sure that the model is misspecified, it might be better to write for asset i

E
�

Re
i,t

�

= βi,C ×λ+ ai , (7)

where ai reflects an asset-specific component of the expected return that is not
captured by short-run consumption risk. In empirical tests, this component should
show up as a pricing error, a part of the mean excess return unexplained by
the model. Accordingly, I argue that it is of utmost importance to use statistical
methods that allow a researcher to draw reliable conclusions when the model is
misspecified.

1.2 Some Preliminary Results

Table 1 reports some preliminary asset pricing results for the data used in Kroencke
(2017) and Kleibergen and Zhan (2020). The consumption measures are the “re-
ported” consumption from the NIPA accounts (Mehra and Prescott, 1985; Shiller,
1981), ultimate consumption (Parker and Julliard, 2005), fourth-quarter consump-
tion (Jagannathan and Wang, 2007), “garbage” (Savov, 2011), and “unfiltered”
consumption (Kroencke, 2017).13 Stock returns are sampled at the end of De-
cember (Dec.) or time-aggregated (T.A.) to account for the time-aggregation bias
(e.g., Breeden et al., 1989; Cochrane, 1996; Kroencke, 2017). Details on the data
sources and construction are provided in Kroencke (2017).

12Among others, Adrian and Shin (2014), Adam et al. (2016), Cujean and Hasler (2017), and
Andrei et al. (2019).

13Parker and Julliard (2005) proposed a quarterly version of ultimate consumption in their paper.
The annual version of ultimate consumption shown in this paper is, therefore, not a fair comparison
with the originally proposed measure.
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Panel A shows the covariances, correlation coefficients, and consumption
betas in the post-war sample from 1960–2014. A significant factor correlation
implies that the textbook methods allow to identify the coefficient of relative
risk aversion or the price of risk. I use bootstrap re-sampling to compute 95%
confidence intervals, similar to Savov (2011). The reported consumption measure
has an insignificant consumption covariance of 0.0039%. On the other hand,
the alternative consumption measures come with covariances in the range from
0.07 to 0.26%, and the covariances for unfiltered consumption and garbage
are significantly different from zero. The overall conclusion does not change
when considering the correlation coefficient or the beta. In the full sample,
there are no data for garbage available. As pointed out in Kroencke (2017), an
advantage of unfiltered consumption over garbage is that a longer time-period
going back to 1928 is available. The full sample is studied in detail in Kroencke
(2017) but is not considered by Kleibergen and Zhan (2020). In the full sample,
the covariance is 0.49% for unfiltered consumption and is significantly different
from zero.

Panel B provides some back-of-an-envelope calculations exploiting the approx-
imate pricing (Eq. (4)). Following Campbell (2003), I divide the mean excess
return of the market portfolio by the consumption covariance to get the implied
coefficient of relative risk aversion. I use bootstrap re-sampling of this ratio to de-
termine 95% confidence intervals. In the case of reported consumption, this leads
to a division of 5.8% by something close to zero. Thus, the resulting coefficient
of risk aversion is large and imprecisely measured as indicated by a large 95%
confidence interval.

The same does not apply to the garbage measure or unfiltered consumption,
which are significantly correlated with stock returns. For garbage (unfiltered
consumption), the point estimate of the coefficient of relative risk aversion is 20
(29). The bootstrap confidence intervals are wide but indicate that γ is significantly
different from zero for garbage and unfiltered consumption. In the full sample,
unfiltered consumption gives a point estimate γ = 15, which comes with a relative
tight 95% confidence interval of {5, 38}.

I also consider estimates of the price of risk λ based on Eq. (5). The results
for reported consumption indicate that this consumption measure is not priced.
Garbage gives a significant price of risk of 1.6% (95 c.i.: {0.2%, 4.1%}). Unfiltered
consumption leads to a point estimate of about 2.0% (95 c.i.: {0.3%, 6.2%}).

For factors with insignificant factor correlation (e.g., reported consumption), it
is not expected that the parameters λ and γ can be identified, because one might
“divide by zero” in the absence of estimation errors. As a result, the bootstrap
percentiles cannot be regarded as informative about the true parameter. Due to
the lack of identification, the true parameter can have any value. As can be seen
for reported consumption, a factor with lack of correlation is likely to come with
an unreasonable large point estimate of γ and a very wide bootstrapped confi-
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dence interval, far away from the economically reasonable range (between zero
and ten).

A simple solution to the “division by zero problem” of “useless” factors is
not to divide. To this end, I impose an economically reasonable value for γ and
then conduct inference on the expected excess return implied by the factor co-
variance multiplied with γ (Eq. (4)). This approach only requires multiplication
and is comparable to the original Mehra and Prescott (1985) tests. In the bot-
tom rows of Table 1, I impose γ = 10, the largest value considered plausible
by Mehra and Prescott (1985), and I then ask how big the equity premium is
given the consumption covariance. For reported consumption, the implied eq-
uity premium is a meager four basis points and is insignificant. Garbage, by
contrast, can explain a significant amount of 2.60% (95 c.i.: {1.1%, 4.6%}) of
the equity premium. Unfiltered consumption can explain 1.96% (95 c.i.: {0.6%,
3.6%}). Thus, in the most optimistic case (γ = 10), the alternative consump-
tion measures explain around 44% (2.6/5.8) and 33% (1.9/5.8) of the equity
premium in the short sample. The full sample point estimates indicate a some-
what larger share of 66% (4.8/7.3) explained by unfiltered consumption. A
zero consumption-based equity premium can be rejected according to the 95%
confidence interval.

To sum up, this section illustrates that alternative consumption measures and
the market excess return are statistically significantly correlated. These correlations
are economically relevant and imply that alternative consumption measures can
explain part of the equity premium. However, this correlation is not large enough
to fully explain the equity premium with an economically reasonable coefficient
of relative risk aversion. The results also do not rule out alternative models (e.g.,
when consumption growth happens to correlate with alternative drivers of the
SDF). At best, the consumption-based model is misspecified. In the remainder of
the paper, I show that powerful tests confirm the preliminary results reported in
Table 1.

2 GMM Estimation and the Non-Linear Model

2.1 Moment Conditions

It is common in the literature to test the non-linear version of the classic consump-
tion-based asset pricing model as stated in Eq. (2). The GMM approach allows
to estimate the parameters of interest (δ, γ) by exploiting the pricing equation
for N test asset excess returns, 0= E(Mt+1Re

t+1). Accordingly, the GMM objective
function is

minδ,γJT = gT (4Ct+1, Re
t+1, γ, δ)W gT (4Ct+1, Re

t+1, γ, δ)′,
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where W is a N × N weighting matrix and gT (4Ct+1, Re
t+1, γ, δ) are 1 × N

moment conditions

gT (4Ct+1, Re
t+1, γ, δ) =

1
T

∑

δ

�

Ct+1

Ct

�−γ
Re

t+1 − 0.

Because the time preference parameter δ does not affect the equity premium,
Savov (2011) and Kroencke (2017) fix this parameter to δ = 0.95.14 Thus, there
is only one parameter to be estimated, and a single moment condition is sufficient
to estimate γ. It is common in the literature to use the market excess return as
the only test asset (N = 1) to obtain a baseline estimate. In the following, I focus
the discussion on this case.

The weighting matrix: As discussed in detail by Cochrane (2005), a different
weighting matrix W might be preferred in different situations, but it should be
picked with care. Kroencke (2017) uses W = 1. Kleibergen and Zhan (2020)
prefer W = Ŝ−1, where15

S(4Ct+1, Re
t+1, γ)≡

∞
∑

j=−∞

E
�

g(4Ct+1, Re
t+1, γ), g(4Ct+1, Re

t+1, γ)
�

. (8)

Using W = 1 (in the case of one moment condition) means that the GMM
objective function compares how different γ reduce the “pricing error” measured
by gT . In contrast, gT Ŝ−1 g ′T , compares the impact of different γ on the ratio of
the squared pricing error to its variance. The second specification comes with one
potential disadvantage. Specific parameter values of γmight blow up estimates of S
rather than reducing gT , as Cochrane (2005, p. 279), warns. When the estimation
is conducted with only one moment condition, the specification W = Ŝ−1 loses its
potential advantage to utilize the available moment conditions efficiently.

I show both objective functions for unfiltered consumption on the left-hand
side of Figure 2. The objective function studied in Kroencke (2017) is steep for
large absolute values of γ, indicating large pricing errors, while the objective
function of Kleibergen and Zhan (2020) is flat and even slightly decreasing. This
must come from S increasing even faster than the pricing errors (this is the only
difference between the two curves). Now, looking at the moment condition, it
is apparent that this is a power function of γ. Thus, it might not be surprising

14Instead, they report the implied risk-free rate as an indication of how well the model fits the (real)
risk-free rate. These estimates are (see Kroencke, 2017), for example, 94%, 30% and 17% for reported
consumption, unfiltered consumption and garbage. This shows that the alternative consumption
measures can better explain the risk-free rate than reported consumption but still imply too large
numbers. The risk-free rate puzzle pointed out by Weil (1989) is mitigated but not resolved. This
differs from the statement in Kleibergen and Zhan (2020), Footnote 21.

