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ABSTRACT

Classic resource recommenders like Collaborative Filtering treat users as just another entity, thereby neglecting
non-linear user-resource dynamics that shape attention and interpretation. SUSTAIN, as an unsupervised hu-
man category learning model, captures these dynamics. It aims to mimic a learner’s categorization behavior.
In this paper, we use three social bookmarking datasets gathered from BibSonomy, CiteULike and Delicious
to investigate SUSTAIN as a user modeling approach to re-rank and enrich Collaborative Filtering following a
hybrid recommender strategy. Evaluations against baseline algorithms in terms of recommender accuracy and
computational complexity reveal encouraging results. Our approach substantially improves Collaborative Filter-
ing and, depending on the dataset, successfully competes with a computationally much more expensive Matrix
Factorization variant. In a further step, we explore SUSTAIN’s dynamics in our specific learning task and show
that both memorization of a user’s history and clustering, contribute to the algorithm’s performance. Finally,
we observe that the users’ attentional foci determined by SUSTAIN correlate with the users’ level of curiosity,
identified by the SPEAR algorithm. Overall, the results of our study show that SUSTAIN can be used to effi-
ciently model attention-interpretation dynamics of users and can help improve Collaborative Filtering for resource
recommendations.
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1 Introduction

The Web features a huge amount of data and resources that
are potentially relevant and interesting for a user. However,
users are often unable to evaluate all available alternatives due
to the cognitive limitations of their minds. Thus, recommender
systems have been proved as being a valid approach for Web
users for coping with information overload Kantor et al., 2011
– with Collaborative Filtering (CF) being one of the most suc-
cessful methods Bar et al., 2013. CF recommends resources
to a user based on the digital traces she leaves behind on the
Web, i.e., her interactions with resources and the interactions
of other, similar users.

Recent advances in the interdisciplinary field of Web Sci-
ence provide even more comprehensive digital traces of social
actions and interactions that can be exploited in recommender
systems’ research. At least implicitly, research on recommender
systems has implemented interesting assumptions about struc-
tures and dynamics in Social Information Systems (SIS), such
as MovieLens, LastFM or BibSonomy. For instance, by com-
puting matrices or high-dimensional arrays, approaches like CF
represent and process SIS as networks or graphs, which relate

entities of different quality (e.g., users, resources, time, rat-
ings, tags, etc.) to each other. That way, a compositional
view is taken that is reminiscent of a material-semiotic per-
spective (e.g., Law, 2009), assuming that we gain a deeper
understanding of the intention or function of an entity, if we
consider the associations it has established with other entities.
In other words, “everything in the social and natural worlds
[is regarded] as a continuously generated effect of the webs of
relations within which they are located” (Law, 2009, p. 142).

Problem. If we look at the machinery underlying CF, it be-
comes clear that structurally the algorithm treats users as just
another entity, such as a tag or a resource. We regard this indif-
ference as a structuralist simplification abstracting from indi-
viduals’ complexity. The structuralist stance also runs the risk
of neglecting nonlinear, dynamic processes going on between
different entities, such as a user’s intentional state (e.g., atten-
tional focus, interpretations, decision making) and resources
(e.g., articles) consumed in the past.

Approach and methods. The main goal of this work, and
also of our previous work Seitlinger et al., 2015 is to take a
closer look at these dynamics and to capture them by means
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of an appropriate model. Each user develops subjectivity, an
idiosyncratic way of perceiving and interpreting things in the
world, which manifests itself in particular preferences. Par-
tially, this development evolves through a user’s trajectory in
the SIS (e.g., Fu and Dong, 2012). Every resource that we de-
cide to collect corresponds to a learning episode: Depending
on the resource’s features, the episode causes a shift in atten-
tion, particularly in attentional tunings for certain features as
well as a shift in mental categories (conceptual clusters), which
influences our decision-making (e.g., Love et al., 2004). The
shape that mental patterns (e.g., attentional tunings and con-
ceptual clusters) acquire, is governed by both the environment
and the current mental state. The acquired pattern in turn
orients the user towards particular resources and hence, closes
the loop of the environment-user dynamics.

In order to capture these dynamics, we investigate the po-
tential of SUSTAIN Love et al., 2004, a particularly flexible
cognitive model of human category learning. To this end, we
slightly adapt the approach as described in Section 3.2 to train
a model using a user’s history (collected resources in a train-
ing set). The resulting user model is then applied to predict
new resources from a preselected candidate set. For our empir-
ical studies, we utilize three social bookmarking datasets from
BibSonomy, CiteULike and Delicious. We chose social tagging
systems for our study because their datasets are freely-available
for scientific purposes and because tagging data can be utilized
to derive semantic topics for resources Griffiths et al., 2007 by
means of LDA (see Section 3.3).

Research questions and findings. SUSTAIN, a learning
model built upon theories of human category learning, can dif-
ferentiate between users by means of attention and interpre-
tation dynamics demonstrated towards observed aspects. We
further talk about attentional and conceptual processes. Atten-
tional processes describe the cognitive operation that decides
which environmental aspects a user attends to (focuses on) and
therefore determines what a user learns, while conceptual pro-
cesses refer to the development and incremental refinement of a
user’s specific model of concepts and its interpretation. Our hy-
pothesis is that these dynamics can be exploited to anticipate
user-specific preferences and decisions on resource engagement.
In this work, we therefore investigate a resource recommender
that draws on SUSTAIN to model a user’s traces (e.g., items
a user has collected in the past) with an unsupervised cluster-
ing approach. The model incorporates individuals’ attentional
foci and their semantic clusters. Our main hypothesis is that
given sufficient traces per user for training, a recommender
equipped with SUSTAIN can be applied to simulate a user’s
decision making with respect to resource engagement, leading
to improved recommender accuracy. This is based on the as-
sumption that learning happens in categories and new resource
items are likely to relate to previously visited categories. Thus,
the first research question of our work is briefly stated as:

RQ1: Do resource recommendations become more accurate
if a set of resources identified by CF is processed by SUSTAIN
to simulate user-specific attentional and conceptual processes?

To tackle this research question, we first adapted and im-
plemented the unsupervised learning paradigm of SUSTAIN to
fit our learning task. In a second step, we combined our ap-

proach with user-based Collaborative Filtering (CFU ) to create
our hybrid approach SUSTAIN+CFU . Then, we compared this
algorithm to SUSTAIN alone, CFU as well as other state-of-the-
art approaches like resource-based CF (CFR) and an effective
Matrix Factorization variant (WRMF) Hu et al., 2008. Our re-
sults reveal that SUSTAIN+CFU outperforms SUSTAIN, CFU
and CFR in our setting. Furthermore, WRMF only reaches
higher accuracy estimates in one of the datasets, which indi-
cates that our approach can also compete with this much more
computationally expensive method. This leads us to our next
research question:

RQ2: Which aspects of the SUSTAIN algorithm contribute
to the improved performance?

To address this question, we carried out a parameter study,
in which a set of different parameters are simulated and ob-
served. The resulting plots indicate the effect of recency that
can be inferred from the optimal learning rate and the impact
of the dynamic learning approach, i.e., how many semantic
clusters work best for a specific dataset?

To validate the computational efficiency of SUSTAIN+CFU
compared to state-of-the-art methods such as WRMF, our third
research question is:

RQ3: To what extent can resource recommendations be
calculated in a computationally efficient way using SUSTAIN+
CFU in comparison to other state-of-the-art algorithms like ma-
trix factorization?

Addressing this research question, we analyzed the compu-
tational complexity of the approaches discussed when studying
RQ1. We found that the most computationally expensive step
of SUSTAIN+CFU is the calculation of the resource-specific
topics. Since our datasets do not contain topic information,
Latent Dirichlet Allocation (LDA) was applied to extract 500
topics describing each resource. Because this step can be cal-
culated offline, the complexity of our approach is much lower
than that of WRMF.

