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ABSTRACT

In recent years, several successful tag recommendation mechanisms have been developed that, among others, built upon Collab-
orative Filtering, Tensor Factorization, graph-based algorithms and simple “most popular tags” approaches. From an economic
perspective, the latter approach has been convincing as calculating frequencies is computationally efficient and has shown to
be effective with respect to different recommender evaluation metrics. In order to extend these conventional “most popular
tags” approaches we introduce a tag recommendation algorithm that mimics the way humans draw on items in their long-term
memory. Based on a theory of human memory, the approach estimates a tag’s reuse probability as a function of usage frequency
and recency in the user’s past (base-level activation) as well as of the current semantic context (associative component).

Using four real-world folksonomies gathered from bookmarks in BibSonomy, CiteULike, Delicious and Flickr, we show how
refining frequency-based estimates, by considering recency and semantic context, outperforms conventional “most popular
tags” approaches and another existing and very effective but less theory-driven, time-dependent recommendation mechanism.
By combining our approach with a resource-specific frequency analysis, our algorithm outperforms other well-established algo-
rithms, such as Collaborative Filtering, FolkRank and Pairwise Interaction Tensor Factorization with respect to recommender
accuracy and runtime. We conclude that our approach provides an accurate and computationally efficient model of a user’s
temporal tagging behavior. Moreover, we demonstrate how effective principles of recommender systems can be designed and
implemented if human memory processes are taken into account.
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1 Introduction

One of the goals of Web Science as a new discipline is to understand
the dynamics of human behavior and social interactions that shape the
Web into a vast information network of content and people. As the
Web evolves into a platform through which people interact with each
other, communicate and express themselves, models of human behav-
ior can shed light on why the Web forms as it does, and contribute
to improving its underlying mechanisms. In this paper, we exemplify
this idea in the context of social tagging. In particular, we show that
a well-established model of human cognition both provides a good ac-
count of how people use tags and allows implementing an accurate and
efficient tag recommendation mechanism.

When users categorize and tag resources on the Web (e.g., pho-
tos), they draw on their semantic-lexical memories to retrieve corre-
sponding memory units. For instance, they might add the tag “Paris”
as the photo shows the place they recently visited. Understanding the
cognitive processes involved can help to predict individual tagging be-
havior (Seitlinger et al., 2015) and to model phenomena on the collec-
tive level, such as the emergence of stable tag distributions (Fu, 2008).

To make appropriate memory units quickly available, human memory
is very adaptive and tunes the activation of its units to statistical regu-
larities of the environment (e.g., Anderson and Schooler, 1991): The
more useful a memory unit has been and the stronger it is related to
the current context (i.e., environmental cues), the higher is its activa-
tion level and hence, probability of being retrieved.

We assume that these activation processes also determine a user’s
tagging behavior and that the usage probability of a tag can be derived
from estimates of its activation in the user’s memory. According to An-
derson et al. (2004), the activation of a tag should depend on at least
two variables: i) the general usefulness of a tag in a user’s tagging
history and ii) its associations to the current context, i.e., to elements
of the resource to be tagged. This means that a memory unit (e.g., the
tag “recommender”) is more likely to be brought into consciousness,
if we use it often and if it fits the current topic (e.g., “webscience”).
In the next subsection, we present a simple formalism, which allows
for a psychologically meaningful calculation and combination of the
two variables of usefulness and context. As we will show below, this
formalism helps to identify gaps in the current recommender research,
namely to reconsider recent attempts to introduce time-dependent dy-
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namics into recommender systems (Yin et al., 2011a; Zhang et al.,
2012). We also show how this simple mechanism improves predic-
tions of individual tagging behavior and how it can be used to design
and implement an accurate and efficient recommendation mechanism.

1.1 Formalizing the Activation of Memory Units

Consider a user retrieving a unit from his/her memory, such as a tag
that he/she has used previously. To derive its usefulness in the cur-
rent context, we determine the activation Ai of this unit of memory
i. According to the following activation equation, which is part of the
declarative module of the cognitive architecture ACT-R (e.g., Ander-
son et al., 2004), the usefulness is given by:

Ai = Bi +
∑
j

Wj · Sj,i︸ ︷︷ ︸
AssociativeComponent(AC)

(1)

The Bi component represents the base-level activation and quan-
tifies the general usefulness of a unit i by considering how frequently
and recently it has been used in the past. It is given by the base-level
learning (BLL) equation:

Bi = ln(
n∑

j=1

t−d
j ) (2)

where n is the frequency of the unit’s occurrences and tj is the re-
cency, i.e., the time (in seconds) since the jth occurrence. For ex-
ample, if a user has applied the two tags “recognition” and “recom-
mender” with equal frequency but “recommender” has dominated the
user’s recent bookmarks1 the equation predicts a higher activation for
“recommender”. The exponent d accounts for the power law of forget-
ting that each unit’s activation caused by the jth occurrence decreases
in time according to a power function (Anderson et al., 2004).

The second component of equation 1 represents the associative ac-
tivation that tunes the base-level activation of the unit i to the current
context. The context is given by any contextual element j important
in the current situation (e.g., the tags “memory” and “recollection”).
Through learned associations, the contextual elements are connected
with tag i and can increase i’s activation depending on the weight Wj

and the strength of association Sj,i. To simplify matters, we use the
tags associated with a given resource r (due to previous tag assign-
ments of other users) as the contextual elements. We derivedWj from
the number of times tag j has been assigned to r, and Sj,i from the
number of co-occurrences between the tags i and j. Section 4 contains
a more detailed and formal description of all calculation steps.

1.2 Research Questions

The introduction of the activation equation to model retrieval of tags
from memory leads us to a number of research questions. First, equa-
tion 2 models time-dependent decay, i.e., the effect of recency on a
memory unit’s activation, according to a power law. When looking at
recent tag recommendation models, which take into account the time-
dependent dynamics, they formalize the recency of tag use by means
of linear (Huang et al., 2014) or exponential decay functions (Zheng

1In this paper we refer to a bookmark as a user’s post of an URL and corre-
sponding tag assignments to a social tagging system.

and Li, 2011). Whereas a linear function can be rejected for theoreti-
cal reasons (e.g., Anderson and Schooler, 1991), and from 100 years
of empirical research into human memory (e.g., Ebbinghaus, 1913),
it is not clear whether an exponential or power law provides a better
account of time-dependent decay in the use of tags. In Section 3 we
therefore investigate the question:

• RQ1: Is an exponential or power decay function more appro-
priate to account for the effect of recency on a tag’s reuse prob-
ability?

Experiments have shown that a substantial amount of tag assign-
ments can be explained by modeling the strength of memory traces of
tags (Seitlinger et al., 2015). Hence, given equations 1 and 2 corre-
spond with individual tagging behavior, we assume that their formal-
ism can also be used to predict a user’s future tag reuse. To examine
this assumption, we followed a two-stage approach. First, since equa-
tion 2 formalizes a fundamental memory process in a very efficient,
i.e., computationally effortless way, we wanted to explore its tag reuse
prediction accuracy independent of the associative activation compo-
nent. Hence, the second question is:

• RQ2: Does the base-level learning (BLL) equation provide a
valid model of a user’s tagging behavior in the past to predict
future individual tag assignments?

Furthermore, given equation 2 allows for accurate tag reuse pre-
diction, we investigate the accuracy of equation 1 and raise the ques-
tion:

• RQ3: Does the additional consideration of the associative com-
ponent evoked by the current context further improve the accu-
racy of the base-level learning (BLL) equation to predict the
individual tag reuse?

Finally, in order to realize a complete tag recommender that goes
beyond solely predicting individual tag reuse, we take the results of
RQ3 and combine the activation equation with popular tags that have
been applied to the target resource by other users. When also consider-
ing other users’ tags, this allows us to introduce new tags to the target
user, namely tags that have not been used by the target user before (e.g.,
Lorince and Todd, 2013; Lipczak, 2012; Kowald et al., 2014b). To this
end, we weight these tags based on their frequency in the resource’s
tag assignments, hereinafter referred to as MostPopularr (MPr). This
allows us to compare the performance of the combination of the ac-
tivation equation and MPr with well-established approaches, such as
Collaborative Filtering (CF), FolkRank (FR) and Pairwise Interaction
Tensor Factorization (PITF), which leads to the fourth and final re-
search question of this work:

• RQ4: Can the whole activation equation, that considers base-
level and associative activation, be applied and extended to
create an effective and computationally efficient tag recom-
mendation mechanism compared to state-of-the-art baseline
approaches?

To summarize, the four research questions consider different lev-
els of complexity. While RQ1 only analyzes the past tagging behavior
of a user (see Section 3), RQ2 and RQ3 predict the individual reuse of
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tags from the users’ previous vocabulary (see Section 6.1.1), without
the current context (RQ2) as well as with the current context (RQ3).
Finally, RQ4 considers also the introduction of new tags by imitating
popular tags from other users, and thereby allows us to compare our ap-
proach with current state-of-the-art tag recommendation mechanisms
(see Section 6.1.2).

The remainder of this paper is organized as follows: We begin
discussing related work (Section 2) and describing our empirical anal-
ysis to tackle our first research question (Section 3). In Section 4 we
explain our approach. Section 5 describes the datasets, the experimen-
tal setup and the baseline algorithms used for evaluation. Section 6
addresses research questions 2 - 4 and summarizes the settings and
results of our extensive evaluation. Section 7 concludes the paper by
discussing our findings when deriving tag recommender mechanisms
from empirical, cognitive research. Finally, Section 8 discusses shortly
issues regarding the reproducibility of our work.