15Kleibergen and Zhan (2020) do not describe the weighting matrix they use for their GMM
estimator in the main paper. Instead, they refer to their estimate as “the GMM estimate.” However,
one can find the specification of W in their replication code.
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Figure 2: GMM Objective Functions and the GMM Trap.

Description: This figure shows the GMM objective functions for GMM estimation of the coefficient of
relative risk aversion (a) and the GMM-rank test (b).

Interpretation: Kleibergen and Zhan (2020) use ill-conditioned GMM objective functions that are
always arbitrarily rounded to zero by the statistical software package for large enough absolute values
of γ (“GMM trap”). For the GMM-rank test, the problem is particularly severe because the only local
minima are on the far left and the far right in the “GMM trap.” The implication is that it is impossible
to conclude that factor correlation is sufficient when this test is used. This problem is a numerical issue
unrelated to the actual factor correlation. For estimation of the coefficient of relative risk aversion,
there is a third local minimum around zero, and the result is up to luck. The GMM objective functions
in Kroencke (2017) and the modified GMM-rank test proposed in this paper are not subject to this
numerical issue.

that S(γ) eventually is a very large number for large enough values of |γ|. In
fact, I find that for example at γ = −5092 , Ŝ is computed to be infinity in the
statistical software package used, which leads to gT In f −1 g ′T = 0, even though gT
is a pricing error as large as 1.16e+153 (in words, around one quinquagintillion).
This is a race of a large pricing error versus a large S, where S eventually wins.16

As a result, the objective function of Kleibergen and Zhan (2020) has multiple
minima, one reported at 22.5, as well as several others for γs somewhere around
−5,000 and +7,000. In the following, I refer to such a GMM objective function as
an “ill-conditioned” GMM objective function.

The J-test: The J-test is a test of whether the moment conditions are jointly
equal to zero, in general JT = gT Ŝ−1 g ′T ∼ χ

2
(#moments–#parameters). The same test

statistic can be used for both specifications for the weighting matrix W = 1 and
W = Ŝ−1, as it can be verified using the formulas provided by Cochrane (2005),
p. 255.17

16This problem is not new in the literature. For example, Cochrane (2005, pp. 215–216) warns
about this trap.

17For W = 1, the formula for the covariance of gT collapses to S in this special case.
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2.2 The GMM-Rank Test

If the factor and the test asset return are uncorrelated, it is not possible to identify
the parameter of interest (γ). Asymptotic inference is derived under the assump-
tion that there is factor correlation, which can lead to an over-rejection of the
hypothesis that the factor is not priced, that is, the H0: γ= 0.

Savov (2011) shows that the correlation between garbage and stock returns is
economically large, about 0.58 (he reports a bootstrapped standard error of 0.11).
Kroencke (2017) finds a similarly large correlation for unfiltered consumption.
Table 1 shows that these correlation coefficients are highly statistically significant.
Nevertheless, Kleibergen and Zhan (2020) are concerned about an insufficient
correlation between consumption and stock returns such that γ cannot be identified
and GMM standard errors cannot be trusted.

To provide evidence for their claim of insufficient factor correlation, Kleibergen
and Zhan (2020) report a test of the first derivative of the moment condition

hT =
1
T

∑

�

δ

�

Ct+1

Ct

�−γ
Re

t+14ct+1

�

= 0, (9)

where 4ct+1 is log-consumption growth. The GMM-rank condition is that hT 6= 0.
Rejection of the H0: hT = 0 would indicate that there is sufficient factor correlation,
which suggests that the usual GMM-based inference is reliable. But for hypothesis
testing, they re-estimate γ using the moment function of the rank condition. They
do not simply use the GMM estimates coming from gT Ŝ−1 g ′T , but rely on a new
J-test that is based on hT Ŝ−1h′T .

I plot this new objective function on the right-hand side of Figure 2. I find
that this GMM estimate is certain to fall into the “GMM trap.” There is always a
solution for γ around −5,000 and +7,000 because S is computed to be infinity
at some point. The problem renders the GMM-rank test meaningless, because
there are only corner solutions for this objective function and no (local) minimum
is even close to the economically reasonable region or the initial GMM estimate.
Because the objective function divides by infinity at the corner solutions, the test
of H0: hT = 0 cannot reject. The problem is not an insufficient correlation but an
ill-conditioned GMM objective function.

Size and power of the GMM-rank test: I illustrate the implications for empirical
work in Figure 1. I run a Monte Carlo simulation that imposes normal and i.i.d.
returns and consumption growth to generate 10,000 samples with T = 55 (results
for T = 200 are reported in the Appendix).18 I calibrate the simulation to the
market excess return and unfiltered consumption, except that I vary the population
correlation coefficient between zero (the “useless” factor) and 1.00 (the “most
useful” factor one can hope for), which is reported on the x-axis. Unfiltered

18This data generation process is also used in large parts of the analysis by Kleibergen and Zhan
(2020).
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consumption and garbage correspond to the middle area of the figure (correlation
between 0.40 and 0.60). The y-axis shows the percentage of the simulations
where I can reject the hypothesis that there is no factor correlation (more precisely,
the H0: hT = 0).

I consider three different tests: (i) the GMM-rank test, as reported in Kleibergen
and Zhan (2020), with the ill-conditioned GMM objective function, (ii) a modified
version of the GMM-rank test that imposes the identity matrix (i.e., W = 1), such
that the GMM objective function is well-behaved (see Figure 2), and (iii) a direct
test of the hypothesis that the correlation coefficient is equal to zero (similar to
Savov, 2011).19 The simple correlation coefficient test has the potential advantage
that GMM is not used to re-estimate the parameter γ, which is likely to increase
the small sample power of the test.

Figure 1 shows that the probability to reject the GMM-rank test is virtually
zero no matter how large the correlation with the market factor is. The rank
test as conducted by Kleibergen and Zhan (2020) does not allow one to make a
meaningful conclusion about the rank condition. The corrected GMM-rank test
proposed in this paper has the power to detect “useful” factors. However, I find
that a direct test of the correlation coefficient is considerably more powerful in
small samples.

To sum up, the GMM-rank condition does not fail because of insufficient factor
correlation, as claimed by Kleibergen and Zhan (2020).20 The rank condition
fails because the GMM objective function used by Kleibergen and Zhan (2020) is
numerically ill-conditioned.

2.3 The GMM-AR Test

I now turn to GMM-based inference on the coefficient of relative risk aversion. I run
a Monte Carlo simulation that imposes normal and i.i.d. returns and consumption
growth to generate 1,000 samples with T = 55. As before, I vary the population
correlation coefficient between zero (the “useless” factor) and 1.00, which is
reported on the x-axis. I then count the fraction of simulations in which asymptotic
GMM standard errors indicate that the coefficient of relative risk aversion is
estimated to be significant at the 5% level.21

Figure 3 shows the probability of finding a significant coefficient of relative
risk aversion. For a useless factor, γ is not identified and this probability should
not exceed 5%. As can be seen, the GMM-based standard errors over-reject the
“useless” factors.

19The direct test is based on the t-statistic: t(ρ) = ρ
p

(N − 2)/ (1−ρ2), which has N − 2 degrees
of freedom.

20Kleibergen and Zhan (2020, p. 542): “. . . , this rank condition is jeopardized due to the weak
correlation between consumption growth and asset returns.”

21I use the objective function gT Ŝ−1 g ′T as in Kleibergen and Zhan (2020) to allow for comparisons
with their analysis.
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Figure 3: The Power of GMM-Based Inference on the Coefficient of Relative Risk Aversion.

Description: This figure shows the Monte Carlo simulation-based rejection probability of finding a
significant coefficient of relative risk aversion (γ) for GMM estimation with the non-linear moment
condition

E

�

δ

�

Ct+1

Ct

�−γ
Re

t+1

�

= 0.

Results are based on 1,000 draws of multivariate normally distributed data calibrated to the market
excess return as the single test asset (N = 1) and a hypothetical consumption factor with T = 55 years
of time-series observations. The far left in the figure shows the rejection probability of a consumption
factor that is in the population uncorrelated with the market excess return (“useless” factor). These
results can be interpreted as the size of a test. Moving from the left to the right increases the population
correlation coefficient from zero to 1.00 (“useful” factors). These results can be interpreted as the power
of the tests. The vertical lines indicate the sample correlation coefficient of alternative consumption
measures (see Table 1 for further details). The first line in the legend corresponds to the GMM-AR test
as reported in Kleibergen and Zhan (2020). The second line in the legend corresponds to inference
based on the t-statistic using GMM standard errors (textbook approach). The third line in the legend
reports results when using 95% confidence intervals based on a pairwise bootstrap (similar to Burnside,
2011). Figure A.2 in the Appendix shows the results for T = 200.