With respect to evaluation, we tried to take a broader per-
spective on our hybrid approach by additionally investigating
SUSTAIN-specific attentional entropy values. More specifically,
we investigated the correlation between the attentional entropy
values and a user’s curiosity, since, as described by Loewenstein
Loewenstein, 1994, when attention becomes focused on a gap in
one’s knowledge, curiosity arises1.

The well known SPEAR algorithm Noll et al., 2009; Yeung
et al., 2011 can be used to calculate expertise scores for users in
a network based on their resource interaction patterns. Using
these expertise scores, it is possible to determine discoverers
among users, i.e., curious users who tend to be faster at finding
resources of high quality. With this in mind, we raise the last
research question of this work:

RQ4: Do users’ attentional foci, determined by SUSTAIN,
correlate with users’ expertise scores identified by the SPEAR
algorithm?

In order to address this research question, we correlated
SUSTAIN attentional entropy values with SPEAR’s expertise
scores on our three datasets. We observed Spearman rank cor-
relation values between .55 for Delicious and .83 for BibSon-

1http://ideas.time.com/2013/04/15/
how-to-stimulate-curiosity

http://ideas.time.com/2013/04/15/how-to-stimulate-curiosity
http://ideas.time.com/2013/04/15/how-to-stimulate-curiosity
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omy, which indicates that users with a high curiosity value
determined by SUSTAIN also receive a high expertise score de-
termined by SPEAR and thus, can be identified as discoverers.

Structure. The rest of this work is organized as follows: In
Section 2, we discuss related work that has inspired our hybrid
recommendation approach. A detailed description of the algo-
rithm and its application can be found in Section 3. In Section
4, we first describe the methodology applied to compare the
performance of our SUSTAIN+CFU approach to several base-
line algorithms. Second, the setup of a parameter investigation
study is given and third, details on the algorithms’ computa-
tional efficiencies are provided. Finally, we report how we used
the SPEAR algorithm’s curiosity values to compare with user-
specific attentional preferences (tunings). Results addressing
our four research questions are presented and discussed in Sec-
tion 5. Conclusions and opportunities for future work are given
in Section 6.

2 Related Work

At the moment, we identify three main research directions that
are related to our work.

Collaborative filtering extensions. In Lacic et al., 2014,
the Collaborative Item Ranking Using Tag and Time Informa-
tion (CIRTT) approach is introduced, which combines user-
based and item-based CF with the information about tag fre-
quency and recency through the base-level learning (BLL) equa-
tion from human memory theory. An extensive survey on CF
was recently conducted by Shi et al., 2014. In this survey,
the authors classify CF approaches based on the type of in-
formation that is processed and the type of paradigm applied.
Furthermore, CF extensions are defined as approaches that,
enrich classic CF algorithms with valuable additional informa-
tion on users and resources. Analogous categorization of CF
studies is performed in Adomavicius and Tuzhilin, 2005 as well.
Additionally, these studies have identified challenges that are
crucial to future research on CF. In this context, authors state
the fact that there is a lack of studies which address issues on
recommender systems from the psychological perspective. To
the best of our knowledge, there have been no remarkable en-
deavors which combine the implementation of a dynamic and
connectionist model of human cognition, such as SUSTAIN,
with existing CF algorithms. The work presented in Wang and
Blei, 2011 is related to our study due to its focus on deriving
semantic topics for resources. The approach presented in Wang
and Blei, 2011 combines collaborative filtering and probabilistic
topic modeling to recommend existing and newly published sci-
entific articles to researchers in an online scientific community.
Similarly, the author in Marlin, 2004 introduces the User Rat-
ing Profile Model for rating-based collaborative filtering, which
combines a multinomial mixture model, the aspect model and
LDA.

Recommender systems and user modeling. The work
by Cremonesi et al., 2012b distinguishes between recommender
systems that provide non-personalized and personalized recom-
mendations. While non-personalized recommender systems are
not based on user models, personalized ones choose resources

by taking into account the user profile (e.g., previous user in-
teractions or user preferences). Various techniques have been
proposed to design user models for resource recommendations
Jawaheer et al., 2014; Coleho et al., 2010. Some approaches
aim to provide dynamically adapted personalized recommen-
dations to users Dooms, 2013.

Another related field is human decision making in recom-
mender systems Chen et al., 2013. For example, the work pre-
sented in Cremonesi et al., 2012a systematically analyzes rec-
ommender systems as decision support systems based on the
nature of users’ goals and the dynamic characteristics of the re-
source space such as e.g., availability of resources. Our recent
work Kowald and Lex, 2016 shows that the type of folksonomy
in a social tagging systems also determines the efficacy of a
tag recommender approach. There is, however, still a lack of
research focusing on investigating user decision processes in de-
tail, considering insights from psychology. With this work, we
contribute to this sparse area of research.

Long tail recommendations and user serendipity. In the
recommender systems community, long tail recommendations
have also gained in importance. Essentially, the long tail refers
to resources of low popularity Shi et al., 2014. However, enhanc-
ing recommendation results with long tail resources can impact
user satisfaction. In this context, current research Shi et al.,
2014; Yin et al., 2012; Shi, 2013 investigates whether additional
revenue can be generated by the recommender systems from
long tail resources. Various solutions have been proposed to
overcome the problem of over-specialization and concentration-
bias in recommender systems Adamopoulos and Tuzhilin, 2014;
Lamprecht et al., 2015. The problem of concentration-bias be-
comes evident since traditional CF algorithms recommend re-
sources based on the users’ previous history of activities. Hence,
resources with the most occurrences in this history are typi-
cally repeatedly recommended to users, causing a narrowing
of choices by excluding other resources which might be of in-
terest. Additionally, recommending resources based on user’s
previous activities or preferences yields to over-specialization
of recommendations. However, the balance between informa-
tion overload and facilitating users to explore new horizons by
recommending serendipitous choices is not tackled within the
scope of this work.

3 Approach

In this section, we first introduce the main principles of the
SUSTAIN model, followed by all steps of our approach and
its implementation. This includes a delineation of how we de-
signed a hybrid recommender based on SUSTAIN and how we
derived semantic topics by means of LDA. Finally, we describe
how we identified candidate resources using CF. Notations used
throughout this paper are summarized in Table 1.

3.1 SUSTAIN

SUSTAIN (Supervised and Unsupervised STratified Adaptive
Incremental Network) is a flexible model of human category
learning that is introduced and thoroughly discussed in Love
et al., 2004. By means of a clustering approach, it represents
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Symbol Description
u user
v neighbor in the sense of CF
t tag
r resource
c candidate resource
P set of posts / bookmarks
U set of users
Vu,r neighbors of user u that bookmarked r
T set of tags
R set of resources
Ru resources of user u
Rv resources of neighbor v
Su similar resources of u based on topics
Sr similar resources of resource r
Cu resource candidate set of user u
Z number of topics (i.e., n dimensions)
k number of neighbors (CF)
k number of Matrix Factorization factors
l number of iterations
I topic vector of a resource
Iact activated topics of I (i.e., with value 1)
Hj cluster j in a user’s clusters
Hm most activated (winning) cluster
Hact
j activation value of cluster j

Hact
m activation value of winning cluster m

µij distance to cluster j at dimension i
λi attentional tuning (weight) of dimension i
r attentional focus parameter
η learning rate
τ threshold for the creation of new clusters
sim(u, v) similarity between users u and v
α weighting parameter of SUSTAIN
CFU (u, r) Collaborative Filtering value for u and r
RecRes(u) set of recommended resources for user u

Table 1: Overview of notations used in this paper.

the way humans build up and extend their category representa-
tions when learning by means of examples. The key points of
the model are flexibility and simplicity, which are supported by
the fact that the number of hidden units (i.e., clusters) is not
chosen in advance, but is discovered incrementally through the
learning trajectory. Initially, the model starts as very simple
with one cluster representing the first example, and then grows
with the complexity of the problem space. The model only re-
cruits a new cluster if a new example cannot be accommodated
in one of the already existing clusters.

