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“Consideration of potential fu-
ture outcomes from land use,
land use change and forestry
is integral for achieving policy
goals, especially GHG mitigation
goals, as the evolution of forests
over time will have important
implications for whether or not
commitments can be met.”

Representing 30% of the world’s ice-
free land surface area (International
Panel on Climate Change, 2019;
Food and Agriculture Organization,
2015), forests will continue to play
a large role in global environmental
systems, economies, and policies, in-
cluding efforts to reduce greenhouse
gas (GHG) emissions – but the ex-
tent of that future role is largely
unknown. Global forests currently
provide important ecological (e.g.,
habitat, water filtration) and eco-
nomic [e.g., supported a global forest products economy valued over $US247
billion in 2017 (Food and Agriculture Organization, 2019)] services, and they
provided a net global carbon sink over the last century (Nabuurs et al., 2007;
Houghton, 2008; Smith et al., 2014). Heightened recognition of the importance
of forests in sustainable development and mitigation efforts is reflected in
recent reports (e.g., International Panel on Climate Change, 2019; Rogelj et al.,
2018; U.S. Global Change Research Program, 2018) as well as commitments to
reduce GHGs (e.g., United Nations Framework Convention on Climate Change,
2015). Forest-based mitigation investments represent vast potential GHG miti-
gation opportunities (Van Winkle et al., 2017; U.S. Environmental Protection
Agency, 2005; Sohngen and Mendelsohn, 2003) that are inexpensive relative to
other sectors (Rose et al., 2012). In the context of global commitments, land
use sector could yield 20%–25% of total emission reductions (Forsell et al.,
2016). In the U.S., there has been increased attention to the role of forests in
GHG mitigation (U.S. Department of State, 2014; White House, 2016; U.S.
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Department of Agriculture, 2015) and economic development efforts, including
advancement of the U.S. bioeconomy (Biomass Research and Development
Board, 2016). Consideration of potential future outcomes from land use, land
use change1 and forestry (LULUCF) is integral for achieving these policy goals,
especially GHG mitigation goals, as the evolution of forests over time (in terms
of size, health, how they are managed and their ability to sequester and store
carbon) will have important implications for whether or not commitments can
be met (Baker et al., 2017; Van Winkle et al., 2017; International Panel on
Climate Change, 2019). It is therefore essential that decisionmakers and the
research communities that support them – such as the forest sector modeling
community – develop the best data and state-of-the-art tools for evaluating
potential future forest sector outcomes to inform policy development. Contri-
butions by the papers in this special issue advance our understanding of forest
system dynamics and forest sector mitigation opportunities, and confirm that
forest sector tools play an important role in supporting science-based decision
making.

Making policy decisions today – including setting future sustainable de-
velopment and mitigation goals – inevitably affects people, economies and the
environment in the future. Therefore, decisionmakers require tools that (1)
can assess potential policy outcomes (e.g., Daigneault, 2019; Baker et al., 2017;
Fawcett et al., 2015; Havlík et al., 2014), (2) can aid selection of specific future
estimates or targets (e.g., United Nations Framework Convention on Climate
Change, 2015; U.S. Department of State, 2016), and (3) offer a means to mea-
sure progress toward those goals (e.g., United Nations Framework Convention
on Climate Change, 2015). Producing historic estimates and future potential
projections for any sector has its difficulties, but the forest sector faces unique
challenges (Smith et al., 2014; International Panel on Climate Change, 2014a;
Irland et al., 2001). Forest ecosystem measurements and related GHG flux
quantification are particularly challenging as these ecosystems have significant
spatial and temporal variability, species and other environmental heterogeneity
and interconnectedness with other ecosystems (Brown, 2002; Pearson et al.,
2007; Goetz et al., 2015; Olander and Haugen-Kozyra, 2011). Additionally, for-
est sector markets are very dynamic, due to (1) the inherent integrated nature
of forest products manufacturing systems (see Figure 1, Latta et al., 2018), (2)
the interconnectedness and fluidity of global forest product markets (Latta et
al., 2015; Forest2Market, 2019), (3) the heterogeneity of land owners and their
behavior including responses to market signals via land management regime de-
cisions (Håbesland et al., 2016; Sohngen and Mendelsohn, 2003), and (4) Policy