Interpretation: GMM standard errors over-reject γ estimates for “useless” factors when testing the
non-linear pricing equation. Results have to be carefully interpreted, e.g., by asking whether the
estimated parameter γ is economically reasonable or whether the factor correlation allows identifying
the parameter of interest (e.g., by using the powerful tests shown in Figure 1). The GMM-AR test, as
proposed by Kleibergen and Zhan (2020), does not over-reject “useless” factors but has only limited
power to detect “useful” factors. Bootstrap confidence intervals also do not over-reject “useless” factors
but have relatively high power to detect “useful” factors.
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To avoid this issue, Kleibergen and Zhan (2020) propose using the GMM-AR
test instead of the GMM-based standard errors. To this end, they calculate the
p-value for the test H0: JT = 0 at various hypothesized values γ = γ0. The
100× (1− 0.05)% confidence set for γ then contains the bounds where JT = 0
cannot be rejected. The confidence set is unbounded when JT is insignificant at the
entire set of possible values of γ. It is disjointed when the confidence set is open
from one side. The confidence set is empty when JT is always significantly different
from zero. It is not possible to conduct inference on γwhen the confidence interval
is unbounded, disjointed or empty. Accordingly, these cases count in the simulation
as “the H0: γ= 0 is not rejected.”

The GMM-AR test is robust to “useless” factors, as can be seen in Figure 3.
However, I find that the GMM-AR test has a low power to detect “useful” factors.
For example, a hypothetical factor with a population correlation coefficient of
0.90 would be detected with a probability of less than 30%. For a factor with an
economically large correlation coefficient of 0.50, the probability is 5%.

2.4 GMM Bootstrap Confidence Intervals

An alternative to the GMM-AR test is to conduct a pairwise bootstrap and to report
the confidence interval of the bootstrapped GMM estimates of the coefficient of
relative risk aversion. Figure 3 illustrates that such bootstrap confidence intervals
do not over-reject “useless” factors and, at the same time, remain powerful for
detecting “useful” factors.

To illustrate why bootstrap confidence intervals do not over-reject, I report in
Figure 4 the distribution of GMM estimates from the Monte Carlo simulation for se-
lected population correlation coefficients. For the “useless” factor, the distribution
is centered around zero and is non-standard. When I consider the simulation re-
sults with increased time-series observations (T = 200), the distribution becomes
even wider instead of narrower, which shows that it is not possible to identify
the parameter. Intuitively, sample covariances are closer to zero in the larger
sample, resulting in more γ estimates that are further from zero. However, the
bootstrap confidence interval will take the non-standard shape and the width of
the distribution into account and, therefore, avoids an over-rejection problem.
From the figure, it is clear that bootstrap standard errors (or t-statistics) do not
work, as they require a distributional assumption. For the linear version of the
model, Burnside (2011) provides bootstrap confidence intervals in his analysis to
mitigate the risk of over-rejecting “useless” factors. He stresses that the bootstrap
confidence interval is not identification robust. From the confidence intervals
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alone, a researcher cannot infer that a factor is “useless” and the parameter cannot
be identified, or that the true parameter is around zero.22

Figure 4: Monte Carlo Simulation: Distribution of GMM Point Estimates.

Description: This figure shows the distribution of GMM estimates of the coefficient of relative risk
aversion from the simulated data in Figure 3. Below “strong,” the correlation between consumption
growth and the market excess return is imposed to be 0.80. Below “empirical,” the correlation between
unfiltered consumption growth and the market excess return is similar to the empirical data (0.45).
Below “useless,” the correlation between consumption growth and the market excess return is imposed
to be zero.

Interpretation: For the strong and the empirical factors, the distribution becomes more normally
distributed and gets narrower when the sample size increases. For the “useless” factor, the distribution
is non-standard but centered around zero and gets wider when the sample size is increased (indicating
a lack of identification). Bootstrapped standard errors are therefore not applicable. But bootstrapped
confidence intervals will account for the non-standard shape of the distribution and they will avoid an
over-rejection problem as one does not incorrectly rely on the asymptotic distribution of a “useful”
factor.

22Zhan (2010) proposes to utilize the fact that the bootstrap distribution of estimates is quite
different between “useless” and “useful” factors to detect a lack of identification. A researcher concerned
about weak identification (and not just the over-rejection problem) could conduct such a test or one
of the powerful tests reported in Figure 1.
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2.5 Empirical Results Revisited

The non-linear model: In Table 2, I show the GMM results for the short sample
(as in Kleibergen and Zhan, 2020) and the full sample (not shown in Kleibergen
and Zhan, 2020). The reported consumption measure requires an unreasonably
large coefficient of relative risk aversion of 137 and is not able to set the single
moment condition (the pricing error) to zero (JT = 0.85). While the estimate for
γ is significant, the unreasonably large point estimate and the non-zero pricing
error allow to conclude that reported consumption has no explanatory power
for the equity premium (e.g., Kroencke, 2017; Mehra and Prescott, 1985; Savov,
2011). The garbage measure allows for an estimate of the coefficient of relative
risk aversion of 16. Unfiltered consumption provides an estimate of 23. Both
estimates are significant at the 10% level based on GMM standard errors. These
two estimates also come close to the economically reasonable range between
zero and ten. All of the alternative consumption measures allow to set the single
moment condition to zero (JT = 0.00). In the full sample, unfiltered consumption
provides an estimate of 10, which is significant at the 5% level.

In contrast, the GMM-AR test is for all specifications unbounded/disjointed.
Kleibergen and Zhan (2020) argue that the unbounded GMM-AR test is symp-
tomatic of insufficient factor correlation for all of the considered consumption
measures. To provide evidence for this claim, they report the p-value of the
GMM-rank test (p(rank), KZ), which indeed does not allow one to reject the null
hypothesis of insufficient factor correlation.

However, as shown in Figure 1, this GMM-rank test has no power to detect
“useful” factors and will also indicate insufficient correlation for a perfectly corre-
lated factor. A similar issue plagues the GMM-AR test (Figure 3). When I impose
the identity matrix for the GMM-rank test, the test is well-behaved and powerful
(Figure 1). In the table, I find that garbage and unfiltered consumption have
p-values below 0.05 and pass the “corrected” version of the GMM-rank test. The
direct test of factor correlations (p(cor r)) corroborates this conclusion; the Q4-Q4
measure now also passes. This suggests that traditional GMM-based inference is
actually trustworthy when using alternative measures of consumption.

In Table 2, I also report 95% bootstrap confidence intervals for γ. As shown in
Figure 3, the bootstrap confidence intervals do not over-reject “useless” factors and
are powerful for detecting “useful” factors. They are large and include the value
of zero for the consumption measures that fail the simple factor correlation test
(e.g., reported consumption), and they do not include zero for the consumption
measures that pass this direct test for sufficient factor correlation (garbage, Q4-Q4,
and unfiltered consumption).

The linearized model: If a researcher still wants to perform the GMM-AR test
for consumption-based asset pricing, a potential solution could be to consider the
linearized version of the model (Eq. (4)), which means that we are back to the
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model analyzed in Section 1. Because this function is linear in γ, it is less likely
that S will grow faster than the pricing error. In addition, the GMM-rank test
of this specification has the desirable economic interpretation of testing directly
consumption covariances, H0: Cov(Re

t ,4Ct+1) = 0, which is also invariant of γ.
Rejection of this hypothesis indicates that factor correlation is sufficient and that
GMM standard errors are reliable.

The results are reported in Table 3. I find that the same consumption mea-
sures that pass the more powerful rank tests in Table 2 now also pass the rank
test of the linear model. The GMM-AR test also leads to a bounded confidence
set in these cases and indicates that consumption is priced. Point estimates are
similar to Table 1. Bootstrap confidence intervals are somewhat tighter com-
pared to the GMM-AR counterparts but allow for the same conclusions in this
application.

The benefit of the GMM-AR test is that unbounded/disjointed confidence
intervals directly indicate a lack of identification. The economically reasonable
range is often described as being from zero to ten (Mehra and Prescott, 1985).
Against this backdrop, a bootstrap confidence interval of {−350, 2,784,373} for
reported consumption is, in practical terms, very much the same thing as an
unbounded/disjointed confidence interval.

Summary of GMM estimates: The GMM-rank test and the GMM-AR test as
they are implemented in Kleibergen and Zhan (2020) are not in line with the
general idea of providing robust inference. Both suffer from the GMM trap and
are inconclusive even when factor correlation is strong. If low factor correlation
is a concern, it is more useful to test the factor correlation directly and to rely
on GMM standard errors. A reliable alternative is to report bootstrap confidence
intervals.