SUSTAIN is described as a three layer model with (1) the
input layer that encodes the input stimulus, (2) the intermedi-
ate layer, a cluster set representing learned categories and (3)
the output layer that predicts which category an input stimu-
lus belongs to. Depending on the requirements, the model can
support either unsupervised or supervised learning processes,
where the two approaches mainly differ through their means of
cluster recruitment. Supervised learning requires an external
feedback mechanism that verifies the correct categorization of
new examples. A false categorization is interpreted as an error
and leads to a new cluster recruitment. Unsupervised learning
on the other hand, does not require an explicit feedback mecha-
nism but instead uses the similarity of the input stimulus to the
cluster set. In other words, if a given input stimulus’ similarity

to the existing clusters is below a threshold value τ , it is as-
sumed that the input cannot be sufficiently represented in the
existing cluster set. This leads to a new cluster representing
the input stimulus. In order to explain the input stimulus, the
existing clusters compete amongst each other. Therefore, for
each cluster an activation value is calculated that reflects the
similarity to the input stimulus. The highest activated cluster
wins and will, if its activation is greater than τ , predict the
input stimulus’ category.

In line with the requirements of our learning task, this work
focuses on the unsupervised learning process, clustering with
interconnected input, hidden and output units.

To adjust to the peculiarities of different data sets, the
approach additionally offers parameters such as the learning
rate η and the attentional focus r (see also Table 2). The
learning rate η determines the influence of an input stimuli on
its accommodating cluster and consequently defines how fast
the algorithm learns new patterns. The attentional focus r is
a constant that represents a person’s capability to focus on
information aspects or features relevant to a given task, while
suppressing minor features of that particular task. To capture
a user’s specific preferences for certain aspects, the attentional
focus r is enhanced by attentional tunings (i.e., tunings of the
attentional focus on input features that evolve with encounters
with new exemplars).

In this work, we train a slightly adapted SUSTAIN model
using a user’s history (i.e., collected resources in a training
set). The resulting user model is applied to predict new re-
sources from a preselected candidate set. During training and
testing, SUSTAIN maps the input features (e.g., topics iden-
tified by Latent Dirichlet Allocation) of a resource to a set of
dimensions at the input layer. The activation of each dimen-
sion is controlled by the attentional tuning that is learned in the
course of the training phase and reflects the importance of the
corresponding feature dimension for a specific user. The hid-
den layer consists of a set of clusters each representing similar
resources encountered in the past. Hence, one cluster corre-
sponds to a user-specific field of interest. In our test phase, the
set and the structure of recruited clusters are treated as fixed
measurements that no longer change. The classification deci-
sion (i.e., the decision to choose or not choose a given resource)
is a function of the activation of the most activated (winning)
cluster.

3.2 A Hybrid Resource Recommender
Based on SUSTAIN

First, to describe our Web resources using categories, we derive
500 LDA topics from tags assigned to resources of our datasets
Griffiths et al., 2007, as described in Section 3.3. The LDA top-
ics of our resources represent the n input features of our model.
Then, on the basis of the resources a user has bookmarked in
the past (i.e., the training set of a user), each user’s personal at-
tentional tunings and cluster representations are created in the
training phase and included in our user model. Subsequently,
our user model based prediction algorithm is evaluated in the
testing phase.

To better fit our learning task’s specific needs, we slightly
adapt SUSTAIN’s unsupervised clustering approach; and our
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adaptions impact specifically the training and testing phase.
More precisely, we make an adjustment to the very high num-
ber of 500 input dimensions by limiting the learning focus to
the topics activated by the current learning resource (further
referred to as Iact). This led to improved performance results,
which explain the difference to results reported in our previous
work Seitlinger et al., 2015.

Training. Following an unsupervised learning procedure, we
start simple, with one cluster and expand the number of clus-
ters if necessary. Please note that all SUSTAIN-specific pa-
rameter settings are adopted from Love et al., 2004 (see Table
2).

For each resource in the training set of a user u, we start
by calculating the distance µij to cluster j at dimension i as
described in equation (1):

µij =
∣∣∣Iposi −Hposi

j

∣∣∣ (1)

where I is the n-dimensional input vector, which represents
the topics of this resource, and vector Hj is cluster j’s position
in the n-dimensional feature space, which holds a value for
each topic and is initially set to ~0. In this setup, input and
cluster vectors represent 500 topics of which only a few are
activated by each resource. Adjusting to this setting, we set
the distance µij to 1 (maximal distance) for every topic i that
is not activated in the input vector (Iposi = 0) and therefore
i /∈ Iact for Iact = {i ∈ I∧ i = 1}. In the next step, we consider
only activated topics i ∈ Iact to calculate the activation value
Hact
j of the jth cluster by equation (2):

Hact
j =

∑
i∈Iact

(λi)
re−λiµij∑

i∈Iact
(λi)r

(2)

where λi represents the attentional tuning (weight) of dimen-
sion i and acts as a multiplier on i in calculating the activation.
Initially, vector λ is set to ~1 and evolves during the training
phase according to equation (3) calculated at the end of every
training iteration (i.e., after including a resource). r, which is
set to 9.998, is an attentional focus parameter that accentuates
the effect of λi: if r = 0. All dimensions are weighted equally.

If the activation value Hact
m of the most activated (i.e., win-

ning) cluster is below a given threshold τ = .5, a new cluster
is created, representing the topics of the currently processed
resource. At the end of an iteration, the tunings of vector λ
are updated given by equation (3):

∆λi = ηe−λiµim(1− λiµim) (3)

where j indexes the winning cluster and the learning rate η
is set to .096. In a final step, the position vector of the win-
ning cluster, which holds a value for each of the n topics, is
recalculated as described by equation (4):

∆Hposi
m = η(Iposi −Hposi

m ) (4)

The training phase is completed when steps (1) to (4) are sub-
sequently processed for every resource in a user’s training set.
For each user, this results in a particular vector of attentional
tunings λ and a set of j cluster vectors Hj . More formally, the
training procedure of our approach is given by Algorithm 1.

Function Symbol Value
Attentional focus r 9.998
Learning rate η .096
Threshold τ .5

Table 2: SUSTAIN’s best fitting parameters for unsupervised learn-
ing as suggested in Love et al., 2004.

Algorithm 1 Training procedure per user

1: Initialize a set of cluster H = ∅
2: Initialize a vector λ with λi = 1
3: for every resource topic vector I do
4: for every cluster Hj ∈ H do
5: Calculate µj
6: Calculate Hact

j

7: end for
8: Identify Hm with max Hact

m

9: if Hact
m <= τ then

10: Hm ← I
11: H ← H ∪ {Hm}
12: end if
13: λ← λ+ ∆λ
14: Hm ← Hm + ∆Hm
15: end for
16: return λ
17: return H

Testing. As described in Section 3.3, we determine the top 100
resources identified by CFU as a candidate set Cu of potentially
relevant resources for the target user u. Then, for each candi-
date c in Cu, we calculate Hact

m by applying equations (1) and
(2). In order to compare the values resulting from SUSTAIN
and CFu, we normalize them such that

∑
c∈Cu

Hact
m (c) = 1

and
∑
c∈Cu

CFU (u, c) = 1 holds. This leads to the normal-
ized values Hact

m (c) and CFU (u, c) that are finally put together
as shown in equation (5) in order to determine the set of k
recommended resources RecRes(u) for user u:

RecRes(u) =
k

arg max
c∈Cu

(α Hact
m (c)︸ ︷︷ ︸

SUSTAIN

+(1− α)CFU (u, c)

︸ ︷︷ ︸
SUSTAIN+CFU

) (5)

where α can be used to inversely weigh the two components
of our hybrid approach. For now, we set α to .5 in order to
equally weight SUSTAIN and CFU .

3.3 Technical Preliminaries

Our approach requires two steps of data preprocessing. First,
the extraction of semantic topics to describe resources and sec-
ond, the identification of candidate resources using CF. Candi-
date resources describe the user-specific set of Web resources
that the algorithm considers recommending to a user.

