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ABSTRACT
This paper uses Monte Carlo methods and regression analysis to assess
the role of uncertainty in yield function and land supply elasticity param-
eters on land use, carbon, and market outcomes in a long-term dynamic
model of the global forest sector. The results suggest that parametric un-
certainty has little influence on projected future timber prices and global
output, but it does have important implications for regional projections
of outputs. A wide range of outcomes are possible for timber outputs,
depending on growth and elasticity parameters. Timber output in the
U.S., for instance, could change by −67 to +98 million m3 per year by
2060. Despite uncertainty in the parameters, our analysis suggests that
the temperate zone may sequester +30 to +79 Pg C by 2060 and +58
to +114 Pg C by 2090 while the tropics are projected to store −35 to
+70 Pg C and −33 to +73 Pg C for the same time periods, respectively.
Attributional analysis shows that uncertainty in the parameters regulat-
ing forest growth has a more important impact on projections of future
carbon storage than uncertainty in the land supply elasticity parameters.
Moreover, the results suggest that understanding growth parameters in
regions with large current carbon stocks is most important for making
future projections of carbon storage.
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1 Introduction

Dynamic optimization modeling has emerged in literature as a key analytical
tool to project future resource conditions, management changes, or economic
outcomes (e.g., prices) in forestry systems. For example, Sedjo and Lyon (1990),
Adams et al. (1996), Adams et al. (1999), Sohngen and Mendelsohn (1998 and
2003), and Sohngen et al. (1999) developed dynamic optimization approaches
to project future forest stocks in the U.S. or globally. These approaches all
assumed that the parameters in the underlying model are deterministic, even
though there may be important underlying uncertainty. Forestry models, for
instance, parameterize the biological growth of forests over time, but many
factors make these parameters uncertain, including the methods by which the
original data was collected, and the application of values estimated for specific
sites to cover entire regions.

While forestry models have become more sophisticated and widely used to
project future forest conditions and carbon outcomes under assumed baseline
economic, policy, and environmental conditions, there is still a great deal
of variation in future projections for key regions, including the U.S. (Latta
et al., 2018; Tian et al., 2018; Wear and Coulston, 2015). The variations
may arise from methodological differences in the models, but they may also
arise from differences in assumptions about key parameters, such as forest
growth and land supply. Historically, carbon outcomes across the world have
been influenced by two important drivers most affected by these parametric
assumptions: land use change and forest regrowth (Smith et al., 2014). It
is natural to anticipate that these factors will continue to be important for
future carbon outcomes; therefore, it is useful to examine the extent to which
uncertainty in underlying forest yield growth or land supply parameters can
affect the variation in future forest sector projections.

To address questions about the effect of parameter uncertainty on timber
market and forest stock projections, we conduct a Monte Carlo analysis with
a global dynamic optimization model of timber markets, the Global Timber
Model (see Tian et al., 2018; Daigneault et al., 2008; Sohngen et al., 1999).
Monte Carlo analysis is well suited to our question, which focuses on the
role of uncertainty in key model parameters on important model outcomes.
Many dynamic forestry models have a large set of parameters that describe
forest yields in different regions. These parameters are typically estimated
or collected directly through forest inventories and thus are subject to un-
certainty, particularly when estimates from field studies are aggregated and
used across larger regions. While sensitivity analysis can provide important
insights, it may ignore potential interactions between underlying parameters,
making it difficult for attributional analysis that seeks to evaluate the relative
influence of a given model parameter on uncertainty ranges for key model
outputs. Furthermore, partial factorial experimental designs and response
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surface regressions are often not feasible with large-scale optimization models
in which there are hundreds or thousands of spatially-varying parameters that
would need to be varied and interacted.

Monte Carlo techniques provide a way to test the effects of uncertainty
in the underlying parameters on the model outcomes by evaluating different
parameters drawn from a distribution of each yield function and running
the model multiple times with different sets of randomly drawn parameters.
Monte Carlo techniques have been widely applied by static land use and
management models (Hertel et al., 2010; Plevin, 2010; Laborde and Valin,
2012; Valin, 2015). However, few studies have published results from parametric
uncertainty analysis using intertemporal optimization methods and models of
land use sectors. This limited literature is due, in part, to the computational
complexity of intertemporal optimization models. Dynamic models of land use
systems are typically large, computationally complex, and require relatively
long solve times, thus limiting the ability to run hundreds or thousands of
simulations using random parameter draws, as is typically required for a Monte
Carlo simulation analysis. With computational processing advances, emerging
grid computing techniques, and increasing access to super computers, such
techniques will be easier to employ in the future.

Monte Carlo methods may be useful for characterizing the influence of
parameter uncertainty on several key variables. Forest yields, for instance,
are among the most important components of dynamic forestry models, de-
termining timber volume and growth rates, as well as influencing harvesting
and investment decisions made by land managers. Because forest management
involves supervising large capital assets over time, under- or over-estimating
the growth in these capital assets can have potentially large effects on future
projections of timber prices, regional harvesting rates, managed forest area,
and carbon fluxes.

This paper presents an analysis of parametric uncertainty on projected
land use and market-related output from a baseline simulation of a model
of the global forest sector, the Global Timber Model, with recent updates
described in Kim et al. (2018). We assess uncertainty over parameters of
the yield functions and the land rental function (i.e., land supply elasticity)
and employ regression methods to run an attributional stochastic analysis
with the purpose of investigating the relative importance of these parameters
on key projected outcomes of carbon and timber harvests. Yield growth
parameters are a key component of any representation of forest resource
systems and represent both the rate of growth over time that a particular
forest type in a particular region will experience, as well as the system’s
stocking density (or carrying capacity) per-unit area. Land rental functions
play an important role in our modeling framework because they control the
amount of land used by the forestry sector in competition with agriculture.
Specifically, land rental functions recognize the opportunity cost of shifting
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land into forestry in terms of lost agricultural rents. As more land is brought
into forestry in response to changing market conditions, land rental functions
ensure higher marginal costs of further afforestation. This analysis provides
baseline uncertainty ranges in key model outputs, including projected forest
area, prices, production, carbon stocks, and factors explaining intensive margin
investments. Furthermore, we present a detailed discussion on how specific
parameter sets relate to the magnitude of uncertainty implied by model
outputs.

This paper makes several contributions to the literature by offering an
assessment of the relative influence of parameters that drive forest land sup-
ply and productivity in structural economic models on projections of forest
markets and associated environmental outputs (carbon stocks). There is a
growing literature that projects forest carbon stocks across a wide range of
socioeconomic, policy, and environmental change scenarios. This literature
reports a range of possible forest carbon futures using different modeling
frameworks that represent forest resources at different spatial and temporal
scales (Wear and Coulston, 2015; Nepal et al., 2015; Tian et al., 2018; Latta
et al., 2018; Kim et al., 2018; Forsell et al., 2016). However, these studies focus
on the variability in forest carbon projections across discrete alternative future
scenarios in which policy, environmental, or macroeconomic inputs are varied.

The sensitivity analysis approach differs from the goals of this paper,
which seeks to evaluate the influence of specific data and parameter inputs on
modeled projections. In a similar recent analysis, Buongiorno and Johnston.
(2018) analyze parameter uncertainty using the Global Forest Products Model
(GFPM), a detailed recursive dynamic and partial equilibrium model covering
multiple forest product markets. The Buongiorno study focuses on economic
parameters such as demand elasticities in driving future projections and finds
wide variation in future forest market conditions. Our study, in contrast,
focuses on parameters related to forest productivity and land supply/costs
using an intertemporal model of the global forest sector with a large set of
simulation scenarios.