3 The Fama–MacBeth Method and the Linearized Model

Kleibergen and Zhan (2020) also consider methods to test linear cross-sectional
asset pricing models (Eq. (5)) for a large cross-section of stock returns (N = 31). In
this context, I mainly criticize two points: First, they overstate the “useless” factor
problem of the Fama–MacBeth/Shanken methodology. In particular, they claim
that the textbook approach cannot be trusted and suffers from a “malfunction,”
such that a researcher is likely to over-reject the hypothesis that a “useless” factor
cannot price a cross-section of stock returns. I show that this claim is false and
that a researcher will not over-reject a “useless” factor if the sample size is small,
as in their empirical application. The over-rejection problem of “useless” factors
is a large sample problem and not a small sample one, as it is also stated in the
classic study by Kan and Zhang (1999).
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Second, the proposed alternative procedure, the GRS-FAR test, is not useful
for inference on the price of risk (λ) when a model is misspecified. In this case,
the expected confidence interval is “empty” and it is not possible to reject the H0:
λ = 0. The problem is not a numerical issue, as for the GMM-based tests, but
simply that the GRS-FAR test is expected to be unable to provide inference on the
price of risk when the model is misspecified.23 From the discussion provided by
Kleibergen and Zhan (2020), I think it is possible (but not straightforward) to see
that the GRS-FAR test cannot be expected to allow for inference on the price of risk
for misspecified models.24 Importantly, Kleibergen and Zhan (2020) claim that the
GRS-FAR test is appealing for inference on the price of risk in consumption-based
asset pricing. I disagree because this claim does not recognize that the literature
regards the consumption-based asset pricing models as misspecified (Kroencke,
2017; Savov, 2011).

Moreover, a better alternative is available for testing the linearized model.
As shown in a more general setting by Kroencke and Thimme (2020), bootstrap
confidence intervals (as applied by Burnside, 2011) are robust to the “useless”
factor problem independently of the sample size and even account for model
misspecification. Moreover, Kroencke and Thimme (2020) show that the bootstrap
confidence intervals are more powerful compared to a wide range of other methods
that have been proposed in the literature.

3.1 Cross-Sectional Estimation of the Price of Risk

Here, I provide a brief review of the Fama–MacBeth/Shanken methodology and
the GRS-FAR test.25

The Fama–MacBeth/Shanken: This methodology provides a simple way to esti-
mate the price of risk (λ) in the expected excess return-beta relationship

E
�

Re
i,t

�

= βC ,i ×λ. (10)

It rests on the following three steps:

1. Estimate the factor betas (βC ,i) using time-series regressions for the i =
1, . . . , N test asset returns that are tested.

23This problem also emerges in the GMM-based tests of the non-linear model, when N > 1.
24In the introduction of Kleibergen and Zhan (2020) the following is stated (p. 508): “In this paper,

we propose two straightforward asset pricing tests that, unlike traditional tests, are valid for all possible
strengths of identification of the risk premia.” One has to digest the paper to find the information
that the empirically relevant case of misspecified models does not count as “all possible strengths of
identification.”

25For a more detailed and complete discussion, see Cochrane (2005), Burnside (2011), and
Kleibergen and Zhan (2020).



154 Tim A. Kroencke

2. Run a cross-sectional regression of the sample means of the excess returns
of the N test assets on the N estimated factor betas to get an estimate of
the price of risk λ.

3. Compute Shanken (1992)-standard errors for λ that account for the betas
being estimated in the first step.26

A popular alternative is to estimate the model with a cross-sectional intercept (λ0)
which can be interpreted as a “common” pricing error

E
�

Re
i,t

�

= λ0 + βC ,i ×λ. (11)

In this case, the common pricing error (λ0) is the part of the expected return
not explained by the model (e.g., Burnside, 2011). An economic argument can be,
for example, that the subtracted risk-free rate includes a safety/liquidity premium,
and λ0 allows one to account for this.27 Statistically, the additional degree of
freedom (λ0) makes it easier to fit mean returns in the data. But it also means that
an additional parameter needs to be identified from the data, which can reduce
the power of empirical tests in small samples (see Kroencke and Thimme, 2020
for a detailed analysis).

GRS-FAR test: The GRS-FAR test proposed by Kleibergen and Zhan (2020) can
be implemented according to the following steps:

1. De-mean the risk factor and add back a hypothesized price of risk.

2. Estimate the factor alphas (ai , or pricing errors) using time-series regressions
for the i = 1, . . . , N test asset returns using the modified risk factor.

3. Compute the GRS-test (Gibbons et al., 1989) on the joint significance of the
N alphas.

4. Repeat the steps one to three for a wide range of values for the hypothesized
price of risk.

5. The GRS-FAR confidence set is the region of the price of risk where the
GRS-test does not reject that the alphas are jointly significantly different
from zero at a given significance level.

26Shanken (1992) provides the correction term for the standard errors when estimation is with the
intercept. When the intercept is imposed to be zero, the correction term for the standard errors can be
found in Cochrane (2005), or Burnside (2011), and the replication code to this paper. Kleibergen and
Zhan (2020) only include the Shanken correction when they estimate the model with the intercept
and omit it when they estimate the model without an intercept.

27See, for example, Parker and Julliard (2005).
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Kleibergen and Zhan (2020) show how to adapt the GRS-FAR test to a test with a
common pricing error (λ0).

The GRS-FAR test produces bounded confidence sets when there is a single
region where the pricing errors are insignificant according to the GRS-test. In
this scenario, it is possible to conduct inference on the price of risk (λ). The
confidence set is unbounded when the pricing errors are insignificant at the entire
set of possible values of the price of risk. It is disjointed when the confidence set
is open from one side. The confidence set is empty when the pricing errors are
always significant. It is not possible to conduct inference on the price of risk when
the confidence interval is unbounded/disjointed or empty.

With increasing sample size, the power of the GRS-test will increase. The
implication for applied research is that only a correctly specified model (all assets
have a population pricing error of exactly zero) is expected to provide a bounded
confidence interval in a large enough sample. If the model is misspecified (at least
one single pricing error is non-zero), the expected result from the GRS-FAR test
is an empty confidence interval. In other words, with an increasing sample size,
the GRS-FAR test is expected to allow for inference on the price of risk only if the
model is expected to explain all mean excess returns perfectly.

3.2 Are Fama–MacBeth Estimates “Trustworthy”?

Kleibergen and Zhan (2020) state that they are worried about inference based
on Fama–MacBeth regressions in the usually rather small samples observed in
consumption-based asset pricing. They mainly refer to the earlier literature, in
particular the studies by Kan and Zhang (1999) and Kleibergen (2009) to motivate
their worries.28 Surprisingly, I cannot find evidence in this literature that Fama–
MacBeth regressions cannot be trusted in small samples. Kan and Zhang (1999)
show that Fama–MacBeth regressions over-reject “useless” factors in (very) large
samples. But they also show that Fama–MacBeth regressions under-reject “useless”
factors in small samples, which is the relevant case in consumption-based asset
pricing when T = 55. The over-rejection problem of “useless” factors is a large
sample problem and not a small sample problem.

The evidence provided in Kleibergen and Zhan (2020) is based on power
curves that can be also found in Kleibergen (2009). However, these power curves
vary the price of risk (λ) and not the population factor betas (i.e., the population
correlation coefficients). By construction, these power curves do not include the
“useless” factor case where the population correlation coefficients are exactly zero.
In the Appendix, I report the results of a replication and extension of this type of
analysis. I find that the Kleibergen and Zhan (2020) power curves for unfiltered
consumption actually indicate no problem with the Fama–MacBeth approach.

28Kleibergen and Zhan (2020. p. 508): “For instance, Kan and Zhang (1999a) and Kleibergen
(2009) warn that the t-test in the FM two-pass procedure can spuriously favor risk factors that are
independent of or weakly correlated with asset returns, respectively.”
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Moreover, when I construct power curves that take empirically relevant cases
of misspecified models into account, the traditional Fama–MacBeth approach is
arguably more “trustworthy” in small samples than the GRS-FAR test.