2 Related Work

Recent years have shown that tagging is an important feature of the
Social Web, supporting users with a simple mechanism to collabo-
ratively organize and find content (Körner et al., 2010a). Although
tagging has demonstrated to significantly improve search (Heymann
et al., 2008a; Dellschaft and Staab, 2012; Trattner et al., 2012) (and
in particular tags provided by the individual), it is known that users
are typically lazy in providing tags for instance for their bookmarked
resources. It is therefore not surprising that recent research is inves-
tigating personalized tag recommenders to support individual user in
their tag application process. To date, the two following approaches
have been established: graph (collaborative) -based and content-based
tag recommender systems.

For the latter strand of research, the most recognizable work is a
study conducted by Heymann et al. (2008b). The paper illustrates that
page-text is a significantly better predictor for the user’s social tags
than anchor-texts or surrounding hosts. This was explored within the
Stanford domain and for tags gathered from the bookmarking system
Delicious. Furthermore, there is the work of Lipczak et al. (2009),
Lipczak and Milios (2010), Lipczak and Milios (2011) or Lin et al.
(2014), that show the same effect for page-title and page-content. An-
other relevant and recent research in this context has been contributed
by Lorince and Todd (2013), Floeck et al. (2011) and Moltedo et al.
(2012), who show on a theoretical and empirical level that existing tags
(such as for instance existing tag clouds in LastFM) have influenced
the way people generate their own tags for a target resource.

Other related work (as pointed before) is the research on graph-
based approaches ranking the user’s individual tags for a target re-
source. The probably most notable research in this context is pre-
sented by Hotho et al. (2006) and Jaeschke et al. (2007) who intro-
duce an algorithm called FolkRank (FR) which uses the structure of
folksonomies for searching and ranking. These rankings can also be
used to recommend tags. Subsequent studies of Marinho and Schmidt-
Thieme (2008) and Jaeschke et al. (2007) or Hamouda and Wanas
(2011) show how the classic Collaborative Filtering (CF) approach
could be adopted for the recommendation of tags. Significant studies
of Rendle and Schmidt-Thieme (2010), Wetzker et al. (2010), Krestel
and Fankhauser (2010) or Rawashdeh et al. (2012) introduce a factor-
ization model, a Latent Dirichlet Allocation (LDA) model or a Link-
Prediction model based on the Katz measure, respectively, to recom-

mend tags to users.
Although the latter mentioned approaches perform reasonably well,

they are computational expensive compared to simple “most popular
tags” approaches. Furthermore, they ignore recent observations with
regard to social tagging systems, such as the variation of the individ-
ual tagging behavior over time (Yin et al., 2011b). To that end, re-
cent research has made the first promising steps towards more accurate
graph-based models that also account for the variable of time (Yin et
al., 2011a; Zhang et al., 2012). The approaches have shown to outper-
form some of the current state-of-the-art tag recommender algorithms.

In line with the latter strand of research, in this paper we present
a novel graph-based tag recommender mechanism that uses the activa-
tion equation, which is based on the principles of a popular model of
human cognition called ACT-R (e.g., Anderson et al., 2004; Anderson
et al., 1999). We show that the approach is not only very simple and
straightforward but also reveal that the algorithm outperforms current
state-of-the-art graph-based (e.g., Rendle and Schmidt-Thieme, 2010;
Hotho et al., 2006; Jaeschke et al., 2007) and the leading time-based
(Zhang et al., 2012) tag recommender approaches.

3 Modeling Recency Effects in Social Tagging Systems

This section addresses our first research question as to whether the
effect of recency decays according to an exponential or a power func-
tion. As described in Section 1, the same question has already been
investigated in a different context (e.g., re-occurrence of words in New
York Times headings) by Anderson and Schooler (1991). They found
that the power function produces a better fit. Up to now, research on
tag-based recommender systems has not applied a power function to
model the temporal tagging patterns of users (only linear or exponen-
tial ones, see e.g., Huang et al., 2014; Zheng and Li, 2011; Zhang et
al., 2012; Yin et al., 2011b; Campos et al., 2013). We therefore inves-
tigate, as to whether the results obtained by Anderson and Schooler
(1991) generalize to social tagging environments and thus, explore if
users’ tagging behavior justifies the application of the base-level learn-
ing (BLL) equation.

We approached this question investigating time-dependent user
behavior in four representative dataset samples drawn from BibSon-
omy, CiteUlike, Delicious and Flickr (for details see Section 5.1). We
sorted a user’s n bookmarks by time with the nth bookmark being
the most recently collected, and compared the tag assignments of the
user’s first n - 1 bookmarks with the nth bookmark. Per user, we cal-
culated the seconds elapsed since the last occurrence of each of the
user’s tags assigned to the n - 1 bookmarks. Additionally, we deter-
mined which of the user’s tags had been reused in the nth bookmark.
To obtain a statistically reliable value, we pooled all users’ tags with
the same recency (seconds elapsed) and determined the proportion of
tags reoccurring in the nth bookmark as an estimate of the probability
of future reuse.

In Figure 1, we plotted the estimated probability p(X) of tag
reuse in the nth bookmark against the number of seconds elapsed
for each of the four datasets. The four plots in Figure 1 test the as-
sumption of a power vs. exponential relationship by drawing the log-
log-transformed re-occurrence probability against the seconds elapsed
(Anderson and Schooler, 1991).

A glance at the plots in Figure 1 suggests that a power function
might result in a better fit than the exponential function since it fol-
lows somewhat a straight line in a log-log-transformed plot (Anderson
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(a) BibSonomy (power vs. exponential fit)
Power law parameters: xmin = 72, α = 1.19

Loglikelihood ratio: R = 36.05, p < .001
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(b) CiteULike (power vs. exponential fit)
Power law parameters: xmin = 31, α = 1.26
Loglikelihood ratio: R = 246.08, p < .001
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(c) Delicious (power vs. exponential fit)
Power law parameters: xmin = 32, α = 1.19

Loglikelihood ratio: R = 60.92, p < .001
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(d) Flickr (power vs. exponential fit)
Power law parameters: xmin = 2, α = 1.25
Loglikelihood ratio: R = 117.55, p < .001

Figure 1: Power law vs. exponential fit (first research question) of the time-dependent decay (measured in seconds) of individual
tag reuse for BibSonomy, CiteULike, Delicious and Flickr. Parameters xmin and α of the fitted power function are also provided.
Furthermore, values for R and p (p-value for R) are represented which is the loglikelihood ratio between the two candidate functions
(power vs. exponential) fitted to the empirical data, where R > 0 and p < .05 means that the data is statistically more likely to follow
a power distribution rather than an exponential one (which is the case in all four datasets – also visually).

and Schooler, 1991). To validate this hypothesis we made use of the
python package powerlaw (Alstott et al., 2014) which implements the
method of Clauset et al. (2009) to statistically quantify whether or not
the observed empirical data can be better explained via a power law
than an exponential function. As shown in Figure 1, in all four datasets
the estimated power function (see also best values of xmin and α) pro-
vides a better fit for the data than an exponential function. To test for
statical significance, we calculated the loglikelihood ratio R between
the two observed functions and the empirical data as proposed in (Al-
stott et al., 2014), where R > 0 and p < .05 means that the data is
statistically more likely to follow a power distribution rather than an
exponential one. As presented in Figure 1 this is the case in all four
datasets. Note, that the decay in Flickr is more pronounced than in Bib-
Sonomy, which might imply that scientific topics in BibSonomy (e.g.,
“recommender research”) do not change as fast as topics of photos of
different leisure events (e.g., of the last weekend).

From this pattern of results we conclude that the findings revealed
by Anderson and Schooler (1991) generalize to social tagging environ-
ments: the effect of recency on the reuse probability of tags is more
likely to follow a power law distribution than an exponential one. This
speaks in favor of our approach’s first component, the BLL equation,
modeling a user’s temporal tagging behavior via a power decay func-
tion.

The remainder of the present work deals with research questions
2 - 4 (see Section 1). Before we present the experimental setup (Sec-
tion 5) and the results (Section 6) of the experiments addressing these
questions, the next section describes our implementation of the two
components of the activation equation, the BLL equation and the asso-
ciative component, as a tag recommender.
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Symbol Description
u user
t tag
r resource
B set of bookmarks / posts
Btrain train set
Btest test set
Bt set of bookmarks / posts tagged by t
U set of users
T set of tags
R set of resources
Tr T of resource r
Tu T of user u
Y set of tag assignments
Yu Y of user u
Yt Y of tag t
Yr Y of resource r
Yb Y of bookmark / post b
Yt,r Y of tag t and resource r
Yt,u Y of tag t and user u
β mixing parameter
d decay parameter
c context cue
S(c, t) association strength between c and t
A(t, u, r) activation of tag t for u and r
B(t, u) base-level activation of tag t for u
T̃k(u, r) set of top k recommended tags for u and r
T (u, r) set of relevant tags used by u for r

Table 1: Overview of notations used in this paper.