In this manuscript we first present an assessment of uncertainty in future
baseline market and land use trends driven by uncertainty in important
physical and market parameters. Using a Monte Carlo analysis, we show
that future market and land use results are sensitive to these parameter
assumptions. Globally, timber prices are not substantially influenced by
parametric uncertainty, but timber outputs for several species can be heavily
affected, as can global carbon storage. Thus, while timber outputs and forest
carbon stock projections remain relatively stable and do not vary substantially
across our simulations, we find large regional variation in projected forest
carbon stocks. This result hints at a difficulty individual countries may have
in developing robust baseline projections of forest carbon stocks without
considering systematic feedback across the global market system.
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Second, we conduct an attributional analysis that suggests that results are
more sensitive to uncertainty in the parameters influencing the timber yield
compared to uncertainty in land supply elasticity. This is particularly true for
measuring carbon stocks, with uncertainty in the carrying capacity and growth
rates of trees having implications for the size of carbon stocks. This finding
has important implications for the value of inventory-based forest yield growth
used in projections modeling contexts; since uncertainty in stocking density is
a primary driver of the variability in projected forest carbon outcomes, this
supports additional measurement and field sampling to reduce the uncertainty
around physical forest yield attributes. This attributional analysis provides
important information to policy makers that can help them better allocate
resources to research on the more influential parameters.

2 Methods

In this section, we describe the methodological background of the analysis.
First we provide a brief description of the Global Timber Model (GTM),
including key assumptions and components, and references to recent model
documentation. Then, we present a description of the attributional regression
analysis, which we use to assess the relative importance of model parameters
on variables of interest.

2.1 The Global Timber Model (GTM)

The Global Timber Model (GTM) has been widely used for policy analysis
in forestry, addressing conservation policy (Sohngen et al., 1999), climate
change (Sohngen et al., 2001; Tian et al., 2016; Sohngen and Tian, 2016),
carbon sequestration (Sohngen and Mendelsohn, 2003; Tavoni et al., 2007),
exchange rates (Daigneault et al., 2008), and biomass energy (Daigneault
et al., 2012). The model is a dynamic optimization model that maximizes the
present value of consumers’ plus producers’ surplus by harvesting forests and
determining optimal levels of timber investments and regeneration, subject to
a set of constraints that describe the growth of forests over time. Foresters
in the model are assumed to be forward-looking, taking future prices into
account when they determine both when to harvest trees and how intensively
to regenerate forests.

The version of GTM applied in this analysis includes heterogeneous for-
est product demand, consistent with the versions of the model applied in
Baker et al. (2017 and 2018), Kim et al. (2018), and Tian et al. (2018).
Demand for pulpwood and sawtimber are represented separately, building on
the single-product demand structure presented in Daigneault et al. (2012).
This disaggregated demand structure recognizes that forest resources are often
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managed differently to supply pulpwood and sawtimber, thus GTM allocates
harvests endogenously to pulpwood and sawtimber markets. As market, policy,
or environmental factors evolve, the relative proportion of harvests allocated to
pulpwood and sawtimber markets can change (that is, we do not assume a fixed
proportion of harvests allocated to separate end uses). We also allow a portion
of forest biomass (pulpwood or sawtimber) to be allocated to bioenergy use,
but this proportion must be exogenously defined. Additional information on
the version of the GTM applied for this analysis, including a technical appendix
that lists structural equations, parameters, variables, and key assumptions,
can be found in Kim et al. (2018).

One important set of model inputs are the forest biomass yield functions,
which are used directly in the uncertainty analysis. Yield is assumed in the
model to have the following functional form:

Y ia,t = e(δi−πi/a) (1)

The yield function in (1) measures the volume of timber available for markets
in land class i and age class a at time t. For the United States, for instance,
the U.S. Forest Service collects data on forested plots throughout the country
at regular intervals. The term δi measures the carrying capacity of the site,
and πi accounts for forest growth. Both are parameters of the yield function,
which can be estimated with data on age classes and biomass per hectare.

Yield functions estimated this way contain some uncertainty in the param-
eters based on a number of factors, such as differences in the quality of sites,
historical disturbance regimes on those sites (which have influenced biomass
levels when measured), and climate factors. As yield functions are based on
aggregate forest inventory data and empirical yield functions, there is uncer-
tainty in growth estimates and projections as yield functions are represented
at the mean and do not capture heterogeneity that exists within the inventory
data. In models that are forward-looking, uncertainty over yield parameters
can have large potential consequences for a range of management decisions,
including harvests, timberland area managed, and regeneration intensity.

There is even greater uncertainty on yield function parameters in regions
outside of the U.S. where the quality of data is not as substantial as in the U.S.
In these cases, yield function data in the GTM is obtained using data from
relatively few sites, or from studies done in similar forests. Thus, in most regions
of the world, there is considerable uncertainty about both the rate of growth
of trees and the maximum amount of biomass that can be stored on a site.

To account for uncertainty in the forest growth function parameters, we
assume the parameters of the yield function, δi and πi, are stochastic and
follow triangular distributions (Equations 2a and 2b). Triangular distributions
are popular empirical distributions when observational data are limited since
parameters can be estimated from a small sample. There are several published
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studies in the forest modeling literature that have used triangular distributions
to represent forest yield growth assumptions or various demand-side parameters
in Monte Carlo studies, including McKenney et al. (2004) and Buongiorno
and Johnston. (2018). Furthermore, triangular distributions have been applied
to other large-scale modeling studies, including Valin (2015) and Plevin (2010).
Given this precedent and the limited amount of forest inventory data available
in certain regions, the use of triangular distributions is justified in this analysis.

δi ∼ r and Triangle (low, mid, high) (2a)
πi ∼ r and Triangle (low, mid, high) (2b)

The δi parameter controls the overall size of the stock of biomass on a site, with
larger δ implying larger overall levels of biomass. The πi parameter accounts
for the rate of growth of forests over time. In a triangular distribution, the
low value is the inverse of the normal cumulative distribution at probability
2%, and the high value is the inverse of the normal cumulative distribution
at probability 98%. The mean value for the triangular distribution is taken
from the yield functions that are used in the GTM (many of which were
estimated using data from the underlying regions) and the standard deviation
from estimates in Kim and Sohngen (2009). Thus, the underlying GTM yield
function parameters represent the mid-point of the triangular distribution.

The land supply function for each timber type, i, is shown in equation (3):

A∑
a=1

Xi
a,t = Ait (Lt)

(1/γ) (
Rit
)ηi (3)

Equation (3) is a constant elasticity function that sets the total area of land in
forests in each timber type i, calculated as the sum of the area of land in each
age class, Xi

a,t, as a function of the rental rate, Rit. Ait is a slope parameter that
changes over time to reflect shifts in the demand for land in the agricultural
sector. As Ait increases, so do forestry rents, or the opportunity costs of
bringing a marginal unit of land into forestry at the expense of alternative
uses such as cropland. Lt is the ratio of the current aggregate area of global
forests to the initial aggregate area of forests globally. The parameter ηi is the
own-price elasticity of supply, and γ is the price elasticity of global forestland
supply. In the deterministic model, ηi is 0.3 in each region, meaning that if
rents increase by 10%, the area of forestland will increase by 3%. We also
set γ to 0.3 in the deterministic model, so that if the area of forests globally
increases by 10%, it takes about a 30% increase in rents in any given region
to maintain the same forestland area. Thus, if the aggregate area of forests
globally is increasing (i.e., Lt > 1), it becomes costlier to maintain forestland
in all regions. Although we do not directly model agricultural markets, this
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is consistent with the effects of rising output prices in the agricultural sector
and rising opportunity costs associated with scarcity in that sector.