3.2.1 Power Curves with a “Useless” Factor

In this section, I fill this gap and study the properties of the Fama–MacBeth method
and alternatives when a “useless” factor is actually present. To this end, I closely
follow (and extend) the simulation design conducted by Kan and Zhang (1999).
In line with Kan and Zhang (1999) and Kleibergen and Zhan (2020), I use a
Monte Carlo simulation that imposes normal and i.i.d. returns and consumption
growth to generate 10,000 samples. I consider the short sample period with
T = 55 and N = 31 test assets. The true factor imposes the sample correlation of
unfiltered consumption as the population correlation, Ft,t rue. In order to study a
misspecified model, I impose the sample pricing errors of unfiltered consumption
as the population pricing errors in the simulation. The “useless” factor has the
same mean and standard deviation as unfiltered consumption, but I impose a
zero correlation on all stock returns, Ft,useless. To construct a power curve, I
form a portfolio of the “useless” factor (Ft,useless) and the true factor (Ft,t rue) and
determine the correlation to the true factor using the equation

Ft = ρFt,t rue +
Æ

(1−ρ2)Ft,useless,

where ρ is the population correlation coefficient of the “measured” factor Ft with
the true factor. I then use the Fama–MacBeth methodology with Shanken standard
errors and the GRS-FAR confidence intervals to test the hypothesis that the price
of risk (λ) is zero, H0: λ= 0, at the 5% significance level. Estimation is without
an intercept.29 I then count how often I can reject the null hypothesis across the
10,000 samples.

The results for ρ = 0 match with the simulation experiment by Kan and Zhang
(1999). The results for ρ > 0 extend the analysis by Kan and Zhang (1999) and
illustrate how powerful a method is in detecting “useful” factors that vary in their
correlation to the test assets. For ρ = 1.0, the population properties of the factor
are equal to the sample estimates of unfiltered consumption.

Figure 5 summarizes the results. Similar to Kan and Zhang (1999), I find that
the Fama–MacBeth/Shanken standard errors do not over-reject “useless” factors
(x-axis: ρ = 0) in the small sample with T = 55 years. For the empirical factor
(x-axis: ρ = 1.0), the Fama–MacBeth/Shanken methodology finds a significant
price of risk in about 80% of the simulations and is relatively powerful. The
GRS-FAR test does not “over-reject” useless factors. However, this test has an
almost flat power curve for misspecified models and usually does not detect a
factor that helps to explain some of the mean returns.

29The results for the estimation with an intercept can be found in the Appendix.
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Figure 5: FMB/Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas): Misspecified
Model.

Description: This figure shows the Monte Carlo simulation-based rejection probability of the H0:
λ= 0 for tests of the linear factor model

E
�

Re
i,t

�

= βC ,i ×λ.

Results are based on 10,000 draws of multivariate normally distributed data calibrated to the 31
test assets and unfiltered consumption (as reported in Table 4). The data have T = 55 time-series
observations (as in the empirical data). The far left in the figure shows the rejection probability of
a consumption factor that is in the population uncorrelated with the market excess return (“useless”
factor). These results can be interpreted as the size of a test. Moving from the left to the right increases
the population correlation coefficient from zero to 1.0 with the “true” factor (the “true” factor imposes
the sample properties of unfiltered consumption as the population properties). These results can be
interpreted as the power of the tests for an empirical factor. The first line in the legend corresponds to
a Fama–MacBeth/Shanken t-test for the H0: λ= 0 at the 5% significance level (textbook approach).
The second line in the legend corresponds to inference based on the GRS-FAR 95% confidence interval,
as in Kleibergen and Zhan (2020). The third line in the legend corresponds to inference based on
the bootstrap 95% confidence interval, as in Burnside (2011). Figure A.4 in the Appendix shows the
results for T = 200. Figure A.5 and Figure A.6 show results with estimation of the intercept.

Interpretation: The Fama–MacBeth/Shanken approach does not over-reject “useless” factors in small
samples, and a researcher can correctly conclude that a “useless” factor is “not significantly priced.”
This result is in line with Kan and Zhang (1999) and illustrates that Kleibergen and Zhan (2020)
overstate the relevance of the over-rejection problem of Fama–MacBeth/Shanken t-statistics in the
presence of a “useless” factor in consumption-based asset pricing. The GRS-FAR test is robust to
the “useless” factor problem, but it has only low power to detect “useful” factors when the model is
misspecified. The GRS-FAR test requires the model to be correctly specified to be expected to allow for
inference on the price of risk, which is unrealistic in empirical work. The bootstrap confidence interval
does not over-reject “useless” factors and is powerful in detecting “useful” factors.
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The results presented apply to the considered set of test assets, the sample size,
and the estimation without an intercept. For a different set of test assets, when
the sample size is larger, or when the estimation is with an intercept, the Fama–
MacBeth approach might over-reject “useless” factors. Examples are provided in
the Appendix. For this reason, it is generally advisable to consider a method which
is robust to the “useless” factors problem.

Bootstrap confidence intervals: Kroencke and Thimme (2020) provide a compre-
hensive comparison of various alternative “robust” approaches for cross-sectional
asset pricing tests of linear models. A method that stands out is the pairwise
bootstrap confidence interval, as reported by Burnside (2011). The bootstrap
confidence interval does not over-reject “useless” factors. At the same time, this
method accounts for model misspecification and is powerful in detecting “useful”
factors. For this reason, I also report results for the bootstrap confidence interval
for consumption-based asset pricing in Figure 5. The bootstrap confidence interval
has the correct size and is powerful in detecting “useful” consumption factors. In
the Appendix, I show that this is also the case when the Fama–MacBeth approach
is not size correct, for example, in large samples.

Mirroring the discussion for GMM above, the bootstrap confidence interval
comes with the disadvantage that this is not an identification robust method,
as explained by Burnside (2011). When the factor is useless, the confidence
interval will not indicate that the price of risk is around zero but rather that
the price of risk cannot be identified from the data. I cannot see that this is a
major problem in consumption-based asset pricing. An insignificant price of risk
is usually interpreted as evidence against the model and is, therefore, not used for
inference on the “true” price of risk.

3.3 Rank Tests, Univariate Factor Tests, and Tests of Mean Returns

Kleibergen and Zhan (2020) propose pre-testing risk factors to gauge whether the
Fama–MacBeth/Shanken method is expected to provide valid inference. However,
the proposed rank tests are not necessarily powerful in detecting useful factors in
small samples when N is close to T . Testing with both a larger T and a smaller
N can help improve power. In addition, the required normal-i.i.d. assumption is
violated in the empirical data and the test is potentially inaccurate. I propose to
apply a rank plausibility test on a shrunken cross-section with N = 1.

3.3.1 Multivariate Rank Tests

Inference based on the Fama–MacBeth method can be expected to be valid when
the factor betas of the test assets are in the population different from zero (estima-
tion without constant) or different from each other (estimation with a constant).
Multivariate asymptotic Wald-tests, which are heteroskedasticity and autocor-
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relation robust, are straightforward to conduct but are prone to over-rejection
when T is small, and N is relatively large, as pointed out by Kleibergen and Zhan
(2020).30 To avoid this problem, Kleibergen and Zhan (2020) propose conducting
a finite sample F-test that requires the data to be normal-i.i.d. They show that the
F-test does not over-reject “useless” factors when N is close to T . But they do not
investigate the power to detect useful factors (particularly when the normal-i.i.d.
assumption is violated).

3.3.2 Univariate Factor Tests as a Rank Plausibility Test

The empirical data are not normal-i.i.d. and in such a setting a multivariate F-test
is not necessarily powerful for detecting “useful” factors when N is close to T .31

For this reason, I propose a simple rank plausibility test. More specifically, I shrink
the cross-section to two portfolios formed on the test assets mirroring the two
respective F-tests suggested by Kleibergen and Zhan (2020). The first portfolio
invests equally in all (“ALL”) test assets, RALL,t . Motivated by financial theory, I
use a t-test of the hypothesis that the beta of the “ALL” portfolio is significantly
larger than zero

RALL,t = a+ βC ,ALL4eCt + et ,

H0 : βC ,ALL > 0.

The beta of this portfolio is equal to the average of the betas of the test assets.
A significant beta of the “ALL” portfolio suggests that there should be sufficient
covariation in the cross-section to determine the price of risk in Fama–MacBeth
regressions that impose a zero intercept.32

The second portfolio constructs a standard Fama and French (1993) high-
minus-low (“HML”) portfolio based on the characteristics of the test assets. It goes
long in the 50% of test assets that are predicted by a lagged characteristic to have
a high mean return and short in the 50% of the test assets that are predicted by

30Kroencke (2017) reports a multivariate asymptotic test on the joint significance of consumption
betas. Kleibergen and Zhan (2020) show that this test over-rejects and is not reliable.

31In additional tests (provided in the replication code to this paper), I find that the multivariate
rank test would be powerful for detecting sufficient factor correlation for unfiltered consumption when
the data satisfy the normal-i.i.d. assumption. However, I do not provide evidence on the power when
the normal-i.i.d. assumption is relaxed.

32Alternatively, one could also use the value-weighted market factor, as in Table 1, of course. In fact,
Kan and Zhang (1999, p. 228) report that the labor income factor of Jagannathan and Wang (1996) is
significantly correlated with the market factor. They state that it is for that reason inappropriate to
conclude that labor income is a “useless” factor. However, the “ALL” portfolio better reflects that the
Fama–MacBeth regression (or the GRS-FAR test) equally weights the test assets.
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a lagged characteristic to have a low mean return.33 Once again, motivated by
finance theory, I use a t-test of the hypothesis that the beta of the “HML” portfolio
is significantly larger than zero

RHM L,t = a+ βC ,HM L4eCt + et ,

H0 : βC ,HM L > 0.