4 A Tag Recommender Based on Activation in Memory

The analysis in Section 3, revealed that the effect of recency on the
reuse probability of tags follows a power law distribution. We there-
fore decided to implement the base-level learning (BLL) equation as a
tag recommender and subsequently also extended the approach by the
activation equation’s second component, the associative component.

The first recommender is termed BLL as it implements the base-
level activation equation (equation 2) in the form of a tag recommender
using its two components of frequency and recency. Frequency-based
models have been described in recommender systems research as “most
popular tags” approaches (Jaeschke et al., 2007). There are different
forms of these approaches, recommending either the most popular tags
of the user, the resource or a mixture of both (see Section 5.3).

Recency-based recommender models (also referred to as time-
dependent approaches) have been suggested in literature (e.g., Yin et
al., 2011a; Zhang et al., 2012) as an extension of “most popular tags”
approaches. To date, these approaches modeled the time-dependent
decay of tag reuse using a linear or exponential function (see Section
2) which is not in line with our findings. Hence, our second research
question (whether the base-level activation can predict future tag use)
translates into whether it is possible to improve a “most popular tags”
recommender with a recency component based on a power decay func-
tion.

4.1 Formalization

In this section we present the formalization of our proposed method.
The notations we shall use throughout the paper are defined in Ta-
ble 1. To realize this recommender the following steps where per-
formed: For each tag in a user’s training set Btrain, we have calcu-
lated the base-level activation B(t, u) of a given tag t in a user u’s set
of tag assignments, Yu. First, we determined a reference timestamp
timestampu,ref (in seconds) that is the timestamp of the most recent
bookmark of user u. In our dataset sample, timestampu,ref corre-
sponds to the timestamp of the user’s bookmark that has been selected
for the test set (see Section 5.2).

If j = 1 ... n indexes all tag assignments in Yu, the recency of a tag
assignment is given by timestampu,ref − timestampt,u,j . B(t, u)
of tag t for user u is given by the BLL equation:

B(t, u) = ln(
n∑

j=1

(timestampu,ref − timestampt,u,j)−d) (3)

where d is set to .5 based on Anderson et al., 2004. We also tried
other d values, such as 1.2 based on the best α values of our empirical
analysis in Section 3, but this did not lead to better results in terms of
recommender accuracy. Thus, we decided to keep the value from the
literature.

In order to map the values onto a range of 0 to 1 we applied a
softmax function as proposed in related work (McAuley and Leskovec,
2013):

softmax
Tu

(B(t, u)) =
exp(B(t, u))∑

t′∈Tu

exp(B(t′, u))
(4)

where t′ is a tag in Tu, the set of tags used by user u in the past.
To investigate our third research question (as to whether the BLL

equation can be further improved by also considering the associative
component evoked by the current context), we have implemented equa-
tion 1 in form of:

A(t, u, r) = softmax
Tu

(B(t, u))︸ ︷︷ ︸
BLL

+
∑
c∈Tr

(|Yc,r| · S(c, t))

︸ ︷︷ ︸
BLLAC

(5)

To calculate the variables of the associative component, i.e., to
model a user’s semantic context, we looked at the set of tags Tr as-
signed by other users to the given resource r. A user’s semantic con-
text certainly consists of a greater variety of aspects, such as con-
tent words in the title or in the page text. However, since not all
of our datasets contain title information or page text and other stud-
ies have convincingly demonstrated the impact of a resource’s promi-
nent tags on a user’s tagging behavior (e.g.Lorince and Todd, 2013;
Lipczak, 2012), we decided to approximate the context by means of
other users’ tags. When applying the formula to a recommender sys-
tem, related literature (Sigurbjörnsson and Van Zwol, 2008; Van Maa-
nen and Marewski, 2009) suggests to use a measure of normalized
tag co-occurrence to represent the strength of an association. Accord-
ingly, we define the co-occurrence between two tags as the number of
bookmarks in which both tags are included. To add meaning to the co-
occurrence value, the overall frequency of the two tags is also taken
into consideration. This is done by normalizing the co-occurrence
value according to the Jaccard coefficient (6) following the approach
described in (Sigurbjörnsson and Van Zwol, 2008):

S(c, t) =
|Bc ∩Bt|
|Bc ∪Bt|

(6)
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Present

tag t
recency3 = 7 days

Decay

tag t tag t

recency2 = 8 days

recency1 = 10 days

Activation

Past

Σ=B(t,u)

Conventional "Most Popular Tags" approach
MP(t,u) = c(t) / |Yu | = 3 / |Yu | = 0.3 (if |Yu |=10)

BLL-based approach
B(t,u) = ln(Σrecencyj ) = ln(10-0.5 + 8-0.5 + 7-0.5) = 0.05

Figure 2: Example for applying the BLL equation (first compo-
nent of the activation equation) to estimate the activation value
of a tag t and to show the advantage over the conventional “most
popular tags by user” (MPu) approach.

In our implementation, S(c, t) is calculated as an association value
between a tag previously given by the target user (i.e., t) and a tag that
has been assigned to a resource of interest (i.e., c). Based on a tag
co-occurrence matrix that depicts the tag relations of an entire data set,
information about how many times two tags co-occur (Bc ∩ Bt) in
bookmarks is retrieved and set into relation with the number of book-
marks in which at least one of the two tags appear (Bc ∪ Bt). We set
the attentional weight Wc of c to the number of times c occurred in
the tag assignments of the target resource, i.e., |Yc,r|.

Hence, the associative component in equation 5 works in a similar
way as resource-based Collaborative Filtering in the tag recommender
literature (Tso-Sutter et al., 2008). This means, that tags with a higher
similarity to the target resource (measured by tag co-occurrence) get a
higher associative activation value than tags with a smaller usefulness
in the current context.

Finally, to examine our fourth research question (as to whether the
activation equation can be implemented in form of an effective recom-
mender mechanism) we extended equation 5 by also considering the
most popular tags in the tag assignments of the resource Yr (MPr , i.e.,
argmaxkt∈Tr

(|Yt,r|)) (Hotho et al., 2006). This simple extension was
necessary for the prediction of new and plausible tags that a user has
not assigned in her previous tagging history (e.g., Lorince and Todd,
2013; Lipczak, 2012; Kowald et al., 2014b). Therefore, we have se-
lected MPr over other methods like CF because as shown in related
work (Floeck et al., 2011; Seitlinger and Ley, 2012; Fu et al., 2010;
Fu et al., 2009), users in social tagging systems are more likely to di-
rectly imitate tags that have already been assigned to a target resource.
Finally, the top-k recommended tags for a given user u and resource r
are calculated by the following equation:

t2

t1

Ranking after calculating the 
base level activation 

Ranking after calculating the 
base level + associative activation

Sc,t1

t2

t1

Wc

B(t2,u) A(t2,u,r)

t2

B(t2,u)

t1

Figure 3: Example showing the impact of associative activation
(second component of the activation equation).
Note, black filled nodes and unfilled nodes represent contextual
and target tags, respectively; their sizes represent their attentional
weights Wc (in case of contextual tags) and activation (in case
of the target tags t1 and t2). The edge length represents the co-
occurrence-based association strength Sc,t. Left panel: ranking
based on base-level activation B(t, u) not taking into account the
contextual tags. Right panel: refined ranking after considering
the associative activation evoked by contextual tags, resulting in
the full activation A(t, u, r).

T̃k(u, r) = argmaxkt∈Tu∪Tr
(β softmax

Tu

(A(t, u, r)︸ ︷︷ ︸
BLLAC

+(1− β) softmax
Tr

(|Yt,r|)

︸ ︷︷ ︸
BLLAC+MPr

)

(7)
where β is used to weight the two components, i.e., the activation

valuesA(t, u, r) and the most popular tags of the target resource given
by MPr . Results presented in Section 6 were calculated using β = .5.

4.2 Illustration

In order to further clarify how we have applied the equations to char-
acterize a user’s individual tagging history, we provide two simple
examples illustrated in Figures 2 and 3. That way, we also aim at
demonstrating the advantage of our approach over conventional “most
popular tags” approaches.

The example in Figure 2 shows how the BLL equation provides
a more differentiated characterization of a user’s tagging pattern than
the “most popular tags by user” (MPu) approach. In this example, a
user u applied a tag t three times, i.e., n = 3. We assume that the user
applied the tag ten, eight and seven days ago. The three corresponding
recency values are recency1 = 10, recency2 = 8 and recency3 = 7. We
have calculated the recency of a tag t’s use by subtracting the times-
tamp of the jth use of t from the timestamp of u’s most recent book-
mark. Each of the three uses of t activates the corresponding memory
unit. In Figure 2, the upward directed arrows symbolize this hypoth-
esized activation. Due to the power-law of forgetting, each activation
decreases in time (represented by the sloping curves) and, according
to Anderson et al. (2004), each of the three recency values is raised
by the power d = -.5. Finally, the base-level activation of the memory
unit for tag t is given by summing the remaining effects of the three
tag uses, i.e., ln(10−.5 + 8−.5 + 7−.5), resulting in the base-level
activation of .05. To the contrary, a conventional “most popular tags
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Dataset p |B| |U | |R| |T | |Y |
BibSonomy - 400,983 5,488 346,444 103,503 1,479,970

3 41,764 788 8,711 5,757 161,509
CiteULike - 3,879,371 83,225 2,955,132 800,052 16,703,839

3 735,292 17,983 149,220 67,072 2,242,849
Delicious - 1,416,151 15,980 931,993 180,084 4,107,107

3 466,480 9,102 58,025 16,574 1,506,231
Flickr - 864,679 9,590 864,679 127,599 3,552,540

3 860,135 8,332 860,135 58,831 3,465,346

Table 2: Properties of the datasets, where |B| is the number of
bookmarks, |U | the number of users, |R| the number of resources,
|T | the number of tags and |Y | the number of tag assignments. As
shown in column “p”, we applied both: a p-core pruning approach
(represented by “3”) as well as no p-core pruning (represented by
“-”).

by user” (MPu) approach, only takes into account the tag’s usage fre-
quency and thus, treats every tag assignment the same, independent of
the time elapsed since its use. Given the user’s entire set of tag assign-
ments Yu encompasses 10 assignments, this approach would yield a
value of .3 (3 / 10). This should demonstrate that the BLL equation
allows for a more differentiated characterization of a user’s tagging
history than MPu.