Given differences in productivity levels in forests and agriculture across
regions, one might expect that the elasticity parameter, ηi, would vary from
region to region. Unfortunately, information is not available from enough
regions around the world to know what the elasticity parameter is with high
statistical confidence. For the baseline model, we have assumed that it is the
same in all regions as it is in the U.S., 0.3. Standard errors for all regions are
also based on the U.S. due to data shortcomings on forests in many parts of
the world. While having regionally specific data and standard errors would be
ideal, the use of distributions based on U.S. data across other regions in the
model is reasonable if heterogeneity in regions outside the U.S. is similar.

The parameter draws for the Monte Carlo analysis for the land supply
elasticity parameters were assumed to follow a triangular distribution, using
data from Kim and Sohngen (2009). As above, the low value is the inverse of
the normal cumulative distribution at probability 2%; the high value is the
inverse of the normal cumulative distribution at probability 98%.We assumed
that environmental risks are uncorrelated, so increases or decreases in forest
growth are randomly distributed across our forest types, which are distributed
across different regions covered in the model. If these risks were correlated—
that is, entire continents experienced the same set of shocks—then one might
expect larger uncertainty bounds for global prices with shifts in productivity in
one direction for important forest product exporting regions. We acknowledge
that a potential consequence of this approach is that random draws could
result in a range of positive and negative deviations from the mean for yield
growth parameters that would essentially cancel each other out at a global
scale. However, GTM represents a large number of distinct forest types, with
heterogeneity in regional age class distributions and harvest/management
costs. This combined with the large market shares of global pulpwood and
sawtimber held by a relatively small number of forest types globally, minimizes
the potential bias that could result from simultaneous random parameter
draws across different forest types.

We also have not accounted for the effects of climate change in this analysis.
Other studies have considered climate change impacts (e.g., Tian et al., 2016,
2018). It is also important to note that we have not accounted for demand
shocks in this assessment, and demand shocks could cause prices to shift
outside the ranges projected. However, other recent studies have evaluated
market and forest management changes under alternative demand scenarios
using the GTM, including Kim et al. (in press), Tian et al. (2018), and Baker
et al. (2017).

Within the model, there are 211 land classes with individual yield functions
(i.e., i = 211); thus, there are 211 α’s and β’s. Land supply functions only
apply to accessible forest types and various accessible, semi-accessible, and
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inaccessible forests in the tropics where semi-accessible lands are more fungible
with accessible areas. Thus, there are fewer σ’s in the model (111).

For the analysis, we ran 300 independent draws of each of these parameters
from the triangular distributions using the Ohio Supercomputer Center. Some
stochastic parameter combinations induced infeasible model solutions, so we
ended up with 273 unique optimal solutions over the 300 simulations.

2.2 Attributional Analysis of Stochastic Parameters

In this analysis, a spatial weighting procedure is applied to assess the relative
importance of the GTM’s stochastic parameters on projections of cumulative
stored carbon, as well as sawtimber and pulpwood harvests under different
baseline simulations. As will be shown below, there is relatively large un-
certainty in carbon outcomes in carbon-intensive regions like Brazil, but it
is not clear if the uncertainty is derived from the parameters of the growth
function (i.e., Equation 1) or the parameters of the land supply function (i.e.,
Equation 3). Understanding which set of parameters has the largest impact on
timber output or carbon may be most important in regions with potentially
large land use changes. For the attributional analysis, we use regression analy-
sis to assess the influence of parameter choice on market and carbon outputs
by region.

We start by estimating regression equations for each forest land class in
the model. The dependent variables in the regression equations are cumulative
projected sawtimber harvests, pulpwood harvests, and carbon stocks in the
2050 and 2090 simulation periods, all represented at the land class level.
Explanatory variables in the regression models include a constant term, plus
estimated coefficient values for δi and πi, the own-price elasticity in the rental
function for each land class, and the global land supply elasticity. For the
sawtimber and pulpwood equations, we include observations for each decade
up to 2050 in one set of regressions and up to 2090 in another. We average the
output across the decades, and we include decadal fixed effects to account for
time-varying cumulative changes in management and harvest not explained by
the variation in stochastic parameters. The carbon stock regressions use only
data for the two specific time periods since carbon is cumulative. Regression
results for all land classes, for the 2050 and 2090 periods are provided in Online
Appendix A.

These land class specific regressions provide useful information, but for
interpretation we aggregate the results to the regional level using a spatial
weighting procedure. Using the land class specific parameters, we compute
the average regional effect of a given stochastic parameter as:

Regional_Effectn =

L∑
m=1

wm ∗ βmn
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where m = 1, . . . , L are forest types for a given region, as noted before
n = stochastic parameters as previously defined
wm = forest land classm weight and is computed as wm =

∑T
t=1 Amt∑T

t=1

∑L
m=1 Amt

,
where Amt is the area of forest land class m in time t

βmn = estimated coefficient value for forest type m and stochastic parame-
ter n

This aggregation allows us to differentiate net regional implications of a
change in the stochastic parameters without placing too much emphasis on
a given forest type. We start by assessing the weighted regression results for
sawtimber and pulpwood outputs for 2090. The δm parameter, as noted above,
accounts for the overall size of the stock of biomass on a site, with larger δm
implying larger overall levels of biomass. It is expected that this parameter
will be positive, such that increases in δm will increase sawtimber outputs by
increasing supply.

3 Results

This section provides an overview of key results from the analysis, including
baseline projections generated by the GTM framework of relevant market and
environmental variables. Following this are the results of the attributional
analysis, which shed light on the relative influence of stochastic parameters on
regional pulpwood and sawtimber harvests and forest carbon sequestration.

3.1 Results of the GTM Framework

Results from this analysis show the effects of input parameter uncertainty on
a number of model outcomes by examining the sample averages and the 95%
uncertainty intervals from the Monte Carlo simulations. The baseline income
and population projections assume demand growth of 2%–3% early in the
century, followed by slower growth later in the century. This results in relatively
modest overall price growth in the model (Figure 1). Prices for sawtimber
are around three times those of pulpwood, which is consistent with observed
price differentials (Howard and Kwameka, 2016). Sawtimber prices rise more
rapidly over the century, as expected, given that sawtimber is used for more
valuable outputs and the marginal costs of extracting additional sawtimber are
higher than the marginal costs of extracting additional pulpwood. Pulpwood is
undifferentiated and thus can be used for a wider range of products, including
pulp or bioenergy. The uncertainty bounds on prices are small, especially
with regards to sawtimber prices where the bounds represent less than 3.5%
of mean sawtimber price through 2100. The uncertainty bounds are higher
for pulpwood prices where the corresponding figure is 12% of mean pulpwood
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Global Pulpwood Price Distributions in Years 2050 and 2100 (count)

Sawtimber Price Distributions in Years 2050 and 2100 (count)

Figure 1: Global Sawtimber and Pulpwood Price Projections, US$/m3 (Average, and 95%
Uncertainty Interval Bounds – value at the 2.5 and 97.5 percentiles)
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prices in 2100. This relatively modest variation is also expected. Wood outputs
from various regions are highly substitutable in the demand function, meaning
that different regions compete based on relative costs and timber availability
to meet forest product demand globally. Thus, parametric deviations in supply
through the yield functions or rental functions will have little impact on
aggregate quantity supplied.