Deriving semantic topics for resources. In order to de-
rive semantic topics for the resources Griffiths et al., 2007 of
our social tagging datasets (see Section 4.1.1), we use Latent
Dirichlet Allocation (LDA) Blei et al., 2003. Categories or top-
ics describing Web resources form the basis of our approach.
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Since our datasets do not explicitly contain such properties for
resources, we chose LDA to simulate an external categorization.

LDA is a probability model that helps find latent seman-
tic topics for documents (i.e., resources). In the case of social
tagging data, the model takes assigned tags of all resources
as input and returns an identified topic distribution for each
resource. We implemented LDA using the Java framework Mal-
let2 with Gibbs sampling and l = 2000 iterations as suggested
in the framework’s documentation and related work (e.g., Kres-
tel et al., 2009). In order to reduce noise and to meaningfully
limit the number of assigned topics, we set the number of la-
tent topics Z to 500 (see also Kintsch and Mangalath, 2011)
and only consider topics for a resource that show a minimum
probability value of .01. The Latent Dirichlet Allocation can
be formalized as follows:

P (ti|d) =
Z∑
j=1

(P (ti|zi = j)P (zi = j|d)) (6)

Here P (ti|d) is the probability of the ith word for a document
d and P (ti|zi = j) is the probability of ti within the topic zi.
P (zi = j|d) is the probability of using a word from topic zi in
the document.

Identifying candidate resources. Within the scope of this
paper, the term candidate resources describes the set of re-
sources that is considered when calculating most suitable items
for a recommendation. To evaluate our approach, we use User-
based Collaborative Filtering (CFU ) Schafer et al., 2007 to iden-
tify 100 candidate resources per user. CFU typically consists of
two steps: first, the most similar users (the k nearest neighbors)
for a target user are identified using a specific similarity mea-
sure. Second, resources of these neighbors are recommended
that are new to the target user. This procedure is based on
the idea that if two users had a similar taste in the past, they
will probably share the same taste in the future and thus, will
like the same resources Schafer et al., 2007. We calculate the
user similarities based on the binary user-resource matrix and
the cosine-similarity measure (see Zheng and Li, 2011). In ad-
dition, we set the neighborhood size k to 20, as is suggested for
CFU in social tagging systems Gemmell et al., 2009.

More formally, the prediction value CFU (u, i) for a target
user u and a resource r is given by equation (7):

CFU (u, r) =
∑
v∈Vu

sim(u, v) (7)

where Vu,r is the set of most similar users of u that have book-
marked r. sim(u, v) is the cosine similarity value between u
and v.

Source code. Our approach as well as the baseline algo-
rithms described in Section 4.1.4 (except for WRFM) and the
evaluation method described in Section 4.1.2 are implemented
in Java within our TagRec recommender benchmarking frame-
work Kowald et al., 2014, which is freely available via GitHub3.

2http://mallet.cs.umass.edu/
3https://github.com/learning-layers/TagRec/

Dataset Type |P | |U | |R| |T | |P |/|U |
Bibsonomy Full 400,983 5,488 346,444 103,503 73

Sample 82,539 2,437 28,000 30,919 34
Training 66,872 2,437 27,157 27171 27
Test 15,667 839 11,762 12,034 19

CiteULike Full 753,139 16,645 690,126 238,109 45
Sample 105,333 7,182 42,320 46,060 15
Training 86,698 7,182 40,005 41,119 12
Test 18,635 2,466 14,272 16,332 8

Delicious Full 104,799 1,867 69,223 40,897 56
Sample 59,651 1,819 24,075 23,984 33
Training 48,440 1,819 23,411 22,095 27
Test 11,211 1,561 8,984 10,379 7

Table 3: Properties of the full datasets as well as the used dataset
samples (including training and test set statistics) for BibSonomy,
CiteULike and Delicious. Here, |P | is the number of posts, |U | is
the number of users, |R| is the number of resources and |T | is the
number of tags.

4 Experimental Setup

This section describes the methodology we selected to evaluate
SUSTAIN based on recommender performance metrics and the
SPEAR algorithm. It is structured in accordance with our four
research questions.

4.1 Model Validation Based on Recommendation Accu-
racy (RQ1)

In this section, we describe datasets, method, metrics and base-
line algorithms used in our recommender evaluation study.

4.1.1 Datasets

We used the social bookmark and publication sharing system
BibSonomy4 (2013-07-01), the citation sharing system CiteU-
Like5 (2013-03-10) and the social bookmarking system Deli-
cious6 (2011-05-01) to test our approach in three different set-
tings that vary in their dataset sizes. To reduce computational
effort, we randomly selected 20% of the CiteULike user profiles
Gemmell et al., 2009 (the other datasets were processed in full
size). We did not use a p-core pruning approach to avoid a
biased evaluation (see Kowald and Lex, 2015) but excluded all
posts assigned to unique resources, i.e., resources that have only
been bookmarked once (see Parra-Santander and Brusilovsky,
2010). The statistics of the full datasets, dataset samples we
used (i.e., after the exclusion of posts assigned to unique re-
sources), and training and test sets (see next section) are shown
in Table 3.

4http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
5http://www.citeulike.org/faq/data.adp
6http://files.grouplens.org/datasets/hetrec2011/

hetrec2011-delicious-2k.zip

http://mallet.cs.umass.edu/
https://github.com/learning-layers/TagRec/
http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
http://www.citeulike.org/faq/data.adp
http://files.grouplens.org/datasets/hetrec2011/hetrec2011-delicious-2k.zip
http://files.grouplens.org/datasets/hetrec2011/hetrec2011-delicious-2k.zip
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Figure 1: Resource statistics of the training datasets for BibSon-
omy, CiteULike and Delicious illustrating the number of resources
users’ have engaged with.

4.1.2 Evaluation Protocol

In order to evaluate our algorithm and to follow common prac-
tice in recommender systems research (e.g., Kowald and Lex,
2015; Huang et al., 2014; Zheng and Li, 2011), we split our
datasets into training and test sets. Therefore, we followed the
method described in Lacic et al., 2014 to retain the chronologi-
cal order of the posts. Specifically, we used the 20% most recent
posts of each user for testing and the rest for training the algo-
rithms. The statistics of the training and test sets used can be
found in Table 3. This evaluation protocol is in line with real-
world scenarios, where user interactions in the past are used to
try and predict future user interactions campos2013time

4.1.3 Evaluation Metrics

To finally determine the performance of our approach as well
as of the baseline methods, we compared the top 20 recom-
mended resources determined by each algorithm for a user
with the relevant resources in the test set using a variety of
well-known evaluation metrics Parra and Sahebi, 2013; Her-
locker et al., 2004 in recommender systems research. In partic-
ular, we took into account Normalized Discounted Cumulative
Gain (nDCG@20), Mean Average Precision (MAP@20), Recall
(R@20) and Precision (P@20). Moreover, we show the perfor-
mance of the algorithms for different numbers of recommended
resources (k = 1− 20) by means of Precision/Recall plots.

4.1.4 Baseline Algorithms

We selected a set of well-known resource recommender base-
line algorithms in order to determine the performance of our
novel approach in relation to these approaches. Hence, we have
not only chosen algorithms that are similar to our approach in
terms of their processing steps (CFU and CBT ) but also current
state-of-the-art methods for personalized resource recommen-
dations (CFR and WRMF) along with a simple unpersonalized
approach (MP).

Most Popular (MP). The simplest method we compare our
algorithm to, is the Most Popular (MP) approach that ranks
the resources by their total frequency in all posts Parra and
Sahebi, 2013. In contrast to the other chosen baselines, the
MP approach is non-personalized and thus recommends the
same set of resources for any user.

User-based Collaborative Filtering (CFU). See Section
3.3 for a detailed description of the User-based Collaborative
Filtering (CFU ) baseline.