In the example of Figure 3, we show the additional impact of the
associative activation defined by the second component of the activa-
tion equation. The associative activation is evoked by the current con-
text, i.e., the tags assigned by preceding users to the target resource (in
the following called contextual tags). The left panel of Figure 3 shows
two target tags, t1 and t2 exhibiting different base-level activation lev-
els (represented by the circle size): t1 reaches a higher base-level ac-
tivation and thus, a higher ranking than t2. This relationship changes
when considering the influence of the contextual tags, as schemati-
cally visualized in the right panel of Figure 3. These contextual tags
are represented by the black nodes. Depending on their weights Wj

(represented by the size of the black-filled nodes) and strength of as-
sociation Sj,i (represented by the length of the edges), the contextual
tags spread additional associative activation to the target tags t1 and
t2, i.e., make them more easily available for retrieval and use. t2 is
stronger associated with the contextual tags and thus, receives stronger
associative activation than t1. Summarizing, we can see that t2 is as-
signed a higher ranking than t1 when considering both, the base-level
and associative activation by means of the full activation equation.

5 Experimental Setup

In this section we describe in detail the datasets, the evaluation method,
the evaluation metrics and the baselines algorithms used for our exper-
iments.

5.1 Datasets

For the purpose of our study and for reasons of reproducibility, our
investigations focused on four well-known and freely-available folk-
sonomy datasets. To test our approach on both, broad and narrow
folksonomies (Helic et al., 2012) (in broad folksonomy many users
are allowed to annotate a particular resource while in a narrow folk-
sonomy only the user who has uploaded the resource is permitted to

apply tags), datasets from BibSonomy, CiteUlike, Delicious (broad
folksonomies) and Flickr (narrow folksonomy) were selected. These
datasets have been also used in many of the related work in tag-based
recommender systems and can be seen as the state-of-the-art bench-
marking datasets (see also e.g., Gemmell et al., 2009; Jaeschke et al.,
2007; Doerfel and Jaeschke, 2013; Balby Marinho et al., 2012).

BibSonomy: The dataset (2013-07-01) of the social bookmark
and publication sharing system BibSonomy2 is freely available and
can be downloaded for scientific purposes. For our evaluation we
concentrated on the tags assigned to bookmarks, which resulted in
400,983 bookmarks, 5,488 users, 346,444 resources, 103,503 tags and
1,479,970 tag assignments.

CiteULike: CiteULike3 is a reference management system which
gives free access to their data to researchers for non-commercial uses.
The CiteULike (2013-03-10) dataset consists of 3,879,371 bookmarks,
83,225 users, 2,955,132 resources, 800,052 tags and 16,703,839 tag
assignments.

Delicious: The dataset (2010-01-07) of the social bookmarking
Web service Delicious4 is freely available for scientific purposes and
was crawled and provided by the University of Koblenz within the
Tagora EU project5. The dataset comprises 47,208,747 bookmarks,
532,924 users, 17,262,480 resources, 2,481,698 tags and 140,126,586
tag assignments.

Flickr: Flickr6 is an image hosting and sharing platform which
also offers online community elements. As the Delicious dataset, the
Flickr dataset is also provided by the University of Koblenz (see De-
licious dataset) and contains 28,153,045 bookmarks, 319,686 users,
28,153,045 resources, 1,607,879 tags, and 112,900,000 tag assignments.

To reduce computational effort (see also Section 6.2), we applied
the dataset pruning technique proposed by Gemmell et al. (2009) to
the very big Delicious and Flickr datasets. Thus, for these two datasets,
we randomly selected 3%7 of the user profiles (i.e., all the bookmarks
of these users) in the folksonomies. However, as shown in Table 2,
the pruned datasets of Delicious and Flickr still remain larger than
the dataset of BibSonomy. Furthermore, according to Gemmell et al.
(2009), when following this pruning method, experiments on larger
dataset samples provide near identical trends in the algorithmic results.

Since automatically generated tags affect the performance of the
tag recommender systems, we excluded all of those tags from the
datasets (e.g., we excluded the no-tag, bibtex-import-tag, etc.). Fur-
thermore, we decapitalized all tags as suggested by related work in
the field (e.g., Krestel and Fankhauser, 2010). The overall dataset
statistics can be found in Table 2. As shown in column “p”, we ap-
plied both: a p-core pruning approach (Batagelj and Zaversnik, 2002)
(represented by “3”) to capture the issues of data sparseness, as well
as no p-core pruning (shown as “-”) to capture the issue of cold-start
users or items (see Doerfel and Jaeschke (2013)), respectively. This
p-core pruning is an iterative process where in each iteration all re-
sources, tags and users are deleted that occur in less than p bookmarks

2http://www.bibsonomy.org/
3http://www.citeulike.org/
4https://delicious.com/
5http://www.tagora-project.eu/data/
6http://www.flickr.com/
7The reason for choosing this 3% limit was the fact that the PITF algorithm

calculations (see also APR and FR in Section 5.3) took around 14 days on a 2.0 GHz
six-core Intel Xeon E5-2620 processors with 128 GB of RAM (see Section 6.2),
which we found to be a fair upper runtime limit for any of our calculations (which
we performed in memory).

http://www.bibsonomy.org/
http://www.citeulike.org/
https://delicious.com/
http://www.tagora-project.eu/data/
http://www.flickr.com/
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Algorithm(s) Parameter(s) Value
CF k 20
BLL, BLLAC , BLL+MPr , BLLAC+MPr d .5
APR, FR d .7
APR, FR l 10
MPu,r , GIRPTM, BLL+MPr , BLLAC+MPr β .5
FM, PITF kU , kR, kT 256
FM, PITF l 50
FM, PITF α 0.01
FM, PITF λ .0

Table 3: Hyperparameters of the algorithms as used in the experi-
ments.

of a dataset. This algorithm terminates when no more tag assignments
can be deleted which ensures that all resources, tags and users can be
found in at least p bookmarks of the remaining core(Jaeschke et al.,
2007; Lipczak, 2012).

5.2 Methodology

To evaluate our tag recommender approach we used a leave-post-out
method as proposed by popular and related work in this area (e.g.,
Jaeschke et al., 2007). To that end, we created two datasets, one set for
training and the other set for testing. To split up the dataset in two, we
removed each user’s latest bookmark in time from the original dataset
and added it to the test set. Each bookmark in the test set consists of a
collection of one or more tags to which we further refer as relevant tags.
The now reduced version of the original dataset was used for training,
the newly created one for testing. This procedure is a plausible simu-
lation of a real-world environment as it retains the chronological order
of a user’s bookmarks and depicts a suggested offline-evaluation pro-
cedure for time-based recommender systems Campos et al., 2013. To
quantify the performance of our approaches, a set of well-known, stan-
dard information retrieval performance metrics were used (Jaeschke
et al., 2007; Lipczak, 2012):

Recall (R) is calculated as the number of correctly recommended
tags divided by the number of relevant tags, where T̃k(u, r) denotes
the k recommended tags and T (u, r) the list of relevant tags of a user
u for resource r that is determined by the bookmark in the test set
Btest (Van Rijsbergen, 1974):

R@k =
1

|Btest|
∑

u,r∈Btest

|T̃k(u, r) ∩ T (u, r)|
|T (u, r)| (8)

Precision (P) is calculated as the number of correctly recommended
tags divided by the number of recommended tags k (Van Rijsbergen,
1974):

P@k =
1

|Btest|
∑

u,r∈Btest

|T̃k(u, r) ∩ T (u, r)|
k

(9)

F1-score (F1) combines precision and recall into one score (Van
Rijsbergen, 1974):

F1@k = 2 · P@k ·R@k
P@k +R@k

(10)

Mean reciprocal rank (MRR) is the sum of the reciprocal ranks
of all relevant tags in the list of recommended tags. This means that a

higher MRR is achieved if relevant tags occur at the beginning of the
recommended tag list (Rawashdeh et al., 2012):

MRR =
1

|Btest|
∑

u,r∈Btest

1

|T (u, r)|
∑

t∈T (u,r)

1

rank(t)
(11)

Mean average precision (MAP) is an extension of the precision
metric that additionally looks at the ranking of recommended tags.
MAP is described in the subsequent formula, where Bk is 1 if the
recommended tag at position k is among the relevant tags and 0 other-
wise. Pu,r@k depicts Precision@k calculated for user u and resource
r (Rawashdeh et al., 2012):

MAP =
1

|Btest|
∑

u,r∈Btest

1

|T (u, r)|

|T̃k(u,r)|∑
k=1

Bk · Pu,r@k (12)

In particular, we report R@k, P@k, MRR and MAP for k = 10
and F1-Score (F1@k) for k = 5 recommended tags8.