Global sawtimber and pulpwood production increases over the century, with
pulpwood output increasing slightly more rapidly over time. Figure 2 shows
projected pulpwood production, 95% uncertainty bounds for the projections
presented in the top figure of the panel and histograms representing the distri-
bution of outcomes across the Monte Carlo simulations for the 2050 and 2090
simulation periods. The 95% uncertainty bounds for pulpwood outputs are
larger than the uncertainty bounds for sawtimber. Pulpwood is the lower value
output, and some pulpwood cannot substitute into sawtimber markets. Hence,
smaller deviations in parametric assumptions about forest growth will have
larger effects on production and prices of pulpwood. The distribution of out-
comes does not change much over time other than an outward shift in the mean.

On average, outputs increase in both the temperate and tropical zones,
although the largest projected increases in pulpwood outputs occur in the
tropics by 2050 and 2090 (Table 1). The analysis suggests some potential for
a reduction in pulpwood production in the temperate zone over the century,
with the largest reductions in Canada, where the 95% uncertainty interval
encompasses lower pulpwood outputs in the future. These results suggest that
the projected decline in comparative advantage for producing pulpwood in
Canada over the century is fairly robust to uncertainty in forest growth rates
and land supply elasticity. By 2090, the tropics experience a potentially large
increase in pulpwood output, driven mostly by increased output in Brazil.
Much of this expansion in Brazil is driven by increased productivity and
harvest outputs from intensive margin investment in fast-growing plantations
in Brazil.

Sawtimber output is projected to increase in much of the temperate region,
except for Canada and Russia (Table 2). A key reason for lower projected
harvest levels in Canada and Russia is the relatively high cost of accessing
land in those regions, combined with the relatively low productivity of forests.
Investments in other regions with faster growth rates have greater net impact
on markets. This result is robust across the uncertainty ranges in growth
parameters and land supply elasticity, suggesting high potential for declining
comparative advantage in timber production in boreal regions. In contrast,
temperate regions in the U.S., China, and Europe are projected to experience
increased sawtimber output over the century. Tropical regions also see gains
in outputs, but the increases are relatively modest in comparison.

Global forest area is projected to increase initially in the Monte Carlo
analysis, albeit modestly (Figure 2). Over the projection period to 2100, the



The Influence of Parametric Uncertainty on Projections of Forest Land Use,... 141

Global Pulpwood Harvest Distributions in Years 2050 and 2100 (count)

Global Sawtimber Harvest Distributions in Years 2050 and 2100 (count)

Figure 2: Global Sawtimber and Pulpwood Production Projections, million m3/decade
(Average, and 95% Uncertainty Interval Bounds – value at the 2.5 and 97.5 percentiles)



142 Brent Sohngen et al.

Table 1: Change in pulpwood output per year in 2050 and 2090 compared to 2010, 95%
uncertainty interval in parentheses.

2050 2090
Change in output (million m3/yr)

Temperate
U.S. −4.7 (−57.6, 57) 115.7 (43.1, 190)
China 46.1 (16.9, 75.3) 56.1 (24.6, 88.1)
Canada −24.4 (−38.3, −8.7) −25.8 (−38.4, -9.9)
Russia 0.5 (−27.2, 28.5) 5.2 (−25.7, 35.7)
EU 13.4 (−29.9, 53.6) −4.5 (−50.5, 38.4)
Oceania −1.2 (-12.7, 10.6) 10.3 (−4.3, 26.3)
Japan 2.3 (−1.9, 6.3) −0.9 (−5.5, 3.1)
East Asia 11.4 (8.1, 14.7) 6 (0.4, 13.5)

Total Temperate 43.4 (−142.6, 237.3) 162.1 (−56.3, 385.2)

Tropical
Brazil 94.5 (37, 151.4) 119.3 (31.4, 203.2)
Rest of South America 3.9 (−14.6, 19.4) −4.3 (−19.9, 12.6)
Central America 1.4 (−2.6, 5.4) 2.1 (−4.1, 8.4)
South Asia −5.3 (−9.7, 0) −6 (−9.6, −2.4)
Subsaharan Africa 1.9 (-13.4, 16.3) −16.6 (-34.1, 0.2)
SE Asia 51.3 (27.1, 74) 71.4 (34.9, 108.1)
Africa/ME −1.1 (−2.6, 0.4) −1.4 (−3.2, 0.6)

Total Tropical 146.6 (21.2, 266.9) 164.5 (−4.6, 330.7)

Total 190 (−121.4, 504.2) 326.6 (−60.9, 715.9)

total forest area declines by around 100 million ha. The 95% uncertainty
interval is about 1.5% of the total forest area, suggesting that yield and land
supply elasticity have little effect on global land area in forests. Globally, the
aggregate change in forestland area is influenced mostly by assumptions about
the underlying factors driving land use change, such as the demand for land
to be used in the agricultural sector.

Examining carbon, total carbon storage increases in the baseline (Figure 3).
Total forest carbon includes aboveground carbon, market carbon, carbon
stored in slash, and soil carbon. While the bulk of carbon in forests is stored
in soil components belowground (regional percentage ranges from 40% to
83% with an average of 66%), the largest change in carbon occurs in the
aboveground portion. The 95% uncertainty range (bounded by the 2.5 and
97.5 percentile value) for above ground C represents around 8% of the average
above ground carbon. The 95% range for total carbon storage is relatively
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Table 2: Change in sawtimber output per year in 2050 and 2090 compared to 2010, 95%
uncertainty interval in parentheses.

2050 2090
Change in output (million m3/yr)

Temperate
U.S. 9.5 (−10.2, 40.9) 75.3 (55.3, 110.6)
China 34.6 (29.9, 39.3) 50.5 (45.1, 56.5)
Canada −31.8 (−48.4, −17.2) −4.8 (−24.1, 16.4)
Russia −29.1 (−38.3, −20.8) −35 (−44.5, −26.2)
EU 80.3 (50.6, 107.1) 100.4 (68.1, 128.8)
Oceania 2.2 (−1, 5.2) −0.2 (−8.1, 6.1)
Japan 13.8 (11.4, 16.1) 17.3 (14.6, 20.3)
East Asia 1.5 (1.2, 1.8) 1.6 (1.3, 1.9)

Total Temperate 81 (−4.8, 172.4) 205.1 (107.7, 314.4)

Tropical
Brazil 14.6 (7.4, 22.3) 19.2 (11.7, 26.8)
Rest of South America 8.1 (−3.8, 19.8) 6.4 (−5, 17.8)
Central America 2.9 (2.1, 3.8) 3.8 (2.7, 4.8)
South Asia 4 (0.6, 7.4) 9.1 (4.7, 13.6)
Subsaharan Africa 8.2 (1.9, 14.6) 4.9 (−4.3, 12.6)
SE Asia 22 (12, 32) 23.4 (13.2, 33)
Africa/ME 1.1 (0.3, 2) 1.7 (0.9, 2.6)

Total Tropical 60.9 (20.5, 101.9) 68.5 (23.9, 111.2)

Total 141.9 (15.7, 274.3) 273.6 (131.6, 425.6)

small (+/− 2.5%), in part because the soil component is assumed to be fixed
across regions and forest types, sawtimber harvests do not vary extensively
(thus market carbon remains consistent), and we do not assign uncertainty
to the parameters determining the soil component (a large portion relative
to the total). Although not obvious in the figure, the lower bound on the
95% uncertainty range is slightly closer to the mean than the upper bound,
suggesting that outliers, or large deviations from the mean, are more likely to
occur in the positive direction (i.e., more carbon in the system, not less).