1Land use change refers to a change in the use or management of land by humans, which
may lead to a change in land cover. Land cover and land use change may have an impact
on the surface albedo, evapotranspiration, sources and sinks of greenhouse gases, or other
properties of the climate system and may thus give rise to radiative forcing and/or other
impacts on climate, locally or globally (International Panel on Climate Change, 2014b).
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Figure 1: Depiction of U.S. forest production flows within the underlying analysis presented
in Latta et al., 2018 using the Land Use and Resource Allocation (LURA) model. Created
by Greg Latta (University of Idaho).

interventions that can that affect land-based commodity markets and related
land use decisions (e.g., bioenergy policies) (Guo et al., 2019; Wise et al., 2014).

In the context of GHG reduction efforts, setting future mitigation targets
requires choosing whether to establish them relative to a historic year, a series
of historic years, or some other metric, series of years and how to select those
historic elements. Historic emissions flux data related to forest ecosystems
is regularly collected via physical observations and/or remote sensing data,
including data compiled for national inventories under the United Nations
Framework Convention on Climate Change (2005), and can serve as input
data for future projections tools, as benchmarks against which future goals
can be set, and a means for measuring progress toward established goals
(including tests for additionality) (Greenglass, 2015). However, in addition to
any uncertainty of the inventory data itself (McGlynn et al., 2019), annually-
reported U.S. LULUCF emissions flux estimates must be updated back to
19902 using new methods and technologies when available3 (United Nations

2Though the time series starts in 1990, this start date requires obtaining data from as
far back as 1971 in order to understand the legacy effects of land use/land use conversion
on GHG flux.

3Updating the entire time series is a necessary action when better/different historic
data is available or a methodological change is made to ensure time series consistency, a
fundamental principle in IPCC GHG Inventory guidance. The intent is that the inventory
is improved annually by adopting incremental changes.
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Figure 2: Fluctuations in U.S. net forest sequestration estimates over the last 12 years, as
reported in the 2007–2019 Inventory for Greenhouse Gas Emissions and Sinks with three
reference bullets for the year 2005 (U.S. Environmental Protection Agency, 2009; U.S.
Environmental Protection Agency, 2014b; U.S. Environmental Protection Agency, 2019).
Includes the following pools: aboveground biomass, below ground biomass, dead wood,
litter, and soil organic carbon, as well as additional pools for 2019 including soil mineral
and drained organic soils. Created with Greg Latta (UI).

Framework Convention on Climate Change, 2005; International Panel on
Climate Change, 2006), which causes variations in the historic data between
annual publications (Latta et al., 2008 and Figure 2).4 These variations make
it difficult to discern consistent forest carbon sink trends and increase the
complexity of establishing emissions reduction targets relative to historic values
and tracking progress toward or deviation from those targets. Furthermore,
historic variability in emissions estimates creates challenges when establishing
initial conditions in models that project emissions under alternative future
scenarios (Johnston et al., 2019; Mendelsohn and Sohngen, 2019).

Another key LULUCF policy consideration is that past forest ecology and
economic trends are not likely to continue in the future. Various studies
indicate that U.S. forests are aging and carbon sequestration rates are still
increasing but at a decreasing rate (Wear and Coulston, 2015; Nabuurs et al.,
2013), with some suggesting they will potentially become a net source of

4According to the IPCC guidelines for national GHG inventories (2006), “using different
methods and data in a time series could introduce bias because the estimated emission
trend will reflect not only real changes in emissions or removals but also the pattern of
methodological refinements.”
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emissions in the next 10–40 years (U.S. Department of Agriculture - Forest
Service, 2012), while others estimate continued or increasing net sequestration
(Tian et al., 2018). Forest resources increasingly face pressure due to land use
competition for provision of food, fiber, fuel, feed/fodder, and other social and
cultural uses as well as biophysical changes related to variations in climatic
conditions (U.S. Global Change Research Program, 2018; International Panel
on Climate Change, 2019). These pressures plus declining traditional forest-
based markets (e.g., newspaper) and emerging markets and technologies (e.g.,
cross laminated timber) will inevitably cause future forest product market
demands and related land use patterns, management activities and GHG
emissions to deviate from the past (Daigneault et al., 2019; White House, 2016;
Håbesland et al., 2016; Forest2Market, 2019; Gambino et al., Forthcoming).
Therefore, as historic trends of forest resources, market interactions and GHG
profiles do not necessarily reflect future trends, projections tools should allow
for identification of potential opportunities and obstacles per different future
conditions and policy designs.