5.3 Baseline Algorithms

We compared the results of our approach to several baseline tag rec-
ommender algorithms. The algorithms were selected based on their
popularity in the community, performance and novelty (see also Mar-
inho et al., 2011; Balby Marinho et al., 2012). Hyperparameters9 for
the algorithms, as they were used for the experiments, are found in
Table 3.

MostPopular (MP): This approach recommends for any user u ∈
U and any resource r ∈ R the same set of tags T̃ (u, r). This set of
tags is weighted by the frequency in all tag assignments Y (Jaeschke
et al., 2008):

T̃k(u, r) =
k

argmax
t∈T

(|Yt|) (13)

MostPopularu (MPu): The most popular tags by user approach
suggests the most frequent tags in the tag assignments of the user Yu
(Jaeschke et al., 2008).

MostPopularr (MPr): The most popular tags by resource algo-
rithm weights the tags based on their frequency in the tag assignments
of the resource Yr (Jaeschke et al., 2008).

MostPopularu,r (MPu,r): This algorithm is a mixture of the
most popular tags by user and resource approaches:

T̃k(u, r) =
k

argmax
t∈Tu∪Tr

(β|Yt,u|+ (1− β)|Yt,r|) (14)

The β parameter can be used to balance the influence of the user and
the resource components (Jaeschke et al., 2008) and was set to .5 as it
is also done in our approaches.

8F1@5 was also used as the main performance metric in the ECML PKDD
Discovery Challenge 2009: http://www.kde.cs.uni-kassel.de/ws/dc09/.

9Note, that the parameters were not optimized towards the given datasets. We
understand that this is a necessary precondition for arriving at an optimal perfor-
mance of each algorithm. However, our aim with this research is not so much in
optimizing performance, but to arrive at generalizable, stable and traceable conclu-
sions that hold across a number of datasets. We would be concerned that by optimiz-
ing parameters the generalizability, stability and traceability would be compromised.
For the same reason, the tuning of parameters is also avoided in several other papers
that compare tag recommender algorithms across different datasets (see e.g., Gueye
et al., 2014b; Gueye et al., 2014a).

http://www.kde.cs.uni-kassel.de/ws/dc09/
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Collaborative Filtering (CF): In (Marinho and Schmidt-Thieme,
2008) described how the classic Collaborative Filtering (CF) approach
(Schafer et al., 2007) can be adapted for tag recommendations. Since
folksonomies have ternary relations (users, resources and tags), the
classic CF approach can not be applied directly. Thus, the neighbor-
hoodNk

u of a user u is formed based on the tag assignments in the user
profile Yu. Furthermore, in CF-based tag recommendations only the
subset Vr of users that have tagged the active resource r are taken into
account when calculating the user neighborhood. The set of n rec-
ommended tags can then be determined based on this neighborhood
(Marinho and Schmidt-Thieme, 2008; Jaeschke et al., 2007):

T̃k(u, r) =
k

argmax
t∈T

(
∑

v∈Nk
u

sim(Yu, Yv) · δ(v, r, t)) (15)

where δ(v, r, t) := 1 if (v, r, t) ∈ Yt and 0 else. The only variable
parameter here is the number of users k in the neighborhood which has
to be set in advance. We used a neighborhood size k of 20 as suggested
in related work by Gemmell et al. (2009)10. Their experiments relied
on the same sub-sets of datasets as used in our work.

There are different ways to calculate the similarity sim(Yu, Yv)
between two users u and v. For our experiments we applied the Jac-
card’s similarity. We also tried the Okapi BM25 similarity measure
(usually the best measure to calculate the similarity between users)
(Parra and Brusilovsky, 2009; Parra-Santander and Brusilovsky, 2010;
Xu et al., 2008) where we reached almost the same results as with Jac-
card’s, but with a significantly higher computational effort, especially
in the case of the bigger datasets.

Adapted PageRank (APR): Hotho et al. (2006) adapted the well-
known PageRank algorithm (Page et al., 1999) in order to rank the
nodes within the graph structure of a folksonomy. This is based on
the idea that a resource is important if it is tagged with important tags
by important users. Thus, the folksonomy has to be converted into an
undirected graph where the set of nodes s is the disjoint union of all
usersU , resourcesR and tags T : s = U∪R∪T . The co-occurences of
users and resources, users and tags and resources and tags are treated
as weighted edges in this graph and can also be represented as an ad-
jacency matrix A. The update of the weightings is done using the
following formula where ~p is a preference vector and d is a variable to
set its impact (Hotho et al., 2006):

~w ← dA~w + (1− d)~p (16)

For recommending tags, the preference vector ~p is used to give higher
weights to the target user and resource of the recommendation task.
While all other users and resources get a weight of 1, they get a weight
of 1 + |U | and 1 + |R| (Jaeschke et al., 2007). More information
about the implementation used and parameter settings is provided in
next paragraph.

FolkRank (FR): The FolkRank algorithm is an extension of the
Adapted PageRank approach that was also proposed by Hotho et al.
(2006). This extension gives a higher importance to the preference
vector ~p using a differential approach, where ~w(0) is the weighting
vector calculated using the Adapted PageRank algorithm with ~p = 1
and ~w(1) is the result with a ~p-setting as described above:

~w = ~w(1) − ~w(0) (17)

10We also tested other values for k but observed that CF did not generated
significant higher values of estimate when setting k > 20.

Our Adapted PageRank and FolkRank implementations are based on
an open-source Java implementation provided by the University of
Kassel11. In this implementation the parameter d is set to .7 and the
maximum number of iterations l is set to 10 (Jaeschke et al., 2007).

Factorization Machines (FM): Rendle (2010) introduced Fac-
torization Machines which combine the advantages of Support Vector
Machines (SVM) with factorization models to build a general predic-
tion model that is also capable of tag recommendations. More infor-
mation about the used framework and parameters can be found in the
next paragraph describing the PITF approach.

Pairwise Interaction Tensor Factorization (PITF): This method
proposed by Rendle and Schmidt-Thieme (2010) is an extension of fac-
torization models based on the Tucker Decomposition (TD) model that
explicitly models the pairwise interactions between users, resources
and tags. The FM and PITF results presented in this paper were cal-
culated using the open-source C++ tag recommender framework pro-
vided by the University of Konstanz12. We set the dimensions of fac-
torization kU , kR and kT to 256, the learning rate α to .01, the regu-
larization constant λ to .0 and the number of iterations l to 50 as sug-
gested by Rendle and Schmidt-Thieme (2010)13 in their framework
documentation.

Temporal Tag Usage Patterns (GIRP): This time-dependent tag-
recommender algorithm was presented by Zhang et al. (2012) and is
based on the frequency and the temporal usage of a user’s tag assign-
ments. In contrast to our BLL and BLLAC approaches, GIRP mod-
els the temporal tag usage with an exponential function rather than a
power function (see Section 3).

GIRP with Tag Relevance to Resource (GIRPTM): This is an
extension of the GIRP algorithm by the resource component (MPr),
which is also done in our BLL+MPr and BLLAC+MPr approaches
(Zhang et al., 2012).

6 Results and Discussion

In this section we present the results of our experiments in respect to
recommender accuracy and runtime.

6.1 Recommender Accuracy

The presentation of the evaluation results is organized in line with our
research questions 2 - 4, as introduced in Section 1. With respect to
the recommender accuracy, we will turn our attention first, to the BLL
equation and its validity to model individual tagging behavior (RQ2),
second, to the impact of context information when added to the BLL
equation (BLLAC ) (RQ3) and third, to a comparison of our context
enriched BLL implementation (BLLAC+MPr) with state-of-the-art
baseline approaches (RQ4). We report these points in three subsec-
tions where the first one looks solely at the individual tag reuse predic-
tion (RQ2 and RQ3), the second one at the prediction of tag reuse in
combination with tag imitation (RQ4) and the third one at validating
our results in the ECML PKDD Discovery Challenge dataset.