Total carbon gains over the long-term projection period range from −5.0 to
149.1 Pg C by 2050 and 24.8 to 186.6 Pg C by 2090 (Table 3). The potential
carbon gains range from +3.3% to nearly +23% by 2090 relative to 2010 levels.
The gains are largest in Brazil and Russia. In Brazil, the increase amounts to a
16% increase by 2090, and in Russia it amounts to a 24% increase. However, in
these two regions, uncertainty over parameters leads to fairly large uncertainty
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Figure 3: Global forest area (billion hectares)
* The solid line represents the mean value while the lower and upper limits depict the value at

the 2.5 and 97.5 percentiles (uncertainty interval bounds), respectively.

bounds on potential future carbon in 2050 and 2090. In our model, Brazil
increases carbon storage on average while at the same time losing land to
deforestation because regeneration and growth on existing forests outweighs
the losses due to deforestation. This outcome, however, is heavily influenced
by uncertainty in parameters in Brazil, given the relatively large potential
for carbon losses shown by the 95% uncertainty range. Interestingly, in other
tropical regions in our model, namely Rest of South America and SE Asia,
deforestation occurs rapidly enough to negate any carbon benefits associated
with regrowth.

The large increase in forest carbon stocks in Russia largely occurs in forests
remaining forests in eastern Russia (i.e., Siberia). In this region, carbon stocks
increase substantially over time, mainly as currently young forests increase in
age. Importantly, we do not include land rents for many of these forests, so
the uncertainty analysis has no effect on land use in this region (that is, land
use is constant over time in many Russian forests in the far East). One factor
that could influence forest stocks in this region that we have not explicitly
modeled is forest fires. We do incorporate forest fires through the net yield
functions used in the model, but this may understate the effects of fire on the
carbon cycle.

3.2 Results of the Attributional Analysis

For the most part, the parameter δm, or total potential biomass on a given site,
is positive for sawtimber and pulpwood (Tables 4a and 4b). For sawtimber there
is one exception, SE Asia. To determine why SE Asia appears to differ, we look
at the regression results for the individual land classes (see Online Appendix A).
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Table 3: Average change in total carbon between 2010 and the year given, with the minimum
and maximum changes based on the 95% uncertainty intervals in parentheses.

2050 2090
Change in Carbon Stored (Pg C)

Temperate
U.S. 2.7 (1.3, 4.2) 5.7 (4.2, 7.2)
China 6.8 (5.5, 8.2) 10.8 (9.2, 12.6)
Canada 1.9 (−1.9, 5.8) 2.9 (−0.9, 6.8)
Russia 35.5 (23.1, 48.5) 56.1 (40.8, 72)
EU 3.4 (−0.1, 6.9) 4 (0.5, 7.4)
Oceania 2.8 (1.5, 4) 4.9 (3.5, 6.4)
Japan 0.7 (0.4, 1.1) 0.8 (0.5, 1.2)
East Asia 0.2 (0.1, 0.3) 0.1 (0, 0.2)

Total Temperate 54 (29.9, 79) 85.3 (57.8, 113.8)

Tropical
Brazil 20.3 (−14.4, 55.5) 25.7 (−9.6, 62.3)
Rest of SA −2 (−8.2, 3.9) −3.8 (−9.7, 1.8)
Central America 0.2 (−0.6, 0.9) 0.2 (−0.6, 0.9)
South Asia −0.1 (−0.7, 0.4) −0.1 (−0.7, 0.4)
Subsaharan Africa 1.6 (−2.3, 5.5) 1 (−2.9, 4.8)
SE Asia −2.3 (−8.5, 3.6) −3.4 (−9.2, 2.3)
Africa/ME 0 (−0.2, 0.3) 0 (−0.3, 0.3)

Total Tropical 17.7 (−34.9, 70.1) 19.6 (−33, 72.8)

Total 71.7 (−5.0, 149.1) 104.9 (24.8, 186.6)

For SE Asia, the parameter on δm for the fast-growing tropical forests, and
the two plantation types, is negative. This result is primarily driven by a shift
in the distribution of outputs in these types from sawtimber to pulpwood as
δm increases. Thus, as the stocking capacity increases for this forest type, the
production portfolio shifts towards pulpwood. The δm parameter for these
three forest land classes turns out to be positive in regressions where pulpwood
harvest is the dependent variable. This result holds for most other individual
forest types, particularly the fast-growing plantation types: as δm increases,
output shifts towards pulpwood types.

The parameter π controls the rate of growth of timber, with an increase in
π signifying a lower growth rate, all else equal. For an industrially managed
forest, an increase in π will lead to an increase in the rotation age and vice-
versa. More importantly, an increase in π will reduce the annual supply of
timber (and vice-versa) from an industrially managed forest. If all stocks in a
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Global Total Carbon Stored Distributions in Years 2050 and 2100

Figure 4: Global carbon storage, and storage in components, including aboveground, soil,
slash, and marketed products (Million tons CO2).

country were managed industrially, then one would expect that an increase in
π would reduce supply from the country (and vice-versa). In general, higher π
leads to a reduced supply of sawtimber (Table 1), a result that makes sense
given the effect that π is expected to have. In all regions, an increase in π
leads to a reduction in pulpwood output (Table 2).

There are three exceptions for the sawtimber results—Brazil, Rest of South
America, and SE Asia—where higher π leads to an increase in sawtimber output.
This result for those regions is driven largely by the effects of changes in π on
the fast-growing plantation types in those regions. For those types, an increase
in π causes output to shift toward sawtimber and away from pulpwood. Thus,
factors that slow growth in these fast-growing plantation types will encourage
more output to be used in sawtimber and less in pulpwood within the specific
types, and because these types are a relatively large proportion of pulpwood
output within those regions, they affect the regional calculations. This effect
is consistent across the parameter on π for many of the short-rotation non-
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indigenous species in the model, although it only affects the regional weighted
parameter for the three regions mentioned above.

The own-price elasticity parameter (the parameter on land class-specific
land supply elasticity) is positive in most regions in the weighted regressions for
sawtimber (Table 4a) and pulpwood (Table 4b) outputs. In most cases, higher
own-price elasticity on the land supply function shifts the land supply function
out and allows more land to enter the forest type at any given rental value.
The parameter on own-price elasticity is negative in the weighted sawtimber
outputs for several regions. In Brazil, the negative parameter is driven by the
results for the two plantation types (see Online Appendix). For many of the
plantation types in various regions, higher own-price elasticity results in lower
sawtimber output. As with δ and π discussed above, for many of the same
forest types, the own-price elasticity parameter is positive in the pulpwood
results. This suggests that higher land supply elasticity shifts harvesting
towards pulpwood and away from sawtimber in the faster growing plantation
types. The own-price elasticity parameter is also negative in the weighted
results for Russia. As with the fast-growing types, the parameter has the
opposite sign for pulpwood, implying an adjustment from sawtimber towards
pulpwood in Russia as land supply elasticity increases.

Table 4a: Weighted parameter estimates for sawtimber output, averaged 2010–2090 (n =
277).