Given the important considerations outlined above, it is imperative to note
that future forest GHG projections outcomes depend largely on input data,
model type and specifications, scope, spatial and sectoral coverage, assump-
tions and analytical objectives. A variety of different methods and tools for
simulating future trajectories of forest resources and related GHG fluxes exist.
Built for varying purposes, with different spatial and temporal scopes, capabili-
ties, and different perspectives concerning future potential forest economic and
environmental conditions, these tools sometimes produce divergent estimates
of mitigation potential. For example, the 2014 CAR (U.S. Department of
State) presented estimates from two different U.S. government forest resource
tools to establish a range of future potential forest sector GHG outcomes.
Using a range in this context allowed for transparent acknowledgement of the
complexity, uncertainties (in data, assumptions about the future, etc.) and
differing modeling approaches associated with generating land use sector GHG
estimates, while simultaneously giving a general idea of the sector’s potential
contribution to overall net economy-wide U.S. mitigation estimates.

Below is a high-level discussion of five basic approaches to estimating future
potential forest-related GHG emissions (historic reference and extrapolations,
ecological models, forest sector economic models, integrated assessment models,
and meta-analysis).5 It is important to note that all efforts to simulate future
outcomes inherently include some degree of uncertainty, as assumptions must
be made about future conditions. The degree of uncertainty often depends
on the quality of data inputs and assumptions used (e.g., Cai et al., 2018), as
well as parametric and model structure-based uncertainties. Discourse on the

5This general overview is not exhaustive as other approaches can be used to analyze
this sector, and have their own strengths and weaknesses.
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Figure 3: Range of projected emissions for a business as usual baseline (blue) and post-2012
additional measures (green), with variability in LULUCF outcomes represented as a range
in the 2014 CAR (U.S. Department of State).

technical differences between modeling approaches– like different perspectives
on foresight (e.g., recursive dynamic models with myopic expectations vs. inter
temporal optimization models with perfect foresight)– and related uncertainties,
strengths and weaknesses can be found in the papers in this special issue and
other discussions (e.g., Wade et al., 2019; Lauri et al., 2019; Johnston et al.,
2019; Sjølie et al., 2015).

• Historic data are useful for tracking observed forest resource changes
generally, including GHG fluxes, over time (U.S. Environmental Pro-
tection Agency, 2019). Some policymakers would like to use this data
at large spatial scales to infer conclusions about how specific drivers,
influence large-scale carbon stocks. While the influence of different
drivers on observed carbon stock outcomes can be estimated, data users
must carefully specify models to ensure that they have identified any
causative relationships they estimate. For example, observing that in-
creases in global woody biomass use for energy occur in conjunction
with global forest carbon stock increases does not necessarily mean that
increased biomass use is causing global carbon stock increases. Other
factors (e.g., policy incentives, natural disturbances, changing demand
of other forest products) also influence forest carbon stock levels. Also,
as mentioned above, historic estimates inherently have some uncertainty.
Lastly, extrapolating historic trends into the future may be useful in
some contexts (e.g., if evaluating potential future LULUCF outcomes
given ceteris paribus historic biophysical and market trends,) but forgoes
consideration of potential outcomes given any variation in underlying
future conditions versus history, thus restricting the ability to assess a
full range of policy designs and their implications.



Policy Perspective on the Role of Forest Sector Modeling 193

• Using ecological modeling – like biogeochemical simulators, vegetation
or process models – to consider future biophysical potential (BP) of
forest outcomes (see Figure 4 below) is useful when an analysis focuses
on physiological parameters such as maximum yields, forest ecosystem
dynamics, and climate change impacts on forests (Kim et al., 2017).
However, this approach typically does not factor in economics via forest
management regime responses to changing policies or market signals
(e.g., demand shifts), or assess important land use change implications
like leakage (Murray et al., 2004; U.S. Environmental Protection Agency,
2014a).6 Omitting economics may produce outcomes that under or
overestimate carbon implications, giving policymakers a false sense of
direction.