The beta of this portfolio can be used to test whether there is a spread in betas
that lines up with predicted mean excess returns. For univariate testing, it is far
more likely that I can rely on asymptotic but heteroskedasticity robust (HC), or
heteroskedasticity robust and autocorrelation (HAC) robust tests even when T is
small.

While the univariate tests do not replace rank tests in the econometric sense,
they help to detect cases where the F-test is inaccurate and/or has low power
(e.g., because the normal-i.i.d. assumption is invalid, or when the inverse of the
variance-covariance matrix is numerically inaccurate when N is close to T). For
example, if the multivariate rank tests do not indicate sufficient factor betas, but
the univariate tests do indicate sufficient factor betas, a researcher might want to
reduce N (or increase T) to elevate the power of the multivariate test.

On the other hand, if the multivariate rank tests indicate sufficient factor
betas but the univariate tests do not line up, it might indicate that just a few test
assets drive the multivariate test result. Such a finding would suggest that the
conclusions based on the Fama–MacBeth/Shanken methodology are technically
valid (the price of risk can be econometrically identified), but that the estimate of
the price of risk is not “robust” if some test assets are excluded from the analysis. A
researcher can avoid such a pitfall by also reporting the individual betas of all test
assets. If the goal is to conduct robust inference, the multivariate rank test should
not be used as a substitute for an analysis of individual betas (or correlations).

3.4 Empirical Results Revisited

3.4.1 Baseline Results

Table 4 provides Fama–MacBeth estimates of the price of risk (λ) when the intercept
is restricted to zero.34 The Fama–MacBeth method is not generally well-behaved,

33For example, for size, book-to-market ratio, and investment decile portfolios, the HML portfolio
is long in the five small portfolios, the five high book-to-market ratio portfolios, and the five low total
assets growth portfolios and short in the other 15 portfolios. The market portfolio is not included
in any of the HML legs. Sorting by the lagged characteristics is equivalent to the formation of the
test asset portfolios and does not require forward looking information. However, it is subject to a
publication look-ahead bias (we predict stocks before the predictability was discovered), which also
applies to the selection of test assets and the multivariate F-test.

34I report tests where the cross-sectional intercept is estimated in the Appendix.
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even though it is unlikely to over-reject in small samples. For this reason, I add
bootstrap confidence intervals (Burnside, 2011) as they do not over-reject “useless”
factors in more general cases (see Kroencke and Thimme, 2020). Finally, I report
the GRS-FAR confidence intervals as proposed by Kleibergen and Zhan (2020).

The point estimates for the price of risk (λ) are the same as in Kroencke
(2017) and Kleibergen and Zhan (2020). For reported consumption and the P-J
measure, small t-statistics indicate that consumption does not help to explain stock
returns. The t-statistic is larger for the Q4-Q4 measure, but the price of risk is
not significantly different from zero at the 5% significance level or when assessed
based on the 95% bootstrap confidence interval.

For the garbage and unfiltered consumption, I find t-statistics for the price
of risk (λ) above 2.5, which indicates that consumption helps explain the mean
excess returns of the considered test assets.35 The estimated λs are also close
to the reported values provided in Table 1. The implied coefficients of rela-
tive risk aversion are discussed in Savov (2011) and Kroencke (2017) but are
not considered by Kleibergen and Zhan (2020). As can be seen, these coeffi-
cients are larger than ten and thus indicate that the model can explain only a
part of the mean excess returns. The bootstrap confidence intervals do not in-
clude zero and corroborate the conclusion based on the Fama–MacBeth/Shanken
t-statistics.

As in Kleibergen and Zhan (2020), I also report the results for the GRS-FAR
test and show the 95% confidence set by searching for all possible λs that lead
to rejection of the GRS-test that all pricing errors are zero. At first glance, these
results seem to contradict the Fama–MacBeth/Shanken t-statistics. For example,
the GRS-FAR test is unbounded (the model is never rejected) for reported and
unfiltered consumption, and the confidence interval includes zero for garbage.
From these results, Kleibergen and Zhan (2020) conclude that there is no evidence
that the alternative consumption measures can explain mean excess returns.36

However, this conclusion is not surprising, because the GRS-FAR test has almost
no power to differentiate between “useless” and “useful” factors when the model
is misspecified (as shown in Figure 5).

At the bottom of the table are the relevant rank tests. Rejection of the multi-
variate rank test means that the Fama–MacBeth t-statistics are trustworthy from an
econometric point of view and would not over-reject the H0: λ = 0 for a “useless”

35My Fama–MacBeth/Shanken t-statistics differ substantially from Table 3 in Kleibergen and Zhan
(2020). They do not correct their “NW t-statistics” for the errors in variables problem. Their t-statistics
are indeed inflated, but the reason is a problem unrelated to the “useless” factor problem. This fact
can be seen from the function “FM_nointercept.m” in the replication code of their paper.

36Kleibergen and Zhan (2020, p. 547): “With such limited information in the data, we cannot
conclude whether the consumption growth factor explains part of the variation in the cross-section of
expected asset returns, nor can we reject the possibility that consumption growth explains all of the
variation.”
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factor. Except for the garbage measure, the alternative consumption factors do
not pass the multivariate rank test. However, the univariate rank robustness test
draws a different picture. Garbage, Q4-Q4 and unfiltered consumption come with
significant betas in the shrunken cross-section. This finding is indicative of a lack
of power for the multivariate test.37 It is, therefore, reasonable to consider a larger
T and/or a smaller cross-section N .

3.4.2 Larger T

The garbage data are only available from 1960 onward. In contrast, reported
and unfiltered consumption is available for the full 1928–2014 sample (Kroencke,
2017). Despite the available data, Kleibergen and Zhan (2020) do not study or
mention the full sample in their analysis.38 However, studying the full sample of
the same dataset is reasonable when low power is a concern.

Compustat balance sheet information is not available for the full 1928–2014
sample, and thus it is not possible to construct investment portfolios for the full
sample. For that reason, the cross-section is limited to size and value portfolios,
plus the market factor and the cross-section is reduced to N = 21.39

Table 4 provides the full sample results to fill this gap. First, the multivariate
rank tests and the univariate rank robustness tests now come to very similar
conclusions. For example, both tests indicate significant betas for unfiltered
consumption.40 I find that Fama–MacBeth t-statistics, the bootstrap approach,
and the GRS-FAR test allow one to conclude that unfiltered consumption has a
significant price of risk.

3.4.3 Smaller N

In Table 5, I shrink the cross-section of test assets by considering the well-known
“6 Fama-French Portfolios” double-sorted by size and value. Notice that these are
simply more rough sorts of the size and value decile portfolios, or the popular

37I also conduct a multivariate test for the significance of the mean excess returns of the test assets.
The results are provided in the replication code and do not allow me to conclude that mean returns
differ from zero (p-value = 0.39). An analogous univariate test is passed (p-value = 0.00). The
multivariate test is also not powerful enough to detect a significant equity premium when N is close to
T in the empirical data.

38Instead, they switch to a different dataset when analyzing larger T .
39These data come directly from Ken French’s website.
40The fact that even reported consumption passes the multivariate rank test in the full sample can

be attributed to a few test assets. All except one individual beta are insignificant. As mentioned before,
the multivariate rank test should not be used as a substitute for a more careful analysis of individual
betas to avoid the asset pricing test results being influenced by only a few test assets.
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“25 Fama-French Portfolios” (i.e., I look at economically comparable test assets as
before).41,42

In the short sample, I find that garbage and unfiltered consumption pass the
multivariate rank tests. The p-value for the Q4-Q4 and P-J measures are 0.07 and
0.09.43 Garbage and unfiltered consumption are now priced factors according to
the GRS-FAR test. The bootstrap confidence intervals are narrower and allow one
to conclude that the Q4-Q4 measure is also priced.

In the full sample, a major drawback of the GRS-FAR test becomes visible when
looking at the results for unfiltered consumption. Factor correlation is now too
strong and the GRS-test is rejected at all regions of λ. Thus the confidence set of
the GRS-FAR test is empty. Because the precision of the pricing error estimates
increases, the GRS-test correctly indicates that no λ sets all pricing errors to
exactly zero and the model is misspecified. That the model is misspecified is
very much expected. Therefore, such a result is not surprising. In this light, the
recommendation by Kleibergen and Zhan (2020) to only conduct the GRS-FAR
test is problematic because it must be expected that one finds an empty confidence
interval for misspecified models, which does not allow for any inference on the
price of risk.