Own-price World
Region Delta (δ) Pi (π) elasticity Elasticity

Africa/Middle East 142.07 (8.07) 60.80 (16.14)
Brazil 12.31 1.24 (26.86) (7.54)
Canada 112.20 (1.48) 34.94 (29.81)
Central America 32.04 (0.86) 14.79 (2.13)
China 26.38 (0.32) 3.12 10.10
EU Annex I countries 80.95 (1.50) 10.10 6.48
EU non-annex I countries 69.73 (0.80) 14.98 8.58
East Asia 278.89 (4.49) 154.23 (98.77)
Japan 59.39 (1.50) 51.03 (6.15)
Oceania 41.56 (0.20) 2.92 (14.67)
Rest of South America 39.58 0.17 (6.59) (13.75)
Russia 16.99 (0.24) (7.58) 8.49
SE Asia (6.54) 0.80 (16.66) (6.84)
Sub-Saharan Africa 28.62 (0.22) (33.36) (13.72)
South Asia 96.47 (2.65) 47.53 (16.45)
United States 44.71 (0.45) 14.86 (16.58)
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Table 4b: Weighted parameter estimates for pulpwood output, averaged 2010–2090 (n = 277).

Own-price Global
Region Delta (δ) Pi (π) elasticity Elasticity

Africa/Middle East 14.66 (0.88) 5.90 (2.33)
Brazil 28.00 (0.47) 6.43 (7.89)
Canada 9.60 (0.16) (0.28) (0.91)
Central America 2.86 (0.20) 1.66 (0.21)
China 28.92 (0.63) 3.99 (3.60)
EU Annex I countries 113.85 (2.34) 10.63 0.48
EU non-annex I countries 51.11 (0.57) 7.64 1.61
East Asia 19.76 (0.34) 10.30 (9.66)
Japan 55.61 (1.56) 73.27 (20.00)
Oceania (0.89) (0.04) (1.34) 2.43
Rest of South America 0.39 (0.06) 0.53 0.07
Russia 2.41 (0.02) 0.10 (0.08)
SE Asia (1.68) (0.01) 0.79 1.41
Sub-Saharan Africa (0.09) (0.04) 1.58 (0.27)
South Asia 1.40 (0.02) 0.17 (0.16)
United States 6.31 (0.19) 6.63 0.63

The impact of the global land supply parameter (γ in Equation 3 above) is
generally negative in the weighted sawtimber output results (Table 4a). The
global land supply function shifts all rental functions in the model inward
or outward, depending on whether total global forestland is greater or less
than the initial forest area. In general, global forestland falls over time as
agricultural demands drive more land out of forests and into agriculture, so
the variable Lt in Equation 3 above is less than 1. As the global area of
agricultural land expands and forestland declines, the global rental function
shifts outward (the value L(1/γ)

t decreases), meaning that it takes a lower
forestland rent in any region to maintain any given land area in forests. When
Lt < 1, an increase in γ means that L(1/γ)

t is bigger, such that with greater
elasticity (i.e., larger γ), it takes a larger rent to hold the same area of
land in forests. In scenarios where global forestland area is declining over
time, or an increase in the global land supply elasticity parameter, it will be
costlier to hold land in forests; thus, one would expect that an increase in the
global elasticity will lower timber outputs and carbon sequestration and vice
versa.

The weighted parameter estimates for total carbon change and land carbon
change by 2090 generally meet expectations (Tables 5a and 5b). The parameter
estimates on δ are positive, as expected, with one exception in Japan. Thus, in
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Table 5a: Weighted parameter estimates for total carbon, cumulative change by 2090
(n = 277).

Own-price Global
Region Delta (δ) Pi (π) elasticity Elasticity

Africa/Middle East 1434.70 (21.94) 787.02 (485.47)
Brazil 399210.35 (3407.94) 63926.82 (62828.47)
Canada 4833.41 (36.27) 2078.57 (873.64)
Central America 5545.67 (47.79) 1533.86 (1295.37)
China 3729.99 (43.20) 3654.70 (1386.80)
EU Annex I countries 4296.97 (60.11) 4044.20 (2415.60)
EU non-annex I countries 1804.80 (23.38) 1966.23 (1214.95)
East Asia 378.17 (7.06) 632.03 (494.51)
Japan (36.76) (15.31) 3671.55 (898.54)
Oceania 3858.66 (32.08) 264.90 (46.48)
Rest of South America 36548.33 (814.69) (4195.14) (15723.55)
Russia 66237.85 (487.52) 3027.87 (2388.63)
SE Asia 20384.59 (298.69) 2215.27 (7322.43)
Sub-Saharan Africa 39445.55 (438.40) (2280.91) (12838.06)
South Asia 1109.49 (40.42) 1771.02 (1660.85)
United States 841.33 (15.95) 2014.63 (308.33)

Table 5b: Weighted Parameter Estimates for Land Carbon, Cumulative Change by 2090
(n = 277).

Own-price Global
Region Delta (δ) Pi (π) elasticity Elasticity

Africa/Middle East 1420.70 (21.80) 783.40 (483.20)
Brazil 399020.40 (3406.50) 63922.00 (62830.50)
Canada 4680.60 (34.50) 2013.20 (823.70)
Central America 5533.90 (47.70) 1530.90 (1294.40)
China 3592.80 (40.70) 3571.60 (1342.50)
EU Annex I countries 3675.30 (51.30) 3803.30 (2323.00)
EU non-annex I countries 1708.00 (22.30) 1947.30 (1229.30)
East Asia 363.20 (6.80) 553.00 (453.10)
Japan (137.30) (12.80) 3490.90 (860.00)
Oceania 3821.80 (31.50) 258.20 (38.20)
Rest of South America 36306.50 (812.20) (4197.70) (15725.70)
Russia 65846.30 (484.20) 3023.90 (2393.00)
SE Asia 20199.50 (296.50) 2246.40 (7301.40)
Sub-Saharan Africa 39312.90 (437.40) (2282.10) (12839.70)
South Asia 1060.30 (39.50) 1732.60 (1626.90)
United States 615.90 (10.30) 1659.70 (295.70)
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general, higher δ leads to higher overall biomass and higher levels of carbon, all
else equal. The parameter estimates on π are negative for all regions, as higher
π is associated with slower growth and hence less carbon. The parameter on
own-price elasticity is positive in most regions in the weighted regressions. In
general, an increase in own-price elasticity will cause the rental function to
decline, thus reducing rents and increasing the land in forests. Two exceptions
occur in inaccessible types in the Rest of South America and Sub Saharan
Africa. The parameter on global elasticity is negative. As noted above, this
occurs because of the functional form used in Equation (3) and the fact that
total forest area is declining over time. Hence, higher elasticity values will
increase rents for any given land area in forests, and make land more expensive.
This will cause the model to hold less land in forests if the elasticity value is
higher, thus decreasing total carbon storage.

4 Discussion

This study uses Monte Carlo methods to assess how uncertainty in key param-
eters in the GTM potentially affects projected market outcomes, focusing on
timber prices, outputs, and carbon. The parameters we include as uncertain
are the yield function parameters and the land supply elasticity parameters,
following other recent applications of this modeling framework and similar
studies (Kim, 2010; Choi et al., 2011; Kim, 2016). The results suggest that
timber prices, timber outputs, and carbon are all expected to increase over
time, consistent with other recent studies that applied the same or similar
versions of this modeling framework (Baker et al., 2017, 2018; Kim et al., 2018;
Tian et al. (2018), 2016; Favero et al. 2017). Various ecosystem services from
forests, namely timber outputs and carbon, are projected to change signifi-
cantly in the future, and the aggregate changes are influenced by uncertainty
in key underlying parameters.