• Forest sector economic models use ecological and economic forest re-
source data, including historic forest carbon stock estimates, to simulate
potential future scenarios of market potential or different degrees of
competitive market potential, depending on the modeling framework and
scope (Figure 4, MP, CMP1 or CMP2). These models accomplish this
by using different environmental, socioeconomic and/or policy variables,
often with significant sectoral detail (e.g., U.S. Environmental Protection
Agency, 2005). The ability of these tools to isolate effects per variation of
different parameters offers clarity regarding to key features of interest in
the forest sector (e.g., specific analysis of different forest species and/or
management regimes that can retain focus on forests that remain forests)
and allows for better characterization of different economic and ecological
drivers of forest GHG fluxes (Sohngen and Mendelsohn, 2007; Baker
et al., 2017). However, these models rely on assumptions about future
environmental as well as macroeconomic and specific forest market con-
ditions which adds uncertainty. Model structures can also affect results
which adds another level of uncertainty (e.g., Wade et al., 2019; Sjølie
et al., 2015).

• Integrated assessment models (IAMs) are models that “integrate knowl-
edge from two or more domains into a single framework” (Nordhaus,
2013), which in the climate analysis context often manifests as frame-
works that integrate economy-wide natural and economic systems globally
to assess potential policy outcomes and tradeoffs, allowing insights not
possible in single sector models (e.g. Calvin et al., 2019; Weyant, 2017;
Metcalf and Stock, 2015; Rose, 2014). While these economy-wide com-
petitive market tools (Figure 4, CMP2) have the unique ability to reflect

6Leakage can be defined as “the indirect impact that a targeted LULUCF activity
in a certain place at a certain time has on carbon storage at another place or time”
(Intergovernmental Panel on Climate Change, 2000).
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potential GHG outcomes across various sectors, including the land use
sector, they often have highly aggregated sector representation which
does not offer detailed evaluation of specific forest ecosystem and market
interactions and related GHG outcomes.

• Some research efforts provide future potential LU sector mitigation
quantity and cost estimates using meta-analysis. This approach uses
results from a variety of studies – with different methods, objectives
and assumptions – to identify similar and disparate potential mitigation
estimates (e.g., Van Winkle et al., 2017; Van Kooten and Sohngen, 2007).
However, as discussed by Schneider and McCarl (2006), it is crucial
that such assessments also identify the uncertainties, limitations and
assumptions of underlying studies, and do not add together or directly
compare results from different studies that use different estimation
methods (e.g., like those listed above). For example, some studies (e.g.,
Griscom et al., 2017) may directly compare, derive new estimates using
and/or add together results from a variety of studies (e.g., biophysical and
technical potential analyses and competitive market potential estimates)
to estimate maximum mitigation potential. Applied in this manner, this
approach may overestimate mitigation potential at a given price because
it does not incorporate important resource competition, tradeoffs, and
market interactions that would arise as different mitigation practices
across sectors are implemented simultaneously, thus reducing mitigation
potential.

“With the understanding that
nothing is constant in the forest
sector – in related ecosystems,
markets, management technolo-
gies – decisionmakers ultimately
need to understand as much as
possible about the potential fu-
ture conditions faced by forested
lands and those that manage
them.”