Finally, I highlight that the conclusions based on the Fama–MacBeth estimates,
or bootstrap confidence intervals, are consistent across the different specifications
reported in Tables 4 and 5, as well as the preliminary analysis in Section 1 and the
non-linear GMM-based tests reported in Tables 2 and 3. If robustness is indeed a
concern in these applications, one would expect widely varying point estimates for
the price of risk (and the coefficient of relative risk aversion) across the different
specifications. But this is not the case.

The test that provides widely different results across the different specifications
is the GRS-FAR test: the confidence intervals are unbounded, bounded, and empty.

3.4.4 Fama–MacBeth Estimation With or Without an Intercept?

Estimation without intercept is a classic textbook recommendation by Cochrane
(2005). A researcher might hypothesize that a specific asset pricing model comes

41Fama and French (1996) use these six portfolios to construct their SMB and HML factors. It is
well known that the decile portfolios and the 25 Fama-French portfolios have a strong factor structure.
For that reason, explaining a larger or smaller cross-section of these portfolio sorts is a priori not more
or less challenging for a model (see Cochrane, 2011; Daniel and Titman, 2012; Lewellen et al., 2010).

42Kleibergen and Zhan (2020) report in their Online Appendix C.3 results for six corner portfolios
and the market portfolio. By construction, this cross-section heavily weights the 10% of the smallest
companies. In addition, they report results (estimation with intercept) which are not in line with their
table caption (estimation without intercept). For example, in the case of unfiltered consumption, the
correct results are a p-value for the multivariate rank test of 0.00 and a bounded GRS-FAR c.i. of
(1.1, 10.8).

43As mentioned before, Parker and Julliard (2005) analyze quarterly sampled three-year consump-
tion and not annual sampled data.



Robust Inference for Consumption-Based Asset Pricing with Power 165

Sh
or

t
Sa

m
pl

e
(1

96
0–

20
14

)
Fu

ll
Sa

m
pl

e
(1

92
8–

20
14

)

T
=

55
an

d
N
=

7
T
=

87
an

d
N
=

7

R
ep

or
te

d
G

ar
ba

ge
P-

J
Q

4-
Q

4
U

n
fi

lt
er

ed
R

ep
or

te
d

U
n

fi
lt

er
ed

D
ec

.
D

ec
.

D
ec

.
D

ec
.

T.
A

.
D

ec
.

T.
A

.

λ
4.

01
2.

17
7.

20
1.

96
2.

63
8.

32
2.

91
t(
λ
) S

h
1.

35
2.

44
1.

46
2.

06
2.

79
1.

02
3.

63
B

tr
p

c.
i.

95
%

〈−
4.

5,
5.

8〉
〈0

.6
,4

.9
〉

〈−
6.

7,
12

.8
〉

〈0
.4

,5
.2
〉

〈1
.0

,6
.1
〉

〈−
9.

7,
11

.5
〉

〈1
.5

,4
.7
〉

G
R

S-
FA

R
c.

i.
95

%
di

sj
oi

nt
ed

(2
.1

,1
5.

0)
di

sj
oi

nt
ed

di
sj

oi
nt

ed
(3

.6
,6

.6
)

di
sj

oi
nt

ed
em

pt
y

im
pl

ie
d
γ

23
0.

19
26

.1
6

69
.3

7
90

.4
6

38
.7

9
17

3.
67

17
.7

6

#
si

gn
if.

po
si

ti
ve

0
7

2
6

7
0

7
t(
β

A
L

L
),

p-
va

lu
e

0.
41

0.
00

0.
11

0.
01

0.
00

0.
27

0.
00

F
(β
=

0)
,

p-
va

lu
e

0.
60

0.
01

0.
09

0.
07

0.
00

0.
10

0.
00

Ta
bl

e
5:

Pr
ic

e
of

R
is

k
Es

ti
m

at
es

:
Sm

al
lC

ro
ss

-S
ec

ti
on

.

D
es

cr
ip

ti
on

:
Th

e
te

st
as

se
ts

ar
e

si
x

po
rt

fo
lio

s
so

rt
ed

by
va

lu
e

an
d

si
ze

(f
ro

m
Ke

n
Fr

en
ch

’s
w

eb
si

te
),

pl
us

th
e

m
ar

ke
t

ex
ce

ss
re

tu
rn

.
Th

e
re

po
rt

ed
st

at
is

ti
cs

ar
e

th
e

sa
m

e
as

in
Ta

bl
e

4.
Ta

bl
e

A
.2

in
th

e
A

pp
en

di
x

re
po

rt
s

re
su

lt
s

w
it

h
es

ti
m

at
io

n
of

th
e

in
te

rc
ep

t.

In
te

rp
re

ta
ti

on
:

T
he

sm
al

lc
ro

ss
-s

ec
ti

on
fu

rt
he

r
m

it
ig

at
es

co
nc

er
ns

of
lo

w
po

w
er

.
G

ar
ba

ge
an

d
un

fil
te

re
d

co
ns

um
pt

io
n

(s
ho

rt
an

d
fu

ll
sa

m
pl

e)
pa

ss
th

e
m

ul
ti

va
ri

at
e

ra
nk

te
st

.
Re

su
lt

s
ba

se
d

on
th

e
un

iv
ar

ia
te

ra
nk

ro
bu

st
ne

ss
te

st
no

w
al

ig
n

in
m

os
tc

as
es

.
In

th
e

sh
or

ts
am

pl
e,

ga
rb

ag
e

an
d

un
fil

te
re

d
co

ns
um

pt
io

n
ha

ve
a

si
gn

ifi
ca

nt
pr

ic
e

of
ri

sk
ac

co
rd

in
g

to
th

e
G

R
S-

FA
R

te
st

.
In

th
e

fu
ll

sa
m

pl
e,

th
e

G
R

S-
FA

R
co

nfi
de

nc
e

in
te

rv
al

is
em

pt
y

fo
r

un
fil

te
re

d
co

ns
um

pt
io

n.
W

he
n

co
m

pa
ri

ng
th

es
e

re
su

lt
s

w
it

h
th

e
di

ff
er

en
t

sp
ec

ifi
ca

ti
on

s
in

th
e

pr
ev

io
us

ta
bl

es
,I

fin
d

th
at

th
e

Fa
m

a–
M

ac
B

et
h

Sh
an

ke
n

t-
st

at
is

ti
cs

an
d

th
e

bo
ot

st
ra

p
co

nfi
de

nc
e

in
te

rv
al

s
al

lo
w

fo
r

ve
ry

si
m

ila
r

co
nc

lu
si

on
s

ac
ro

ss
th

e
di

ff
er

en
t

sp
ec

ifi
ca

ti
on

s.
O

n
th

e
co

nt
ra

ry
,t

he
G

R
S-

FA
R

te
st

of
fe

rs
un

bo
un

de
d,

bo
un

de
d

an
d

em
pt

y
co

nfi
de

nc
e

se
ts

ac
ro

ss
th

e
di

ff
er

en
t

sp
ec

ifi
ca

ti
on

s,
w

hi
ch

ill
us

tr
at

es
th

e
po

or
po

w
er

pr
ob

le
m

in
pr

ac
ti

ce
.



166 Tim A. Kroencke

with a common pricing error, and then it is reasonable to estimate the intercept
(e.g., Parker and Julliard, 2005). Reporting both specifications does no harm
and helps draw the full picture. To save space and facilitate the discussion, I
provide the results with an intercept in the Appendix to this paper. A simulation
experiment in the Appendix shows that the Fama–MacBeth estimation with an
intercept comes with relative low power for all considered methods when the
sample size is small. The specification with an intercept requires the full sample
period to allow for meaningful inference or a stronger cross-sectional relationship
in the short sample.

4 Conclusion

Kleibergen and Zhan (2020) argue that the textbook methods are prone to an
“over-rejection” problem in small samples and propose new approaches to test
consumption-based asset pricing models.

I show that the GMM-rank test and the GMM-AR tests, as implemented in
Kleibergen and Zhan (2020), are plagued by the “GMM trap” problem and do
not allow for the detection of “useful” factors. The problem is numerical and
not a problem of the method itself. When using a single moment condition (e.g.,
the market excess return), I offer simple remedies that make the method work.
However, the modified GMM-rank and GMM-AR tests still have relatively low
power.

When testing the linearized version of the model and a large cross-section of
test assets, I show that the Fama–MacBeth/Shanken method actually under-rejects
“useless” factors in small samples (in line with Kan and Zhang, 1999) and does
not over-reject them. The GRS-FAR test proposed by Kleibergen and Zhan (2020)
works well when the asset pricing model is correctly specified. However, when the
asset pricing model is misspecified, the GRS-FAR test is not expected to be able to
provide inference on the price of risk. The simple consumption-based model is an
imperfect model at best and should be considered a misspecified model.