The baseline projects that sawtimber prices increase at 0.4% per year
through 2090 and pulpwood prices increase 0.2% per year. These increases
suggest continuing scarcity for wood products in the future, although the
rates of growth are slower than historical price increases of the past century
(Haynes, 2009). Price growth is lowest for pulpwood given that a wider variety
of forest types and tree sizes can be used to produce pulpwood. In contrast,
sawtimber is a higher valued use and has fewer types that can be used to
produce it. All Monte Carlo scenario projections imply rising prices both for
sawtimber and pulpwood, and the range across the various scenarios is fairly
narrow. This makes sense given our assumption that parameter draws are
taken from a triangular distribution and that wood from various regions is
relatively fungible within a global demand system. That is, while some regions
enjoy faster forest growth due to the parameter draws, other regions have
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slower forest growth. These changes are all random, so that increases are offset
by decreases elsewhere.

Although global harvests are projected to increase over time, not all regions
share in the gains. Some regions, the north in particular, are projected to
experience reductions in timber output. For example, sawtimber and pulpwood
outputs are expected to decline in Canada by 2050, although sawtimber outputs
are projected to rebound modestly by 2090. Sawtimber and pulpwood outputs
decline in Russia over the entire century. These reductions in output are a
result of the relatively high costs of accessing timber and harvesting it in
these regions, and the slow growth in pulpwood and sawtimber prices. Rather
than building road infrastructure to remote places, investors place resources in
harvesting timber in more productive temperate and subtropical regions. This
result is consistent across the range of parameter draws. Pulpwood outputs in
the tropics also tend to fall, with the exception of Brazil, which experiences
strong increases in pulpwood outputs by 2090. This growth is driven by rising
stocks and harvests in second growth forests.

Total carbon stored in the world’s forests is projected to increase by 71.7
Pg C by 2050 and 104.9 Pg C by 2090. The 95% uncertainty interval includes
the possibility that global storage declines in 2050 relative to 2010 levels, but
by 2100, the model indicates carbon storage increases with 95% confidence.
Brazil and Russia experience the largest gains in absolute terms, although the
95% uncertainty interval in Brazil includes the likelihood of a reduction in
total C storage by 2050 and 2090. For the most part, other temperate regions
also experience growth in carbon storage, while a number of tropical regions
experience reductions. The largest reductions are projected to occur in SE
Asia as a result of deforestation losses.

The regression results provide insights into the specific factors affecting
sawtimber, pulpwood and carbon outputs. As expected, factors that increase
biomass on forest sites are expected to increase output of both sawtimber and
pulpwood and vice-versa. There are some exceptions to this general rule in
some of the regions because shifts in carrying capacity also encourage a shift in
the proportion of timber allocated to pulpwood versus sawtimber. This effect
is species specific. Similarly, an increase in the rate of growth of a species
leads to an increase in both sawtimber and pulpwood output (the parameter
π is negative). The result is reversed in some regions for sawtimber due to a
reallocation of output towards pulpwood.

Changes in the parameters have less ambiguous impacts on carbon storage.
Higher carrying capacity increases carbon storage, as does faster growth.
Similarly, an increase in own-price land supply elasticity increases carbon
storage, and an increase in the parameter for global land supply elasticity
reduces carbon storage. Based on the individual parameter estimates for
each forest type, we calculate the marginal impact of changes in carrying
capacity (δm), growth rates (πm), and the elasticity parameter in the rental
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Table 6: Effect of a 10% change in each parameter on regional total carbon storage in 2090
in million tons C and as a % of the average baseline projection by 2090.

Own-price Global
Region Delta (δ) (%) Pi (π) (%) elasticity Elasticity

Million tons C

Africa/Middle East 0.3, (3.8%) 0.2, (3.1%) 0.05, (0.7%) −0.09, (−1.1%)
Brazil 49.0, (8.2%) 25.7, (4.4%) 2.82, (0.5%) −5.18, (−0.9%)
Canada 4.1, (2.3%) 2.4, (1.3%) 0.37, (0.2%) −0.53, (−0.3%)
Central America 1.1, (5.8%) 0.6, (3.2%) 0.12, (0.6%) −0.20, (−1.1%)
China 2.3, (3.9%) 1.8, (3.0%) 0.42, (0.7%) −0.57, (−1.0%)
EU Annex I 2.5, (4.3%) 2.6, (4.5%) 0.70, (1.2%) −1.16, (−2.0%)
EU non-annex I 0.4, (4.0%) 0.5, (4.6%) 0.13, (1.3%) −0.21, (−2.2%)
East Asia 0.1, (1.7%) 0.1, (2.3%) 0.03, (0.9%) −0.05, (−1.6%)
Japan −0.1, (−0.1%) 0.1, (1.8%) 0.20, (2.9%) −0.24, (−3.6%)
Oceania 1.5, (3.7%) 0.6, (1.6%) 0.10, (0.3%) −0.13, (−0.3%)
Rest of SA 5.6, (5.8%) 7.6, (7.7%) −0.12, (−0.1%) −0.62, (−0.7%)
Russia 17.4, (4.0%) 13.8, (3.2%) 0.36, (0.1%) −0.61, (−0.1%)
SE Asia 6.7, (6.6%) 5.9, (5.9%) 0.17, (0.2%) −0.90, (−0.9%)
Sub-Saharan Africa 7.8, (7.1%) 5.3, (4.8%) −0.11, (−0.1%) −0.64, (−0.6%)
South Asia 0.2, (2.2%) 0.4, (3.7%) 0.11, (1.0%) −0.19, (−1.7%)
United States 1.5, (2.2%) 1.4, (2.2%) 0.48, (0.7%) −0.55, (−0.8%)

function (ηm) on carbon storage in each region (Table 6). Changes in carrying
capacity have the largest effect on total carbon storage, followed by changes in
the growth rate of forests. The effects of deviations in the carrying capacity
parameter have their biggest impact in Brazil, followed by Russia. The effects
of deviations in carrying capacity are large in Brazil and Russia because these
regions also contain a large portion of the world’s existing carbon. Interestingly,
the 10% increase in carrying capacity increases carbon by less than 10%. The
largest changes in carbon occur in Brazil, SE Asia, and Sub-Saharan Africa.
In contrast, changes in elasticity have a relatively modest effect on carbon.

The focus of this uncertainty analysis is on key model parameters related
to forest yield growth, carrying capacity, and the relative costs of moving new
land into forests, which are all critical ingredients for projecting future biomass
availability and carbon stocks. It is important to note, however, that other
model parameters were held at their base value for this analysis and were not
part of the Monte Carlo analysis, including demand elasticity parameters for
pulpwood and sawtimber. Our justification for omitting key parameters from
the Monte Carlo experiment is that introducing too many random parameters
would confound the interpretation of the analysis. Restricting the random
parameter sets to just those that are related to physical growth rates and the
economic decision to expand or contract forest land supply offers a tractable set
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of parameters for conducting attributional analysis and exploring heterogeneity
in the relative importance of specific parameters across regions and time.