Each approach described briefly
above offers different perspectives on
forest resources as well as different
strengths and weaknesses, and they
each can be useful in different re-
search applications. However, with
the understanding that nothing is
constant in the forest sector – e.g.,
in related ecosystems, markets, and
management technologies – decision-
makers ultimately need to under-
stand as much as possible about the
potential future conditions faced by
forested lands and those that manage
them. To the extent possible, forming future policies by evaluating policy
designs from only one discipline and only looking to the past as a future
guide should be avoided. Specifically, anthropogenic influence on forestry
GHG emissions fluxes (via market signals and management responses) is
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Figure 4: Different approaches to evaluating mitigation potential incorporate different input
variables and assumptions, and different capabilities for evaluating competition for limited
resources and other tradeoffs. These curves are a general representation of the relative
differences between mitigation potential estimation approaches. Biophysical potential (BP)
estimates the maximum mitigation potential the land offers without consideration of costs,
competing land uses, etc, representing an upper bound. Techno-economic potential (TP)
is basically a marginal abatement cost (MAC) curve analysis for a portfolio of mitigation
options and includes costs, yield potential, and GHG emissions changes for each option in
geographic areas where that technology could theoretically be applied, thus reflecting rising
costs of individual activities, often using a bottom-up cost approach (e.g., Brandt et al.,
2018; U.S. Environmental Protection Agency, 2013). The market potential (MP) MAC
curve reflects specific-sector market interactions, differing from TP as it explicitly accounts
for additional elements like market opportunity costs and resource constraints. Competitive
market potential (CMP1) builds upon the MP curve by including competition for the same
land resource base by multiple land use sectors – e.g., adding agriculture to forest sector
mitigation demand – and in CMP2, further adding in bioenergy expansion. Developed in
collaboration with Justin Baker (RTI International) and Greg Latta (University of Idaho)
(Latta et al., 2019).

undisputable and should not be excluded when considering policy solutions.
Forest sector economic modeling tools can integrate detailed forest ecosystem
and disaggregated forest sector land management responses (including those
on forest land remaining forest land) to market drivers under varied future
conditions. As abstractions of reality, such tools can offer useful insights to
policy makers designing and implementing polices that affect forestry and land
use about the potential directionality and magnitude of policy outcomes given
certain conditions, assumptions and constraints, while acknowledging related
uncertainties.

This integrated economic and ecologic forest sector modeling concept is cer-
tainly not new (Adams et al., 1996; Binkley et al., 1987; Mills & Kincaid, 1992;
Adams et al., 1996), but the evolution of new technologies in data collection
and remote sensing as well as computing power has enabled new projections
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capabilities over the last several decades. Nonetheless, uncertainties in model
input data, parameters, functionality, and assumptions about future condi-
tions persist and often lead to meaningful differences in U.S. as well as global
forestry and carbon stock projections from different models (e.g., Alexander
et al., 2016). It is therefore vital for the forest sector modeling community
to continually strive to update models with the most recent information and
validate models and outcomes, both by evaluating models and their outcomes
independently and as part of larger model comparison efforts.

Evaluating projections provided by multiple models, or explicit multi-
model assessment frameworks, can help inform policy or resource investment
strategies and reduce the implicit bias inherent in single-model projections.
The Agricultural Model Inter-Comparison project (e.g., Rosenzweig et al.,
2014), Energy Modeling Forum (e.g., Weyant, 2017) and Integrated Assessment
Modeling community contributing Shared Socioeconomic Pathway scenarios
(e.g., Riahi et al., 2017) are all examples of how harmonized scenario analysis
across different models with varying structural attributes can provide additional
information on possible future pathways in various sectors of the economy.
Highlighting findings that are robust across different models adds to the
confidence in estimated outcomes (e.g., Schmitz et al., 2006). Multimodel
efforts also offer vital platforms for discussions on why model results differ and
to identify and better understand the drivers of those differences to minimize
them to the extent possible. Such efforts include comparing forest-related
results between not only forest sector models, but also between forest sector
models and other modeling approaches like IAMs, which allows for forest
sector-specific model outcomes to be considered in a broader, economy-wide
context.

This special issue is an important contribution to the literature as the
papers therein reflect advancements in forest sector modeling tools that give
decisionmakers informed acuity about what kinds of policy frameworks and
incentives might be most effective in achieving policy goals. Also, it also
allows for the opportunity model developers and decisionmakers alike to
further understand and compare different modeling approaches and relevant
outcomes, which advances the important role that forest resource tools play in
science-based decision making. The extent to which the forest sector modeling
community can continue to collaborate, improve data and projections modeling
tools, and communicate important findings as well as information gaps with
the public and policymakers, may help dictate the degree to which forests
ultimately play in reducing global GHG emissions and achieving sustainable
development goals.
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