Resource-based Collaborative Filtering (CFR). In con-
trast to CFU , Resource-based Collaborative Filtering (CFR)
(also known as Item-based CF), identifies potentially interest-
ing resources for a user by computing similarities between re-
sources instead of similarities between users. Hence, this ap-
proach processes the resources a user has bookmarked in the
past in order to find similar resources to recommend Sarwar
et al., 2001. As with CFU , we calculated similarities based on
the binary user-resource matrix using cosine similarity and fo-
cused on a resource-neighborhood size k of 20 Zheng and Li,
2011; Gemmell et al., 2009.

Content-based Filtering using Topics (CBT ). Content-
based filtering (CB) methods recommend resources to users by
comparing the resource content and the user profile Basilico
and Hofmann, 2004. Hence, this approach does not need to
calculate similarities between users or resources (as done in CF
methods) but directly tries to map resources and users. We im-
plemented this method in the form of Content-based Filtering
using Topics (CBT ) since topics are the only content-based fea-
tures available in our social tagging datasets (see Section 4.1.1).
The similarity between the topic vector of a user and a resource
has been calculated using the cosine similarity measure.

Weighted Regularized Matrix Factorization (WRMF).
WRMF is a model-based recommender method for implicit
data (e.g., posts) based on the state-of-the-art Matrix Factor-
ization (MF) technique. MF factorizes the binary user-resource
matrix into latent user- and resource-factors, which represent
these entities, in a common space. This representation is used
to map resources and users and thus, to find resources to be
recommended for a specific user. WRMF defines this task as
a regularized least-squares problem based on a weighting ma-
trix, which differentiates between observed and unobserved ac-
tivities in the data Hu et al., 2008. The results for WRFM
presented in Section 5 have been calculated using the MyMedi-
aLite 3.10 framework7 (2013-09-23) with k = 500 latent factors,
l = 100 iterations and a regularization value λ = .001.

4.2 Parameter Investigation to Understand the Dynam-
ics of SUSTAIN (RQ2)

This section describes the setup and rationale of a parameter
investigation that we conducted to tackle our second research
question: Which aspects of the SUSTAIN algorithm contribute
to the improved performance? In an initial study that has been
reported in Seitlinger et al., 2015 and in the comparative stud-
ies that will be presented in Section 5.1, we used the best fitting

7http://www.mymedialite.net/

http://www.mymedialite.net/
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parameters for unsupervised learning as suggested in Love et
al., 2004. This parameter set results from extensive parameter
studies, applying a genetic algorithm to fine tune SUSTAIN for
a variety of learning data and learning problems. The paper
concluded that SUSTAIN does not show great sensitivity to
single parameter values but rather succeeds due to its princi-
ples.

However, our learning task differs from the presented stud-
ies in multiple aspects, for instance in the amount of training
data, in the application domain and most significantly in the
format of the input stimuli. In Love et al., 2004 the input
stimuli are characterized by multiple dimensions of input units.
For instance a dimension (e.g., color) with 3 input units (e.g.,
green, yellow, blue) could have an input vector of [0,0,1]. In
our case an input stimulus consists of 500 dimensions (i.e., LDA
topics) of binary input units. Furthermore, data that is typi-
cally available in non-commercial learning environments, and
equally, the social bookmarking datasets we use in our study,
are sparse and premature. With this in mind, we conducted
a short parameter study to better understand the underlying
dynamics of our adapted approach and to investigate possible
inconsistencies. The priority was to look into SUSTAIN’s pa-
rameters r, η in a first step, but secondly, also to find the best
fitting α value to optimally weight the impact of CFu.

The results in Section 5.1 were generated using the default
SUSTAIN parameters stated in Love et al., 2004, to avoid tun-
ing our approach and thus favoring it over the baseline algo-
rithms. Additionally, the parameter study was performed on
separate holdout sets extracted from the training data (using
the same method as described in Section 4.1.2) in order to
prevent a biased study conducted on the test data.

SUSTAIN. First, we determined plausible ranges for r and
η, and defined sequential steps within these ranges. Addition-
ally, the simulation includes the originally suggested values as
presented in Table 2.

For r, which strengthens the impact of input dimensions
by potentiating λi (see equation (2)), we start with r = 1 as
a lower bound. This leads to a simulation with plain λ values.
From there, we continue linearly with r = r + 2 for r <=
21. As λ shows rather small values, with a great percentage
varying from 1.0 to 1.3, a relatively high value of r seems to be
reasonable.

For the learning rate η, we set the simulation span such
that ηmin > 1

Nmax
where Nmax is the maximal amount of train-

ing resources per user. Thus, the learning rate η is set to 7.5 E-4
on the lower bound, while 1 was chosen as an upper bound. In
between those bounds, three learning rates per decimal power
were tested. As the median values for resources per user in our
training sets are 12, 16 and 22 (see Figure 1), we expect the
optimal learning rate to be fairly high.

As described in the original study setup, we initially sim-
plify the parameter study by treating τ = 0.5 as a fixed value. τ
is the threshold responsible for whether a new cluster is formed
or not and may range from 0 to 1.

When interpreting the first set of plots, additional ques-
tions appeared, such as, to what extent the training datasets
and the topic distribution of their users may shift the optimal
amount of clusters. To this end, we looked into the distribu-

tion of clusters and resources per user and dataset that were
calculated with the recommended parameter setting outlined
in Table 2. Finally, we investigated the performance develop-
ment of SUSTAIN with different learning rates when varying τ
within its range of 0 and 1, monitoring steps of .1. Considering
insights from the first parameter setting, we fixed r to 9, and
the learning rate to a range from .01 to 1.

Weighting CFU . For α, which is the only parameter that is
not part of SUSTAIN, but inversely weights the impact of the
SUSTAIN and CFu components (see equation 5), we examine
α values between .1 and .9.

4.3 Comparing the Computational Efficiency of
Discussed Algorithms (RQ3)

In order to answer RQ3, we determined the computational
complexity of our discussed recommender algorithms using O-
notations. We distinguished between offline components of the
algorithms, which can be calculated without any knowledge of
the target user, and online components, which need to be cal-
culated for the target user on-the-fly. In order to validate our
complexity analysis, we also measured the complete runtime
(i.e., training + testing time) of the algorithms. We conducted
the runtime measurement on an IBM System x3550 server with
two 2.0 GHz six-core Intel Xeon E5-2620 processors and 128
GB of RAM using Ubuntu 12.04.2 and Java 1.8.

4.4 Relation between SUSTAIN attentional entropy val-
ues and SPEAR scores (RQ4)

One of the important factors when considering user behavior in
social bookmarking systems is the level of the user’s expertise.
Expert users tend to provide high quality tags that describe
a resource in a more useful way Lorince et al., 2014; Lorince
et al., 2015, and they also tend to discover and tag high quality
resources earlier, bringing them to the attention of other users
in the community Noll et al., 2009.

To calculate user’s expertise levels, literature provides a
very well established algorithm known as SPEAR - SPamming-
resistant Expertise Analysis and Ranking Noll et al., 2009; Ye-
ung et al., 2011, which is based on the HITS (Hypertext In-
duced Topic Search) algorithm. The authors determine the
level of the user’s expertise based on two principles: (1) mu-
tual reinforcement between user expertise and resource quality
and (2) experts are discoverers, curious users who tend to iden-
tify high quality resources before other users (followers). This
indicates that expert users are the first to collect many high
quality resources and, in turn, high quality resources are tagged
by users showing high expertise levels.

Expertise scores. Based on the work of Noll et al., 2009, we
calculated SPEAR expertise scores for users and resources in
our datasets described in Table 3.

For M users and N resources we define a set of activities:
activity = (user, resource, tag, timestamp), which describes at
which timestamp a user has tagged a resource. User expertise
scores and resource quality scores vectors are defined as ~E =
(e1, e2, ..., eM ) and ~Q = (q1, q2, ..., qN ), respectively. Initially,
the values of these two vectors are set to 1.0. As has already
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been mentioned, SPEAR implements the mutual reinforcement
principle, which indicates that the expertise score of a user
depends on the quality scores of the tagged resources and the
quality score of a resource depends on the expertise score of
the users who tagged that resource.