However, to illustrate the relative importance of demand elasticities on
projected forest market and management outcomes, we ran two additional
sensitivity scenarios with alternative elasticity assumptions while holding all
other parameter values at their mean levels. In the first case, demand elasticities
are divided by one half (from an assumed value of −1 to −0.5). Less elastic
demand results in approximately 6% more carbon storage globally by 2050
(relative to the mean parameter value baseline scenario). This elasticity change
results in more investment and increased growing stocks, which increases
carbon accumulation. In the second case, elasticities are more elastic (doubled
from −1.0 to −2.0), which has the opposite effect and reduces projected carbon
by approximately 4% in 2050.

We include an attributional analysis to assess relative importance of in-
creased biomass and rates of growth of each species on sawtimber and pulpwood
outputs. Results from this attributional analysis show that increased biomass
and higher rates of growth on forest sites increase output of both sawtimber
and pulpwood and vice-versa. However, there are some exceptions based on a
tendency in some regions to reallocate output towards pulpwood with higher
rates of growth or biomass capacity. We further gauge the relative importance
of the biomass and growth rate parameters as well as land supply elasticities
on carbon output. Our results are unambiguous: higher biomass carrying
capacity increases carbon storage, as does faster growth. Similarly, an increase
in own-price land supply elasticity increases carbon storage and an increase in
the parameter for global land supply elasticity reduces carbon storage.

When considering the attributional analysis, we find that carbon storage
is most sensitive to uncertainty in biological growth parameters. Perhaps
surprisingly, uncertainty in land supply elasticity has a fairly small impact
upon the carbon storage. One reason for this is that many forests, including a
large portion of carbon storage, are far from the extensive frontier (e.g., the
agriculture and forestry interface) and will not experience land use change over
the projection period. Changes in the physical growth parameters have an
important effect because they impact relatively large land areas simultaneously,
and for some region and forest type combinations, modest increases in growth
rates or stock density parameters can result in meaningful changes in carbon
storage.

There are a few limitations of this analysis worth mentioning. First, given
the lack of publicly available forest inventory data in most regions of the world,
we apply triangular distribution assumptions to reflect uncertainty in forest
growth parameters that are broadly consistent with parameter distributions
empirically estimated for U.S. forest types. This approach ignores regional
heterogeneity in the underlying uncertainty of physical yield attributes but rep-
resents a reasonable alternative for developing regional parameter distributions
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in the absence of available inventory data. Second, as previously discussed,
parameters are drawn randomly across regions and forest types, and thus we
do not account for systemic risks or the possibility that forest yield growth
changes (or general uncertainty) could be similar in direction across forest
types within a large region such as the United States or Brazil. Finally, this
analysis only includes a limited number of the GTM’s parameters in the Monte
Carlo analysis, which could ignore important interactions between physical
growth parameters and other economic inputs such as demand elasticities. To
address this, results from a sensitivity analysis are provided that illustrate
the importance of demand-side elements in projected forest carbon outcomes,
but deviations in demand elasticities are not interacted with stochastic yield
growth and land supply parameters for full attributional analysis.

Nevertheless, while the literature is full of sensitivity analyses that evaluate
the impact of adjusting some set of model inputs or policy-related constraints,
few studies have applied Monte Carlo techniques to evaluate the relative
importance of stochastic model parameters on endogenous variable outputs
using integrated intertemporal models of economic and resource management
systems. This is partly due to computational complexity and the difficulty
in addressing key scenario design issues (e.g., choosing which parameters
to be stochastic). This analysis seeks to add to this literature by applying
Monte Carlo techniques to a global intertemporal model of forest resources and
markets. Our results show relatively modest uncertainty ranges for projected
model outcomes, which suggests that the global forestry sector is relatively
resilient to local deviations in physical growth or land supply assumptions.
Finally, attributional analysis reveals that the relative influence of physical
growth parameters is likely a more important determinant of future forest
carbon stocks than economic parameters that influence the amount of forest
land in the system.

5 Conclusion

Numerous models have now been used to project future market and biomass
outcomes for forests. When confronted with uncertainty associated with
the underlying parameters used in the models, the modelers have typically
resorted to sensitivity analysis to assess how the results are influenced by
shifts in important parameters. More recently, modelers have been using
Monte Carlo techniques to more fully characterize the influence of parameter
uncertainty on model outcomes. While Monte Carlo techniques can be applied
in a straightforward way with static or recursive models, their application
to dynamic models, particularly in forestry, has been limited because of the
computational burdens. This paper addresses the computational issue by using
a super computer to conduct a Monte Carlo analysis with a global dynamic
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optimization model of timber markets through 2020. Given the importance
of forests in the global carbon cycle, it is useful to better understand the
sensitivity of market outcomes (e.g., prices, outputs) and carbon, to important
input parameters, such as the biomass yield functions and land supply.

The results of the paper suggest that aggregate trends are not significantly
affected by uncertainty in the underlying parameters for forest yield or land
rents. Prices are expected to increase modestly both for sawtimber and
pulpwood, consistent with results presented in Tian et al. (2018), another
detailed baseline assessment, and Kim et al. (2018), but the uncertainty bounds
for both prices are very small. The results also suggest that the distribution of
timber outputs and carbon fluxes is sensitive to uncertainty in the underlying
set of parameters. Projected sawtimber and pulpwood prices both trend
upwards, with the fastest rate of increase in sawtimber (0.4% per year versus
0.2% per year). Nonetheless, future prices are projected to increase over the
next century at only a fraction of the rate of the last century (e.g., Sohngen
and Haynes, 1994; Haynes, 2009). The 95% uncertainty interval on global
prices is relatively narrow for both sawtimber and pulpwood. Despite the
modest price increases, we project that sawtimber and pulpwood outputs
both increase by around 320–350 m3 per year. The increases in pulpwood
are perhaps surprising given concerns about reductions in harvests due to
declining pulpwood demands (e.g., Latta et al., 2015), but we have maintained
relatively robust demand growth in our model simulations to account for other
similar demands, such as fuelwood and bioenergy.

Despite the potential increase in aggregate global output, the results suggest
that timber harvests could decline in some regions in the future. Canada, for
instance, is projected to experience a reduction in pulpwood and total timber
harvests by 2050 and continuing through the end of the century. Similarly,
Russia is expected to experience a reduction in timber harvests. Based on the
uncertainty bounds, there is relatively high potential for pulpwood harvests
to decline both by the middle of the century and the end of the century
globally, although the average change is positive. The largest share of these
reductions occurs in temperature and boreal regions. Others have suggested
that pulpwood harvests could be declining due to demand side factors (Latta
et al., 2015), and these results suggest that there is a concern about the
competitiveness of pulpwood production in many regions even if demand
remains somewhat strong over time.

Global carbon storage is expected to increase by 71.7 Pg C (−5.0 to 149.1)
by 2050 and 104.9 Pg C (24.8 to 186.6) by 2090. Most regions are expected to
experience an increase in carbon storage, with the biggest increases on average
occurring in Russia and Brazil. The lower bound in Russia remains well above
0 both in 2050 and 2090. In the tropics, there is more potential for carbon
losses over time, due largely to continuing deforestation trends there and the
interaction of deforestation with uncertainty in land supply elasticity.
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Overall, our results provide evidence that future global forest carbon stock
trends are robust to uncertainty surrounding yield growth assumptions and
economic parameters related to land supply. However, we find substantial
variation across regions, indicating a need for increased investment in local
inventory assessments and monitoring to inform global systems models and
improve national- or regional-scale projections of forest carbon futures.
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