11http://www.kde.cs.uni-kassel.de/code
12http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/
13We also conducted experiments with factors of 64, 128 and 512 and with

more and less than 50 iterations. Across all datasets the setting of 256 factors and
50 iterations showed almost always the best results. Factors less than 256 decreased
the results significantly while factors higher than 256 did not result in any higher
estimates while varying the number of iterations. The same is true for α and λ.

http://www.kde.cs.uni-kassel.de/code
http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/
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p Metric MPu GIRP BLL BLLAC

B
ib

So
no

m
y

- F1@5 .152 .157 .162 .169
∗

MRR .114 .119 .125 .133
MAP .148 .155 .162 .172

3 F1@5 .215 .221 .228 .292
∗∗∗
◦◦◦

MRR .202 .210 .230 .286
∗∗∗
◦◦◦

MAP .238 .247 .272 .345
∗∗∗
◦◦◦

C
ite

U
L

ik
e

- F1@5 .185 .194 .201
∗∗∗

.211
∗∗∗
◦◦◦

MRR .165 .182 .193
∗∗∗

.205
∗∗∗
◦◦◦

MAP .194 .213 .227
∗∗∗

.242
∗∗∗
◦◦◦

3 F1@5 .272 .291 .300
∗∗

.336
∗∗∗
◦◦◦

MRR .268 .294 .319
∗∗∗

.365
∗∗∗
◦◦◦

MAP .305 .337 .366
∗∗∗

.424
∗∗∗
◦◦◦

D
el

ic
io

us

- F1@5 .170 .184 .196
∗∗∗

.231
∗∗∗
◦◦◦

MRR .155 .178 .197
∗∗∗

.230
∗∗∗
◦◦◦

MAP .180 .207 .230
∗∗∗

.274
∗∗∗
◦◦◦

3 F1@5 .193 .194 .206
∗∗

.311
∗∗∗
◦◦◦

MRR .170 .177 .193
∗∗

.296
∗∗∗
◦◦◦

MAP .198 .207 .227
∗∗

.364
∗∗∗
◦◦◦

Fl
ic

kr

- F1@5 .435 .509 .523
∗

.523
∗

MRR .360 .445 .466
∗∗∗

.466
∗∗∗

MAP .468 .590 .619
∗∗∗

.619
∗∗∗

3 F1@5 .488 .577 .592
∗

.592
∗

MRR .407 .511 .533
∗∗∗

.533
∗∗∗

MAP .527 .676 .707
∗∗∗

.707
∗∗∗

Table 4: F1@5, MRR and MAP values for BibSonomy, CiteULike,
Delicious and Flickr (with no core and p-core = 3) showing that the
BLL equation provides a valid model of a user’s tagging behavior
to predict tags (second research question). Moreover, the results
imply that using the activation equation (BLLAC ) to also take into
account semantic cues (i.e, associations with resource tags) can fur-
ther improve this model (third research questions). The symbols ∗,
∗∗ and ∗∗∗ indicate statistically significant differences based on a
Wilcoxon Ranked Sum test between BLL, BLLAC and GIRP at α
level .05, .01 and .001, respectively; ◦, ◦◦ and ◦◦◦ indicate statisti-
cally significant differences between BLLAC and BLL at the same
α levels.

6.1.1 Predicting Tag Reuse

The BLL equation models the user’s tagging behavior with respect to
frequency and recency. While the frequency of tag use is a common
parameter for tag recommendations, the factor of time, that models the
effects of a user’s long term memory (as described through recency), is
expected to bring additional value to tag recommendation approaches.
That is why we investigate our second research question by determin-
ing the effect of the recency component on tag assignments.

When comparing BLL with MPu and GIRP, the results reported
in Table 4 and Figure 4 clearly show that the time-dependent algo-
rithms BLL and GIRP both outperform the frequency-based MPu ap-
proach. Looking further at the two time-dependent algorithms, BLL
reaches higher levels of accuracy than the less theory-driven GIRP
algorithm in both settings (with no core and p-core = 3). Even more

apparent is the impact of the recency component in the narrow folkson-
omy (Flickr). Unlike the broad folksonomies (BibSonomy, CiteULike
and Delicious), the Flickr dataset has no tags of other users available
for the target resource. Therefore, a user needs to assign tags without
having the inspiration of previously given tags. We assume that the
user, to this end, needs to draw on her long term memory that the BLL
equation aims to mimic. In summary, these results provide strong evi-
dence that the BLL equation provides a valid model of a user’s tagging
behavior to predict tags (second research question). These results are
further proved to be statistically significant based on a Wilcoxon Rank
Sum test that is also shown in Table 4.

By expanding BLL to BLLAC , we implement the activation equa-
tion as explained in Section 4 in order to address our third research
question. The activation equation enriches the base-level activation
(i.e., frequency and recency of tag use) by adding contextual activa-
tion through tags previously assigned to the target resource. Look-
ing at the results of this experiment, as illustrated in Table 4 and Fig-
ure 4, a number of interesting aspects appear. For one thing, the re-
sults demonstrate that BLLAC reveals only a small improvement over
BLL, when applied on the unfiltered datasets (no p-core) of the broad
folksonomies (BibSonomy, CiteULike and Delicious). However, this
changes when looking at the results for the p-core pruned datasets (p
= 3). Caused by the higher number of tags assigned to each resource,
the contextual activation gains impact. This leads to considerably in-
creased values for all of the used metrics (F1@5, MRR, MAP). One
might wonder why the results of BLL and BLLAC are the same in the
case of the narrow folksonomy (Flickr). This is, in fact, an expected
outcome. The Flickr dataset represents a narrow folksonomy and thus,
resources are tagged by only one user (i.e, the one that has uploaded
it), the model of the resource component does not generate additional
value. Since the fine-tuning or re-ranking of the user tags based on
context cues increases the recommender accuracy in the broad folk-
sonomies, we can also answer the third research question positively.

6.1.2 Predicting Tag Reuse and Tag Imitation

To address our fourth and last research question, we combine our
BLLAC approach with MPr , which leads to BLLAC+MPr . Hereby,
BLLAC models the context-aware user component while MPr further
models the resource component to complementary take into account
new tags that have not been used by the target user in the past. The re-
sults presented in Table 5 show that this approach outperforms a set of
state-of-the-art baseline algorithms as well as BLL+MPr (without con-
textual activation of the user tags). Moreover, the three time-dependent
algorithms (GIRPTM, BLL+MPr and BLLAC+MPr) produce higher
estimates (F1@5, MRR and MAP) across all datasets as well as in
both settings (with no core and p-core = 3). Moreover, an important
observation is that our BLLAC+MPr approach also significantly out-
performs GIRPTM, the currently leading, graph-based time-depended
tag recommendation algorithm. Particularly good results are shown
for ranking-dependent metrics such as MRR and MAP. This obser-
vation clearly illustrates the advantages of our approach that is build
upon long-standing models of human memory theory, over the less-
theory driven GIRPTM algorithm that also utilizes time information
of social tags.

Another aspect worth discussing is the contrast of the results il-
lustrated in Table 4, where BLLAC reaches substantially higher lev-
els of accuracy than BLL, to the results outlined in Table 5, where
BLLAC+MPr only indicate marginal improvements over BLL+MPr .
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Figure 4: Recall/Precision plots for BibSonomy, CiteULike, Delicious and Flickr (no core and p-core = 3) showing the performance of
BLL and BLLAC along with MPu and GIRP for 1 - 10 recommended tags (k).
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Figure 5: Recall/Precision plots for BibSonomy, CiteULike, Delicious and Flickr (with no core and p-core = 3) showing the performance
of BLL+MPr and BLLAC+MPr along with state-of-the-art baseline mechanisms for 1 - 10 recommended tags (k).
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p Measure MP MPr MPu,r CF APR FR FM PITF GIRPTM BLL+MPr BLLAC+MPr

B
ib

So
no

m
y

- F1@5 .013 .074 .192 .166 .175 .171 .122 .139 .197 .201 .202
MRR .008 .054 .148 .133 .149 .148 .097 .120 .152 .158 .159
MAP .009 .070 .194 .173 .193 .194 .120 .150 .200 .207 .209

3 F1@5 .047 .313 .335 .325 .260 .337 .345 .356 .350 .353 .358
MRR .035 .283 .327 .289 .279 .333 .329 .341 .334 .349 .350
MAP .038 .345 .403 .356 .329 .414 .408 .421 .416 .435 .439

C
ite

U
L

ik
e

- F1@5 .002 .131 .253 .218 .195 .194 .111 .122 .263 .270
∗∗∗

.271
∗∗∗

MRR .001 .104 .229 .201 .233 .233 .110 .141 .246 .258
∗∗∗

.259
∗∗∗

MAP .001 .134 .280 .247 .284 .284 .125 .158 .301 .315
∗∗∗

.317
∗∗∗

3 F1@5 .013 .270 .316 .332 .313 .318 .254 .258 .336 .346
∗∗∗

.351
∗∗∗

MRR .012 .243 .353 .295 .361 .366 .282 .290 .380 .409
∗∗∗

.415
∗∗∗

MAP .012 .294 .420 .363 .429 .436 .326 .334 .455 .489
∗∗∗

.497
∗∗∗

D
el

ic
io

us

- F1@5 .033 .140 .236 .228 .211 .229 .157 .185 .253 .270
∗∗∗

.274
∗∗∗

MRR .025 .113 .214 .214 .206 .221 .141 .178 .236 .262
∗∗∗

.267
∗∗∗

MAP .026 .146 .257 .262 .246 .270 .168 .211 .286 .320
∗∗∗

.327
∗∗∗

3 F1@5 .058 .399 .355 .397 .290 .396 .394 .404 .370 .405
∗∗∗

.417
∗∗∗
◦◦

MRR .041 .341 .330 .341 .284 .365 .361 .372 .329 .377
∗∗∗

.392
∗∗∗
◦◦◦

MAP .047 .443 .406 .441 .336 .466 .463 .478 .419 .483
∗∗∗

.504
∗∗∗
◦◦◦

Fl
ic

kr

- F1@5 .023 - .435 .417 .328 .334 .297 .316 .509 .523
∗

.523
∗

MRR .023 - .360 .436 .352 .355 .300 .333 .445 .466
∗∗∗

.466
∗∗∗

MAP .023 - .468 .581 .453 .459 .384 .426 .590 .619
∗∗∗

.619
∗∗∗

3 F1@5 .026 - .488 .493 .368 .378 .361 .369 .577 .592
∗

.592
∗

MRR .026 - .407 .498 .398 .404 .375 .390 .511 .533
∗∗∗

.533
∗∗∗

MAP .026 - .527 .663 .513 .523 .481 .502 .676 .707
∗∗∗

.707
∗∗∗

Table 5: F1@5, MRR and MAP values for BibSonomy, CiteULike, Delicious and Flickr (with no core and p-core = 3) showing that
our BLLAC+MPr approach outperforms state-of-the-art baseline algorithms (fourth research question). The symbols ∗, ∗∗ and ∗∗∗
indicate statistically significant differences based on a Wilcoxon Ranked Sum test between BLL+MPr , BLLAC+MPr and GIRPTM at
α level .05, .01 and .001, respectively; ◦, ◦◦ and ◦◦◦ indicate statistically significant differences between BLLAC+MPr and BLL+MPr

at the same α levels.