Bootstrap confidence intervals are an easy-to-implement alternative method.
They do not over-reject “useless” factors and are powerful in detecting “useful”
factors in non-linear and linear specifications of the consumption-based asset
pricing model. They even allow for inference when the model is misspecified.
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Appendix

Additional Analysis for GMM Estimation
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GMM-rank test, as in Kleibergen and Zhan (2020)
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Figure A.1: The Power of GMM-Rank Tests: T = 200.

Description: This figure complements Figure 1. T is increased to 200 years in the simulation.

Interpretation: The GMM-rank test has no power to detect “useful” factors even in large samples.
The corrected version and testing directly the factor correlation become more powerful tests when T
is large.
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Figure A.2: The Power of GMM-Based Inference on the Coefficient of Relative Risk Aversion: T = 200.

Description: This figure complements Figure 3. T is increased to 200 years in the simulation.

Interpretation: The GMM-AR test has no power to detect “useful” factors in large samples. GMM-
based standard errors over-reject “useless” factors but are more powerful in detecting “useful” factors.
Bootstrap confidence intervals do not over-reject “useless” factors and are at the same time powerful
in detecting “useful” factors.

Analysis of Alternative Power Curves for the Fama–MacBeth Method

Kleibergen and Zhan (2020) provide power curves to “briefly illustrate the mal-
function” (p. 524) of the Fama–MacBeth method (their Figures 3 and 4). These
power curves show the probability to reject the true hypothesis λ= 2 at various
hypothetical values. A test with a correct size should reject with a probability of
5% at λ= 2 and ideally 100% of the time at all other values. Whenever testing
the power of a test, however, the assumed alternative matters. Kleibergen and
Zhan (2020) assume the following data generating process:

Re
t,i = λ0 + βC ,i(λ+ f̄t) + et,i

where f̄t is the de-meaned risk factor, et,i is the idiosyncratic risk, and λ varies
between −1 and 5 across the alternatives. They then check the probability of the
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Fama–MacBeth t-test, or the simple GRS-test, to reject λ= 2. Surprisingly, they
do not report the GRS-FAR test, even though this is claimed in the caption to the
according figure.

In economic terms, this data generating process has the feature that the asset
pricing model is assumed to be correctly specified. The pricing errors (in excess of
λ0) are always zero at one particular value λ.

It is important to think about in which kind of situations this is a relevant case.
First, a researcher has to believe that the consumption-based model is literally
true (except for λ0) and is concerned about finding the correct price of risk, λ. But
in this setting, the risk factor will always be equally correlated with the returns
for all tested λs. Even when λ = 0. For the chosen data generating process, it
is easy to verify that Corr(Re

t,i , f̄t) is independent of λ. For all tested alternative
hypotheses, the population correlation with the test assets is identical. In the case
of the alternative consumption measures, this correlation is about 40% and more
for the market excess return.

Second, by changing λ, we also change the mean returns of the test assets
(R̄e

t = λ0+βC ,iλ). For negative values of λ, the test asset excess returns (in excess
of the common pricing error, λ0) will be negative.44 They will be around zero for
λ = 0. They will be about 2.5 times as large (!) as in the empirical data for λ = 5.
These are hypothetical test assets that are not encountered in applied research.
While potentially interesting from an econometric perspective, they are mainly
irrelevant scenarios from the view of applied research. The test assets are (to a
large extend) given and we want to know how risk factors with different strength
compare, and not the other way around.

I replicate their power curve (red/grey dotted) in Figure A.3 for the 31 test
assets and unfiltered consumption.45 In their according Figure 4 (“Power curves of
the GRS-FAR Test”), they only show the power curve of the GRS-test, assuming that
λ= 2 is known to the researcher.46 I complement these earlier results by adding
the actual GRS-FAR test to the picture (red/grey solid). Even more importantly,
Kleibergen and Zhan (2020) do only show results when the factor explains the
mean returns perfectly (left sub-figure). But this case is empirically irrelevant.
Therefore, I add a sub-figure to the right that imposes the empirical pricing errors
in the population. In this scenario, I find that the GRS-FAR test will usually not
reject the null λ= 2, the power curve is mainly flat.

44Which would violate the consumption-based asset pricing model and the standard assumption of
risk-averse investors (Campbell, 2017).

45These are ten decile portfolios sorted by size, book-to-market ratio, and investment plus the
market portfolio.

46See their replication code, replication_sim.m, lines 83–174. The actual GRS-FAR test has an
additional layer of uncertainty, as it accounts for the fact that λ is unknown to the researcher. The
GRS-FAR test is likely to come with less power, as it frequently generates unbounded/disjointed
confidence sets and is inconclusive.
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Figure A.3: FMB-Shanken and GRS-FAR Power Curves with Varying the Test Assets (Lambda): T = 55.

Description: This figure replicates and extends the power curves reported in Kleibergen and Zhan
(2020), Figures 3 and 4. It shows the Monte Carlo simulation-based rejection probability of the H0:
λ = 2 for a consumption factor that prices the assets without a pricing error (left sub-figure, Z) or
with pricing error (right sub-figure). Results are based on 10,000 draws of multivariate normally
distributed data calibrated to the 31 test assets and unfiltered consumption (described in the caption
of Table 4), with T = 55 and N = 31. Red/grey dotted is the GRS-test, reported as GRS-FAR test in
Kleibergen and Zhan (2020). Red/grey is the actual GRS-FAR test. Black (dotted) shows the rejection
frequency of the Fama–MacBeth t-statistics with the Shanken correction (when estimation is with
an intercept). When moving along the x-axis, the test asset mean returns change according to the
equation, R̄e

t,i = λ0 + βC ,iλ, while the consumption betas remain the same.
Kleibergen and Zhan (2020) restrict their analysis to the case when the factor has no pricing errors

(left sub-figure) and only show the area between the two vertical lines.

Interpretation: The Fama–MacBeth/Shanken approach with estimating the intercept leads to sharply
increasing power curves just outside the area shown in Kleibergen and Zhan (2020). When the
estimation is without the intercept, the power curve is comparable to the GRS-FAR test. Kleibergen
and Zhan (2020) do not provide evidence of a “malfunction” of the Fama–MacBeth/Shanken method.
Importantly, the GRS-FAR test cannot provide inference on the price of risk in the empirical relevant
case when the risk factor comes with pricing errors (right sub-figure).

One can observe a hump in the power curve around λ= 0. The reason is that
the data generating process changes the mean returns of the test assets. Around
λ= 0, there is not much mean return left to explain, and as a result the alphas
in the GRS-test are tiny and often insignificant. But such test assets do not exist
in applied research; or they are avoided, as there would be literally nothing to
explain in the first place. Put differently, this data generating process does not
capture a situation that can be expected to be found in applied research.

Turning to the Fama–MacBeth/Shanken t-statistics, the black dotted line shows
rejection frequencies of the H0: λ = 2 when estimation is with an intercept.
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These are the results that are reported by Kleibergen and Zhan (2020). The solid
black line shows the according rejection frequencies when estimation is without
the intercept; these results are not reported by Kleibergen and Zhan (2020). I
also notice that Kleibergen and Zhan (2020) restrict in their figures the displayed
area of λ to the range −1 to +5. The restriction on the displayed parameter space
changes the interpretation of the figure. While the figure shown in Kleibergen
and Zhan (2020) indicates a flat power curve, the power curve is actually sharply
increasing just outside the reported area on the right. In addition, when the
intercept is not estimated, the power curve is even similar to the GRS-FAR test.
When the model is misspecified (right sub-figure), the FMB/Shanken t-statistics
remain useful for statistical inference while the GRS-FAR test is clearly not useful
for inference on λ. To the best of my judgment, I am not able to see an obvious
“malfunction” of the Fama–MacBeth/Shanken approach in this setting.
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Figure A.4: FMB-Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas): Misspeci-
fied Model, T = 200.

Description: This figure complements Figure 5 and increases T to 200 years.

Interpretation: The Fama–MacBeth/Shanken approach slightly over-rejects “useless” factors in large
samples. The bootstrap confidence intervals do not over-reject “useless” factors in large samples.
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Fama–MacBeth Estimation with Intercept

Additional Simulation Results
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Figure A.5: FMB-Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas): Misspeci-
fied Model, Estimation with Intercept, T = 55.

Description: This figure complements Figure 5 and also estimates the intercept.

Interpretation: All of the considered methods have low power in small samples. Increasing T or
reducing N is advisable to get more powerful tests.
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Figure A.6: FMB-Shanken and GRS-FAR Power Curves With Varying the Risk Factor (Betas): Misspeci-
fied Model, Estimation with Intercept, T = 200.

Description: This figure complements Figure A.5 and increases T to 200 years.

Interpretation: The over-rejection problem of FMB/Shanken standard errors becomes a concern in
large samples. The bootstrap confidence intervals do not over-reject “useless” factors in large samples.
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