Thus, an adjacency matrix A of size M ×N is constructed
next, containing one of the following values: (1) l + 1 if user i
has tagged resource j before l other users or (2) 0 if user i has
not tagged resource j. Assigning adjacency matrix values this
way also enables the implementation of the discoverer/follower
principle, i.e., if user i was the first that tagged resource j, then
the corresponding value Aij would be the total number of users
that tagged j, and if user i tagged the resource j most recently,
Aij = 1. We applied the credit score function suggested by Noll
et al., 2009 to A, so that Aij =

√
Aij . Finally, user expert

scores and resource quality scores are calculated through an
iterative process based on equations 8 and 9:

~E = ~Q×AT (8)

~Q = ~E ×A (9)

To relate SUSTAIN attentional focus values to the SPEAR
scores, we only considered the expertise score vector. The cal-
culated expertise scores for the highest ranked users in our
datasets vary between .01 in Delicious and CiteULike, and .03
in BibSonomy. The low values are due to data sparsity, i.e.,
many resources were only tagged by a single user.

Attentional entropy values. The expertise scores were cor-
related with the entropy of the users’ attentional tunings de-
rived from SUSTAIN. Thus, SUSTAIN gives us for each of the
Z topics a user-specific attentional tuning, which can be com-
bined using the Shannon entropy. We calculated the entropy
of the distribution of users’ attentional tunings applying the
following equation:

S = −
Z∑
i=1

p(xi) · log(p(xi)) (10)

where p(xi) is the probability that the attentional tuning value
xi occurs. In this respect, a user with a high attentional entropy
is interested in a rich set of topics and thus, can be seen as
curious user (discoverer), which should also correlate with a
high SPEAR score if our hypothesis is correct. The results of
this correlation are presented in Section 5.4.

5 Results and Discussion

In this section, we present and discuss the results of our evalua-
tion aligned to our four research questions presented in Section
1.

5.1 Model Validation Based on Recommendation Accu-
racy (RQ1)

In order to tackle our first research question, we compared our
approach to a wide set of state-of-the-art resource recommender
algorithms. The results in Figure 2 and Table 4 reveal that

the simplest baseline algorithm, i.e., the unpersonalized MP
approach, achieves very low estimates of accuracy. Across all
datasets, the other baseline algorithms reach larger estimates
and therefore seem to be successful in explaining a substan-
tial amount of variance in user behavior. Figure 2 reveals the
evolution of accuracy values with a growing number of recom-
mendations (i.e., one to 20). Note that recall (per definition)
increases with the number of recommended items. Finally, Ta-
ble 2 presents the results achieved with 20 recommended items.

Our evaluation results indicate that our SUSTAIN+CFU
approach outperforms CFU and SUSTAIN in all settings. For
instance, in the Precision/Recall plots in Figure 2, we can see
that there is no overlap between corresponding curves, with
SUSTAIN+CFU always reaching higher values than SUSTAIN
and CFU separately. Moreover, results of the ranking-dependent
metric nDCG@20 in Table 4 particularly show a remarkably
better value for SUSTAIN+CFU than CFU , demonstrating
that our approach, through its improved personalization, can
be used to successfully re-rank candidate resources identified
by CFU . We attribute this to the fact that the user-based CF
cannot rank the resources of a neighbor. This possibly leads
to a list of recommendations that contains only the resources
of a user’s nearest neighbor with no ranking. With our hybrid
approach, we tackle this issue. Thus, we can answer our first
research question positively. Interestingly, the performance of
the algorithms varies greatly across BibSonomy, CiteULike and
Delicious. Regarding nDCG@20 a different algorithm wins in
each of the three datasets. For instance, in the case of CiteU-
Like, the best results are achieved with CFR. We can explain
this by studying the average topic similarity per user. In CiteU-
Like (18.9%), it is much higher than in BibSonomy (7.7%) and
Delicious (4.5%), indicating a more thematically consistent re-
source search behavior. Note that we define the average topic
similarity per user as the average pairwise cosine similarity be-
tween the topic vectors of all resources a user has bookmarked.
This is averaged over all users. The higher consistency posi-
tively impacts predictions that are based on resources collected
in the past, such as CFR-based predictions.

In the case of Delicious, the users in the dataset are cho-
sen using a mutual-fan crawling strategy (see Cantador et al.,
2011) and thus, are not independent from each other. This
is conducive to methods that capture relations between users
with common resources by means of high-dimensional arrays,
such as WRMF. However, compared to the other algorithms,
especially to CFR and WRMF, SUSTAIN+CFU demonstrates
relatively robust estimates (especially in terms of Precision and
Recall) as our approach provides fairly good results in all three
datasets. SUSTAIN+CFU shows particularly good results on
BibSonomy, where it outperforms all baseline algorithms.

5.2 Parameter Investigation to Understand the Dynam-
ics of SUSTAIN (RQ2)

This section presents and discusses insights from a parameter
study that we conducted to address our second research ques-
tion. Specifically, we aim to identify the core aspects of the
SUSTAIN model that have the greatest effects on the perfor-
mance of our model on our datasets. We were also able to verify
the impact of user traces and detect and explain particularities
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Figure 2: Precision/Recall plots for BibSonomy, CiteULike and Delicious showing the recommender accuracy of our approach
SUSTAIN+CFU in comparison to the baseline methods for k = 1 - 20 recommended resources. The results indicate that
SUSTAIN+CFU provides higher Precision and Recall estimates than CFU (RQ1) and SUSTAIN for each k and in all three datasets.
In the case of BibSonomy, SUSTAIN+CFU even outperforms all baseline methods, including WRMF.

Dataset Metric MP CFR CBT WRMF CFU SUSTAIN SUSTAIN+CFU

BibSonomy

nDCG@20 .0142 .0569 .0401 .0491 .0594 .0628 .0739
MAP@20 .0057 .0425 .0211 .0357 .0429 .0436 .0543
R@20 .0204 .0803 .0679 .0751 .0780 .0902 .0981
P@20 .0099 .0223 .0272 .0132 .0269 .0295 .0328

CiteULike

nDCG@20 .0064 .1006 .0376 .0411 .0753 .0828 .0977
MAP@20 .0031 .0699 .0170 .0210 .0468 .0503 .0634
R@20 .0090 .1332 .0697 .0658 .1149 .1344 .1445
P@20 .0023 .0289 .0174 .0218 .0257 .0279 .0310

Delicious

nDCG@20 .0038 .1148 .0335 .1951 .13 .131 .1799
MAP@20 .0011 .0907 .0134 .1576 .0743 .0936 .1275
R@20 .0071 .1333 .0447 .2216 .1599 .1649 .2072
P@20 .0017 .0512 .0173 .1229 .0785 .0826 .1047

Table 4: nDCG@20, MAP@20, R@20 and P@20 estimates for BibSonomy, CiteULike and Delicious in relation to RQ1. The results indi-
cate that our proposed approach SUSTAIN+CFU outperform CFU (RQ1) and SUSTAIN in all settings. Furthermore, SUSTAIN+CFU
is able to compete with the computationally more expensive WRMF approach. Note: highest accuracy values per dataset over all
algorithms are highlighted in bold.

of our three datasets.

SUSTAIN. In Figure 3, results of the first simulation are il-
lustrated. In this setup, we treated τ = .5 as a fixed variable,
similar to the original parameter study (see Love et al., 2004),
and solely varied learning rate η and attentional focus parame-
ter r within a parameter range, as explained in 4.2. The plots
show SUSTAIN’s performance on the y-axis given as nDCG@20
values and the learning rates on the x-axis. The shape of the
box plot indicates the distribution of the performance values
caused by a set of different r’s, which means, the higher the
box plot, the greater the influence of r. Even though some vari-
ation can be observed, for the best performing η, the influence
of r seems to be marginal in this setting.