In our opinion, this effect appears because the resource tag informa-
tion depicted in MPr is congruent with data used for the contextual
activation in BLLAC . This finding suggests that the use of different
resource metadata, such as title or body-text, may be valuable when
specifying the context in BLLAC (see also Section 7). Similar obser-
vations can be made when looking at the Recall/Precision curves in
Figure 5 that show the recommender performance of the approaches
for 1 - 10 recommended tags (k).

In summary, our results clearly imply that the activation equa-
tion by Anderson et al. (2004) can be used to implement a highly
effective recommender approach. Overall, the simulations demon-
strate that our tag recommender approach exceeds the performance
of well-established and effective recommenders, such as MPu,r , CF,
APR, FM and even the currently leading time-dependent approach
GIRPTM (Zhang et al., 2012) (fourth research question). Finally, it
is indispensable to highlight that BLLAC+MPr , despite its simplicity,
appears to be even more successful than the sophisticated FR and PITF
algorithms. Again, these results are further proved to be statistically
significant based on a Wilcoxon Rank Sum test that is also shown in
Table 5.

6.1.3 Validation of the results in the ECML PKDD Discovery Challenge
2009 Dataset

In order to increase the reproducibility of our results and to ensure
that our results can be compared over different papers, we conducted
another experiment on the well-known ECML PKDD discovery chal-
lenge 2009 dataset14. The dataset is an rather “old” snapshot (from
2009) of BibSonomy at p-core level 2 consisting of 64,406 bookmarks,
1,185 users, 22,389 resources, 13,276 tags and 253,615 tag assign-
ments, but is used in many of the related work. Additionally, the
dataset provides already a given train/test split, which further ensures
the comparability of results. The winning algorithm based on the
F1@5 evaluation metric in this tag recommender challenge was an
optimized ensemble of factorization machines algorithms and was pro-
posed by Rendle and Schmidt-Thieme (2009). In Table 6, we summa-
rize the results presented in (Rendle and Schmidt-Thieme, 2009) to-
gether with the results of the novel time-dependent approaches of our
work.

The F1@5 estimates indicate that the dataset and the splitting
method is of advantage for resource-based approaches since MPr clearly

14http://www.kde.cs.uni-kassel.de/ws/dc09/

http://www.kde.cs.uni-kassel.de/ws/dc09/
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Algorithm F1@5

MPu .098
GIRP .087
BLL .104
MPr .288
MPu,r .290
CF .295
APR .231
FR .290
GIRPTM .248
FM .296
PITF .302
BLLAC .238
BLLAC+MPr .308
Challenge winner .355

Table 6: F1@5 estimates for selected algorithms on the ECML
PKDD Discovery Challenge 2009 dataset showing that our
BLLAC+MPr is only outperformed by the winning algorithm (op-
timized ensemble of Factorization Machines (Rendle and Schmidt-
Thieme, 2009)).

outperforms MPu. Interestingly, GIRP (Zhang et al., 2012), reaches
an even lower F1@5 score than MPu which also indicates that the in-
formation of time seems not to be important in this setting. However,
BLL reaches a higher F1@5 score than MPu which again shows the
advantage of its power decay function. Another indication of the im-
portance of the current context in form of resource tags, is given by
the very good results of our BLLAC approach which are similar to the
results of APR. Although, BLLAC still recommends only tags already
used by the given user, it adjusts the ranking using already assigned
resource tags (i.e., the current context).

Our complete algorithm, BLLAC+MPr , reaches a F1@5 score
of .308 and thus, again outperforms other sophisticated methods such
as GIRPTM, CF, FR, FM and PITF. With regard to the final ECML
PKDD discovery challenge 2009 ranking, this would result in the 8th
position without any optimizations to the dataset or the length of the
recommended tag list. Additionally, our algorithm is much more effi-
cient in terms of computational complexity than the better performing
approaches (especially the ones based on Factorization Machines, see
also Table 7) and can be executed for this dataset on a single machine
in a few seconds. Summed up, the results of this experiment show that
our approach is capable of providing high estimates of recommender
accuracy in different settings without the need of dataset optimization
or complex calculation steps.

6.2 Computational complexity and runtime

In addition to recommender accuracy, we investigated the runtime of
our approaches both, in terms of computational complexity and mon-
itored runtime. Table 7 shows the complexity of all algorithms in as-
cending order. We can see that the popularity-based algorithms MPu,
MPr and MPu,r , that count frequencies by simply iterating over the
tag assignments of the user (Yu) and/or the resource (Yr), provide lin-
ear runtime. For the time-based algorithms GIRP, GIRPTM, BLL and
BLL+MPr we can observe similar behavior. An additional term is
introduced, when calculating BLLAC and BLLAC+MPr . This term
describes the initialization of the co-occurrence matrix that holds the

Algorithm Complexity Authors
MP O(|Y |) Jaeschke et al. (2008)
MPu O(|U | · |Yu|) Jaeschke et al. (2008)
GIRP O(|U | · |Yu|) Zhang et al. (2012)
BLL O(|U | · |Yu|) Our approach
MPr O(|R| · |Yr|) Jaeschke et al. (2008)
MPu,r O(|U | · |Yu|+ |R| · |Yr|) Jaeschke et al. (2008)
GIRPTM O(|U | · |Yu|+ |R| · |Yr|) Zhang et al. (2012)
BLL+MPr O(|U | · |Yu|+ |R| · |Yr|) Our approach
BLLAC O(|U | · |Yu|+ |B| · |Yb|) Our approach
BLLAC+MPr O(|U | · |Yu|+ |B| · |Yb|+ Our approach

|R| · |Yr|)

CF O(|U | · |Vr| · |Yv|)
Marinho and Schmidt-
Thieme (2008)

APR O(|U | · l · (|Y |+ |U |+ |R|+ |T |)) Hotho et al. (2006)
FR O(|U | · l · (|Y |+ |U |+ |R|+ |T |)) Hotho et al. (2006)
FM O(l · |B| · (kT · |T |2+ Rendle et al. (2009)

kU · kR · kT ))
PITF O(l · |B| · (kT · |T |2+ Rendle et al. (2009)

kU · kR · kT ))

Table 7: Computational complexity of BLL, BLLAC , BLL+MPr

and BLLAC+MPr compared to state-of-the-art baseline algo-
rithms in ascending order showing that our approaches provide
a better runtime complexity than CF, APR, FR, FM and PITF.

semantic context. The matrix is built by iterating over each bookmark
b in the set of bookmarks B of a folksonomy and checking the tag
assignments of b (i.e., Yb). Even though this calculation step increases
the computational complexity of the approach, this step only needs
to be performed once, which may be done offline (especially for big
datasets) and subsequently, it may not effect the online runtime in a
live system.

Moreover, we can see that BLLAC and BLLAC+MPr show better
performance than the other state-of-the-art methods such as CF, APR,
FR, FM and PITF. As our theoretically motivated model allows us to
rely on relatively little but meaningful operations considering only user
tag frequency, recency and semantic context in terms of resource tags,
our algorithm outperforms the former. CF on the other hand, processes
not only the tag assignments Yu of the target user, but additionally
the tag assignments of each user v in the set of users (i.e., neighbors)
that have tagged the target resource (Vr). In cases where there are no
other users available that have tagged the target resource (i.e., cold-
start resources), Vr becomes the set of all users which then could lead
to much higher computational costs as expected (see our other runtime
experiment in Figure 6 described in the next paragraph). With regard
to APR/FR (depending on the number of nodes |U |, |R| and |T |) and
FM/PITF (depending on the dimensions of factorization kU , kR and
kT ), even multiple iterations l are computed (see also Section 5.3),
which leads to higher runtime complexities.

To furthermore proof the theoretical assumptions made in our
complexity analysis, a real runtime experiment was carried out. In par-
ticular, we conducted an experiment on an IBM System x3550 server
with two 2.0 GHz six-core Intel Xeon E5-2620 processors and 128 GB
of RAM using Ubuntu 12.04.2 and Java 1.7 to determine the overall
runtime performance15 of the algorithms presented above. All algo-

15We report the overall runtime since it would not be fair to compare the live
prediction time of a model-based approach, that pre-calculates the recommendations
during the training phase as this is for instance the case with FM or PITF, against the
live prediction time of a memory-based approach (e.g., MPu, MPr , MPu,r , BLL,
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Figure 6: Overall runtime in milliseconds [ms] of BLL, BLLAC , BLL+MPr and BLLAC+MPr compared to state-of-the-art baseline
algorithms for BibSonomy, CiteULike, Delicious and Flickr showing the full time to process the whole dataset samples (training and
testing).

rithms were executed as single core, single thread instance to ensure
that the measured run-time is not affected by the implementation. The
results of this evaluation (in milliseconds) can be found in Figure 6. As
expected, the experiment proofs further evidence that the popularity-
based approaches, such as MPu, MPr and MPu,r , the time-dependent
approaches GIRP and GIRPTM and also our theory-based approaches
perform significantly better than the more sophisticated graph-based
approaches such as APR, FR, FM and PITF.