In our case, the learning rate tends to be the most impor-
tant factor to consider. We identify two scenarios: (i) if the

learning rate is too small, a user’s behavior cannot be tracked
fast enough and (ii) if the learning rate is too high, the algo-
rithm forgets previous resources too quickly. The first scenario
is likely to apply to users with few resources, whereas, the sec-
ond scenario is potentially problematic for users with many
resources. As illustrated in Figure 1, our training datasets
show a large variation in the distribution of training resources
per user, within and between datasets. However, the common
trend shows that about 50 percent of users have less than 25 re-
sources available for training the algorithm. In line with these
observations, SUSTAIN’s performance peaks at an intermedi-
ate value around .1. In our case, this particularly proves that
the browsing history of a user needs to be taken into account
for optimal predictions, and not just the most recent item.

Among the three datasets, the learning rate has the great-
est impact on Delicious (note the ranges of nDCG@20). An ex-
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Figure 3: Recommendation effectiveness influenced by learning rate and attentional focus parameter.
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Figure 4: Snapshot of the distribution of the clusters and resources appearing with parameters recommended in the literature. Please
note that the range of the plots is restricted in order to improve readability. BibSonomy and CiteULike have both about 100 users
with more than 150 resources, which are not depicted in this plot.

planation of this behavior can be derived from Figure 4, which
presents a snapshot of the cluster resource distribution per user
and dataset. In the case of Delicious, the overall trend shows
that a new cluster is created for each second or third resource.
Since only the cluster with the highest activation learns in our
approach, the strong influence of the learning rate, or in other
words the need for faster learning per cluster, seems reasonable.

Given that a new cluster is created whenever a new re-
source is added that cannot be integrated into any of the exist-
ing clusters due to a lack of similarities, the cluster distribution
also presents the level of topic overlap among the resources of
a typical user. For instance, when calculating basic statistics
for the resource to cluster ratio of Delicious, we find that the
average value is 2.8 resources per cluster in comparison to 4.2
resources per cluster for CiteULike, for instance. This indi-
cates a large overlap between resources of users in CiteULike.

Furthermore, we can observe a decreasing trend of the resource-
to-cluster ratio as the number of resources grows. Furthermore,
the plot for CiteULike highlights the rather weak relationship
between clusters and resources, which signifies a great variety
among users.

These results made us question how the number of clus-
ters impacts the performance, and whether a dynamic cluster-
ing approach is even necessary for our task. In particular, we
wanted to investigate if a different τ could lead to a better per-
formance with the training sets. Thus, in a second simulation,
we observed the performance development when varying τ and
η. This time r = 9 was treated as a fixed variable, due to the
marginal difference it caused in our first study. Line charts in
Figure 5 present our findings. Regarding the optimal number
of clusters, we can see that the three datasets vary greatly in
their behavior. Delicious performs best with only one cluster
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Figure 5: Recommendation effectiveness influenced by learning rate and the number of clusters.

Algorithm Component Type Complexity Reference
MP Complete Offline O(|P |) Parra & Sabhebi Parra and Sahebi, 2013
CBT Similarity Offline O(|U | · |R| · Z)

Recommendation Online O(|U | · |Su|)
Complete Online O(|U | · |Su|) Basilico & Hofmann Basilico and Hofmann, 2004

CFU Similarity Offline O(|U |2)
Recommendation Online O(|U | · |Vu| · |Rv|)
Complete Online O(|U | · |Vu| · |Rv|) Schafer et al. Schafer et al., 2007

CFR Similarity Offline O(|R|2)
Recommendation Online O(|U | · |Ru| · |Sr|)
Complete Online O(|U | · |Ru| · |Sr|) Sarwar et al. Sarwar et al., 2001

SUSTAIN / Topic Extraction Offline O(|R| · |T | · Z) Blei et al. Blei et al., 2003
SUSTAIN+CFU Candidates Online O(|U | · |Vu| · |Rv|) Schafer et al. Schafer et al., 2007

SUSTAIN Training Online O(|U | · |Ru| · Z)
SUSTAIN Testing Online O(|U | · |Cu| · Z)
Complete Online O(|U | · (|Ru|+ |Cu|) · Z) Love et al. Love et al., 2004

WRMF Complete Online O(|U | · |R| · k2 · l) Ning et al. Ning and Karypis, 2011

Table 5: Computational complexity of the algorithms showing that our SUSTAIN+CFU approach provides a lower complexity than
WRMF. We distinguish between offline (i.e., can be calculated without any knowledge of the target user) and online complexity (i.e.,
can only be calculated at runtime) components.

(i.e., τ = 0), CiteULike and BibSonomy show better results
with τ = .3 and τ = .5, respectively.

Delicious is the dataset most sensitive to τ (note the ranges
of nDCG@20). Again, we think this is due to the high variation
of topics, which leads to overfitting when too many clusters are
formed. BibSonomy exhibits a larger topic overlap than Deli-
cious. At the same time, in the case of Bibsonomy, we are
provided with a much larger amount of training data per user
than is the case with Delicious and CiteULike. Figure 1 for
instance shows that 25 percent of users have between 66 and
1841 resources available for training. CiteULike differs due to
its small amount of training data per user. Note the compara-
bly low values for median and third quartile. This results in
an optimal number of clusters between one and seven with the
mean = 1.05. Thus, results clearly suggest that the optimal
number of clusters varies with the properties of the training

data. We conclude that this value relates to the available num-
ber of training samples and the topic density.

Weighting CFU . We completed a simulation varying α from
0 to 1 to find the best fit for the weighting of CFU to SUSTAIN
(see 5). Results identified α = .65 as the best fitting value for all
datasets. Moreover, all values in the range of .3 to .8 perform
close to optimal.
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Figure 6: Complete runtime (i.e., training + testing time) of the al-
gorithms in milliseconds (log scale) for the Delicious dataset. The
plot verifies our findings regarding the computational complexities
presented in Table 5 since our SUSTAIN-based approach provides
a much lower complete runtime than WRMF. Please note that the
other datasets provided similar results.

5.3 Comparing the Computational Efficiency of Discussed
Algorithms (RQ3)

In this section, we investigate our third research question, con-
sidering the extent to which recommendations can be calcu-
lated in a computationally efficient way using SUSTAIN+CFu
in comparison to other state-of-the-art algorithms like WRMF.
The computational complexity of the approaches is shown in
Table 5. In order to validate our complexity analysis, we also
present the complete runtime (i.e., training + testing time) of
the algorithms for the Delicious dataset in Figure 6 (the other
datasets provided similar results). We discuss our findings for
each algorithm as follows:

MP. The unpersonalized MostPopular approach has the lowest
complexity. It has to analyze all posts in the dataset only once
in order to calculate the overall frequencies.

CFU . User-based Collaborative Filtering consists of an offline
and an online component. The offline component calculates
similarities between all users, whereas the online component
analyzes the resources Rv of the most similar users (i.e., the
neighbors Vu) of user u to calculate recommendations. Thus,
the complete computational complexity only depends on the
online component.

CFR. Resource-based Collaborative Filtering works much like
CFU . It needs to first calculate similarities between all re-
sources offline and then calculate recommendations online. In
the online step, CFR analyzes the most similar resources Sr for
each resource r in the set of the resources Ru of user u. Since
our datasets’ |R| and |Ru| are larger than |U | and |Vu| (20 in
our case) respectively, CFR also has a higher complexity than
CFU .

CBT . The Content-based Filtering using Topics approach
mainly consists of the offline similarity calculation between
users and resources, which is highly dependent on the number
of topics Z (i.e., 500 in our case). For the online recommenda-
tion step, only the most similar resources Su for a user u have
to be analyzed, which is computationally efficient.

SUSTAIN+CFU . Our hybrid SUSTAIN+CFU approach con-
sists of a computationally expensive topic extraction step that
is based on LDA. The complexity of LDA depends on the num-
ber of tags |T |, the number of resources |R| and the number
of topics Z. Furthermore, SUSTAIN+CFU requires an online
recommendation calculation step, where candidate resources

are identified and the SUSTAIN model is trained and tested.
The identification of candidate resources is performed by CFU
and the training of the SUSTAIN model is completed for all
resources Ru of user u based on the topic space of size Z. The
testing (or prediction) step is carried out for each candidate
resource in the set of candidates Cu for a user u. Taken to-
gether, the computational complexity of our approach is given
by O(|U | ·(|Ru|+ |Cu|) ·Z) which is asymptotically comparable
to CFR. The same holds for the pure SUSTAIN approach as
the candidate set needs to be calculated as well.

WRMF. The computationally most complex algorithm used
in our study is the matrix factorization based WRMF approach.
For each user u in U , WRMF needs to analyze all resources R
depending on the squared factor dimension k (i.e., 500 in our
case) and the number of iterations l (i.e., 100 in this paper).
Since |R| is far larger than |Ru| + |Cu| and k2 is the squared
value of Z, it is obvious that our SUSTAIN+CFU approach is
computationally much more efficient than WRMF. Addition-
ally, WRMF is an iterative approach, which further increases
its complexity by this factor.

Overall, our analysis shows the computationally efficiency
of our approach compared to other state-of-the-art algorithms.
This is further validated by the overall runtime results for the
Delicious dataset shown in Figure 6. Hence, we can also answer
our third research question positively.

5.4 Relation between SUSTAIN attentional entropy val-
ues and SPEAR scores (RQ4)

This section addresses our fourth research question (see Sec-
tion 1) that inquires whether users’ attentional entropies, de-
termined by SUSTAIN, correlate with users’ expertise scores
identified by the SPEAR algorithm. To this end, we followed
the procedure described in Section 4.4 to compare SUSTAIN’s
attentional entropy values with SPEAR’s expertise scores four
our three datasets. Results of this correlation study are pre-
sented in Figure 7.

Again, the plots show clear differences between the three
datasets. Although we reach high Spearman rank correlation
values in all three settings there is a considerable variation be-
tween Delicious (.55), CiteULike (.62) and BibSonomy (.83).
This is in line with results presented in Sections 5.1 and 5.2,
where we discuss recommender accuracy and SUSTAIN’s model
dynamics. In all experiments, we find that SUSTAIN+CFU
performs best on BibSonomy and worst on Delicious when
compared to baseline algorithms. In Figure 7, we can observe
power-law like distributions for the SPEAR expertise scores in
all three datasets, whereas, the distributions of SUSTAIN at-
tentional entropy values vary strongly. The Delicious dataset
shows an almost random distribution. Therefore, we presume
that these findings are closely related to how well SUSTAIN
and its parameter settings suit the properties of a specific
dataset. However, the overall high correlation suggests that
users, who reach high SPEAR expertise scores and can thus
be identified as discoverers, also reach a high SUSTAIN atten-
tional entropy value. This corroborates our hypothesis that
attentional entropy values, and thus a user’s attentional focus,
correlate with a user’s curiosity. This also provides a positive
answer to the last research question in this work.
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(a) BibSonomy (b) CiteULike (c) Delicious

Figure 7: Relation between SUSTAIN attentional entropy values and SPEAR’s expertise scores for BibSonomy, CiteULike and Delicious
(RQ4). Each plot illustrates the correlation between these values in the main panel and the data distributions in the upper and right
plots. We observe Spearman Rank Correlation values between .55 for Delicious and .83 for BibSonomy, which indicates that users with
a high attentional entropy value also receive a high expertise score.

6 Conclusions and Future Work

In this work, we investigated a model of human category learn-
ing, SUSTAIN Love et al., 2004, which is applied to mimic a
user’s attentional focus and interpretation and its applicabil-
ity to the recommender domain. Using offline studies on three
social bookmarking datasets (BibSonomy, CiteULike and De-
licious), we demonstrated its potential to personalize and im-
prove user-based CF predictions. We attribute this improve-
ment to the cognitive plausibility of SUSTAIN. The dynami-
cally created user model allows for a more flexible and thor-
ough representation of a user’s decision making on a given set
of resources: Reconstructing the user history in the form of
an iteratively trained model with history-specific patterns of
attentional tunings and clusters does more justice to a user’s
individuality than a CF-based representation of user-resource
relations. Deepening our investigations, we show that both
aspects, i.e., memorization of a user’s history as well as clus-
tering, contribute to the algorithm’s performance. Our param-
eter study revealed that restricting cluster growth can prevent
overfitting in sparse data environments. Additionally, we ob-
served that our hybrid SUSTAIN+CFU model is more robust
in terms of accuracy estimates and less complex in terms of
computational complexity than the Matrix Factorization-based
approach WRMF.

Finally, we utilized the SPEAR algorithm to identify cu-
rious users. In SPEAR, curiosity is defined as a discoverer
behavior (i.e., curious users tend to be faster at finding high
quality resources). We connected the Spear score for the users
in our dataset with their SUSTAIN-specific attentional entropy
values and we found that a user’s attentional focus indeed cor-
relates with their curiosity. The highest correlation is achieved
with the BibSonomy dataset, for which the SUSTAIN approach
is also most effective.

We conclude that our attempt to keep the translation from

theory into technology as direct as possible holds advantages for
both technical and conceptual aspects of recommender systems’
research. By applying computational models of human cogni-
tion, we can improve the performance of existing recommender
mechanisms and at the same time gain a deeper understanding
of fine-grained level dynamics in Social Information Systems.

Limitations and future work. We aim to improve and fur-
ther evaluate our model in various ways. First, we are working
on a variant that is independent of a resource candidate set
obtained by CFU and searches for user-specific recommenda-
tions only by means of the correspondingly trained SUSTAIN
network. Second, we will make use of the network’s sensitivity
towards a user’s mental state to realize a more dynamic rec-
ommendation logic. In particular, based on creative cognition
research (e.g., Finke et al., 1992) and in line with the findings of
our evaluation studies, we assume a broader attentional focus
(i.e., higher curiosity) to be associated with a stronger orienta-
tion toward novel or more diverse resources. If the algorithm
integrates this association, depending on the user model, rec-
ommendations should become either more accurate or diverse.

With respect to recommender evaluation, the question arises
whether SUSTAIN can realize its potential of providing addi-
tional benefits in cold-start and sparse data environments to
improve real-life learning experiences. Online evaluations are
less prone to error and misinterpretation, since they provide
a direct user feedback in comparison to offline studies, where
wrong predictions could be the result of a user’s poor searching
abilities.
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A Appendix: Sustain Results for Different Numbers of LDA
Topics

This section is an extension to RQ1, with Table 6 presenting
simulation results for SUSTAIN in the Delicious dataset when
applied to LDA topic sizes of 100, 500 and 1000. We see that
the best results are reached when using 500 LDA topics, which
verifies our choice to use this number of topics for our experi-
ments. We observed the same results for BibSonomy and Ci-
teULike. Furthermore, this table also provides SUSTAIN re-
sults for different numbers of recommended resources k.

Metric Z k=1 k=3 k=5 k=10 k=20

nDCG

100 .0036 .0089 .0128 .0202 .0374
500 .0232 .0471 .0649 .0958 .1310
1000 .0066 .0142 .0188 .0295 .0481

MAP

100 .0021 .0043 .0056 .0078 .0120
500 .0127 .0287 .0419 .0684 .0936
1000 .0043 .0082 .0099 .0138 .0189

Recall

100 .0021 .0071 .0119 .0234 .0589
500 .0127 .0347 .0556 .0999 .1658
1000 .0043 .0127 .0183 .0351 .0708

Precision

100 .0147 .0182 .0195 .0201 .0256
500 .0967 .0942 .0977 .0965 .0826
1000 .0224 .0231 .0239 .0275 .0317

Table 6: nDCG, MAP, R and P estimates for SUSTAIN in the
Delicious dataset based on different numbers of LDA topics. The
results show that 500 LDA topics lead to the best results. Note:
highest accuracy values are highlighted in bold.
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