7 Conclusion and Future Work

With this paper, we showed that it is worthwhile to analyze in more
depth the human-computer interaction that is involved in the genera-
tion and exploitation of the data which we would like to use to make
recommendations. This involved designing an algorithm that is opti-
mally tuned to the statistical structure of the data. In this particular
case, we used a theory of human long-term memory to devise a model
that predicts the reuse probability of a tag in social tagging, much in
the same way as the human memory system makes use of memory
traces for current tasks.

The first research question of this work dealt with the question
whether an exponential or a power decay function is more appropriate
to account for the effect of recency on a tag’s reuse probability. In
order to examine this question we performed an empirical analysis on
four social tagging datasets (BibSonomy, CiteULike, Delicious and
Flickr). The analysis showed that the effect of recency on the reuse
probability of tags follows a power law distribution. This encourages
the application of the BLL equation by Anderson et al. (2004) as it
models a user’s temporal tagging pattern in form of a power forgetting
function.

In order to tackle our research questions 2 - 4, we followed a
three-step recommender evaluation strategy. We started by compar-
ing the performance of BLL with MPu to determine the effect of con-
sidering the recency of each tag use. Results of an additional com-
parison may differentiate our cognitive-psychological model from the

etc.).

less theory-driven GIRP approach introduced by Zhang et al. (2012).
Our findings, tackling the second research question, clearly demon-
strate that regardless of the evaluation metric and across all datasets,
BLL reaches higher levels of accuracy than MPu and even outper-
forms GIRP. Thus, processing the recency of tag use is effective to ac-
count for additional variance of users’ tagging behavior and therefore,
a reasonable extension of simple “most popular tags” approaches. Fur-
thermore, the significant advantage over GIRP indicates that drawing
on memory psychology guides the application of a reliable and valid
model built upon long-standing, empirical research. The equations
that Zhang et al. (2012) used to implement their approach were devel-
oped from scratch rather than derived from existing research described
above. As a consequence, Zhang et al. (2012) models the recency of
tag use by means of an exponential function, which is clearly at odds
with the power law of forgetting described in related work (e.g., An-
derson and Schooler, 1991).

In a next step, we have extended BLL to BLLAC using current
context information based on the activation equation of Anderson et
al. (2004). Where BLL gives the prior probability of tag reuse that
is learned over time, the associative component tunes this prior proba-
bility to the current context by exploiting the current semantic cues
from the environment (i.e., the previously assigned tags of the tar-
get resource). This is in line with how ACT-R models the retrieval
from long-term memory. Our results show that this step significantly
improves the “pure” BLL equation, especially in case of the p-core
pruned datasets, where more context information (i.e, tag assignments
of the target resource) are available to calculate the associative compo-
nent (third research question).

In the last step, we combined BLLAC with the frequency esti-
mates of the most popular tags that have been applied by other users
to the target resource in the past (i.e., MPr) in order to be able to
also recommend new tags, i.e., tags that have not been used by the tar-
get user before. Despite their simplicity and computational efficiency,
our results show that this combination (BLLAC+MPr) significantly
outperforms well-established mechanisms, such as CF, FR, PITF and
GIRPTM, in terms of recommender accuracy and runtime. We assume
this is the case because, in following some fundamental principles of
human memory, our approaches are better adapted to the statistical
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Delicious Flickr
Algorithm No core p = 3 No core p = 3
MPu .175 / .165 / .169 / .168 / .170 .187 / .186 / .190 / .189 / .193 .432 / .443 / .439 / .438 / .435 .487 / .502 / .495 / .491 / .488
MPr .144 / .140 / .139 / .139 / .140 .402 / .400 / .398 / .402 / .399 - -
MPu,r .238 / .230 / .233 / .233 / .236 .351 / .353 / .354 / .353 / .355 .432 / .443 / .439 / .438 / .435 .487 / .502 / .495 / .491 / .488
FR .226 / .227 / .228 / .226 / .229 .393 / .394 / .393 / .397 / .396 .334 / .338 / .340 / .340 / .334 .376 / .383 / .384 / .383 / .378
GIRPTM .258 / .250 / .253 / .252 / .253 .366 / .367 / .366 / .371 / .370 .506 / .517 / .512 / .508 / .509 .573 / .589 / .581 / .574 / .577
BLLAC+MPr .278 / .269 / .273 / .272 / .274 .412 / .414 / .414 / .417 / .417 .519 / .532 / .526 / .520 / .523 .586 / .604 / .596 / .586 / .592

Table 8: F1@5 estimates for MPu, MPr , MPu,r , FR, GIRPTM and BLLAC+MPr on 5 samples (i.e., 3% of randomly chosen users, see
Section 5.1) of Delicious and Flickr (no core and p = 3). The results show very similar estimates among all five samples, which validates
our chosen sampling strategy. The bold values (i.e., the fifth sample) are the reported ones in the rest of the paper.

structure of the environment (fourth research question). Moreover, the
results of this experiment also show that there is only a small differ-
ence between BLLAC+MPr and BLL+MPr (without contextual acti-
vation of the user tags), which suggests the use of additional context
information, such as content-based features (e.g., the resource’s title
or body-text). This would also be in line with the studies of Lipczak et
al. (2009), Lipczak and Milios (2010), and Lipczak and Milios (2011),
who showed that the resource title has a big impact on tags in collabo-
rative tagging systems and so could be a better alternative to represent
context cues than the popular tags of the resource used in the current
work.

Finally, a glance on the results shows an interdependency between
the examined dataset and the performance of our approaches. While
the distance to other strongly performing mechanisms is not large in
case of broad folksonomies (BibSonomy, CiteULike and Delicious),
this distance grows substantially larger in a narrow folksonomy (Flickr),
where no tags of other users are available for the target user’s resources.
From this interdependency we conclude that applying a model of hu-
man memory is particularly effective if tag assignments are mainly
driven by individual habits unaffected by the behavior of other users,
such as it is done in Flickr.

Future Work. In future work, we will continue examining mem-
ory processes that are involved in categorizing and tagging Web re-
sources. For instance, in a recent study (Seitlinger et al., 2013), we
introduced a mechanism by which memory processes involved in tag-
ging can be modeled on two levels of knowledge representation: on a
semantic level (representing categories or LDA topics) and on a verbal
level (representing tags). Next, we will aim at combining this integra-
tive mechanism with the activation equation to examine a potential
correlation between the impact of recency (time-based forgetting) and
the level of knowledge representation. We believe that conclusions
drawn from cognitive science will help to develop an effective and
psychologically plausible tag recommendation mechanism. We also
plan to integrate our approach into an actual tagging system applica-
tion. This will provide us with a real-life setting to test user accep-
tance. Furthermore, we are interested in extending our approach into
the domain of content-based tag recommender systems, i.e., exploring
additional context features such as title or body-text. Also, we want
to test the activation equation in the context of collaborative item rec-
ommender systems, using tag and time information as input. We con-
sider this promising, as preliminary experiments suggest (Lacic et al.,
2014), that the activation equation bears also a great potential to rank
items efficiently. Finally, we are interested in investigating the impact
of different tagging styles on tag recommender systems as suggested
by Körner et al. (2010b) and the study of individual learning curves
in the tag recommendation process as suggested by Koren (2010) for

item recommendations.

8 Reproducibility

Please note, that the source-code of all approaches introduced in this
paper are implemented in our open-source tag-recommender frame-
work TagRec (Kowald et al., 2014a; Trattner et al., 2015), which can
be downloaded online for free from our GitHub repository16. Further-
more, we provide open-access to all data samples via e-mail request to
ensure reproducibility of the methods described in our work.

A Appendix: Validation of Data Sampling

Table 8 reports on the validity of our data sampling strategy as pre-
sented in Section 5.1. Due to the computational complexity of some
algorithms (e.g., PITF), we focused on randomly selecting 3% of the
user profiles for the significant larger datasets Flickr and Delicious.
In order to check whether this sampling did introduce any unwanted
bias, we drew 5 additional random samples and repeated the estima-
tion of of parameters for all algorithms. As highlighted, per algorithm,
the table reveals only slight variance across the five samples for each
of the four datasets (two for Delicious and two for Flickr). Test for
statistical significance required a non-parametric method due to a sig-
nificant violation of the normal distribution assumption. Therefore, to
compare the five samples with respect to the F1@5 metric, we per-
formed a Kruskal-Wallis test by ranks for every dataset, each yielding
a non-significant effect for the sample:

• Delicious (no core): H(4) = 0.86, p = .99.

• Delicious (p = 3): H(4)=0.15, p = .99.

• Flickr (no core): H(4) = 2.94, p = .57.

• Flickr (p = 3): H(4) = 1.44, p = .84.
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