
SIP (2012), vol. 1, e6, page 1 of 15 © The Authors, 2012.
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike
license <http://creativecommons.org/licenses/by-nc-sa/3.0/>. The written permission of Cambridge University Press must be obtained for commercial re-use.
doi:10.1017/ATSIP.2012.7

original article

Latent acoustic topic models for unstructured
audio classification
samuel kim, panayiotis georgiou, and shrikanth narayanan

We propose the notion of latent acoustic topics to capture contextual information embedded within a collection of audio signals.
The central idea is to learn a probability distribution over a set of latent topics of a given audio clip in an unsupervised manner,
assuming that there exist latent acoustic topics and each audio clip can be described in terms of those latent acoustic topics.
In this regard, we use the latent Dirichlet allocation (LDA) to implement the acoustic topic models over elemental acoustic
units, referred as acoustic words, and perform text-like audio signal processing. Experiments on audio tag classification with
the BBC sound effects library demonstrate the usefulness of the proposed latent audio context modeling schemes. In particular,
the proposed method is shown to be superior to other latent structure analysis methods, such as latent semantic analysis and
probabilistic latent semantic analysis. We also demonstrate that topic models can be used as complementary features to content-
based features and offer about 9 relative improvement in audio classification when combined with the traditional Gaussian
mixture model (GMM)–Support Vector Machine (SVM) technique.
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I . I NTRODUCT ION

A perennial challenge in designing a content-based audio
information retrieval system is linking the audio signals to
linguistic descriptions of audio that are generated, and uti-
lized, by end users. While methodologies to extract acous-
tic features from audio signals according to pre-defined
descriptive categories have been studied intensely, various
open challenges remain.

The challenges are often related to sound ambiguity. A
key source of ambiguity arises from the potential hetero-
geneous nature of audio. A generic audio signal typically
can contain a mixture of several sound sources; each sound
source carries its own information in the mixture (e.g., an
occasional phone ringing during an office chat or a dis-
tant siren in a cafe recording). This heterogeneity leads to
the importance of context in the interpretation of sounds.
The context dependency underscores the fact that percep-
tively similar acoustic content may lead to different seman-
tic interpretation depending on the evidence provided by
the co-occurring acoustic sources. For example, an engine
sound can be interpreted as recorded either from a factory
or a car (and can be labeled machinery or automobiles with
the category labels used in the BBC sound effects library [1]
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considered in this work). However, when this sound co-
occurs with a baby’s crying in the same audio clip, the audio
clip is more likely to be recorded in a car rather than a
factory.

Considering the wide variation in the characteristics of
generic audio, a rich variety of embedded contexts can be
expected since each type of audio signal may have risen
from a different generative process. In specific cases, knowl-
edge about the generation can be advantageously used in
their modeling. Music audio signals, for example, result
from well-structured production rules that can be repre-
sented as a musical score, while speech audio signals are
governed by a linguistic structure that defines their pro-
duction. Our focus in this paper, however, is on generic
unstructured audio signals whose generation rules are non-
evident or hidden. Performing information retrieval from
unstructured audio signals is a well-known (and an increas-
ingly important) application and several promising algo-
rithms have been proposed. For example, Slaney presented
a framework to derive semantic descriptions of audio from
signal features [2]. Turnbull et al. [3] applied their super-
vised multi-class labeling method, originally devised for
music information retrieval, to a sound effects database. In
research from Google, Chechik et al. [4] successfully per-
formed a large-scale content-based audio retrieval from text
queries for audio clips with multiple tags. Their method,
based on a passive-aggressive model for image retrieval,
is scalable to a very large number of audio data sources.
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Applications like environment sound recognition which
aim to characterize ambient sound conditions have also
been investigated [5]. Themodeling contributions proposed
in the present work also aim at unstructured audio by focus-
ing on the underlying contextual structure of the audio and
without the need for explicit tagging.

To provide a useful representation of context-dependent
information in anunstructured audio signal, we propose the
notion of latent acoustic topic models that can be learned
directly from co-occurring audio content in audio signals.
The latent topic model was originally proposed for text-
based information retrieval systems to tackle similar con-
text dependency (e.g., the word ‘bank’ can be interpreted
differently depending on context the word is used: related to
a river or a financial institution) [6–8]. Drawing analogies
between text documents and audio clips, we hypothesize
that each audio clip consists of a number of latent acous-
tic topics and these latent acoustic topics, in turn, generate
the acoustic segments that constitute the audio clip. In other
words, assuming appropriately defined units of audio sig-
nals can play a similar role as words in text documents and
we suppose that there exist latent acoustic topics in audio
signals that can be mapped to latent topics in text.

Such ideas from text processing have also been success-
fully extended to content-based image retrieval applications
[9–12]. Topic models have been used in image process-
ing with the assumption that there exist hidden topics that
generate image features. The image features are often quan-
tized to provide discrete index numbers to resemble the
linguistic words in the text topic modeling. A number of
techniques have been gainfully used for audio processing
problems as well. Smaragdis et al. [13, 14] introduced var-
ious audio applications using the topic models, such as
source separation and music transcription. Sundaram and
Narayan [15, 16] used the latent perceptual indexing (LPI)
method for classifying audio descriptions inspired by the
latent semantic analysis (LSA). Lee and Ellis [17] used the
probabilistic latent semantic analysis (pLSA) in consumer
video classification with a set of semantic concepts. Only
with audio information from video clips, they decomposed
the Gaussian mixture model (GMM) histograms of fea-
ture vectors using pLSA to remove redundant structure and
demonstrated promising performance in classifying video
clips. Levy and Sandler [18] used an aspect model, which
is based on the pLSA, on music information retrieval. To
build the aspect model, they proposed muswords extracted
from music audio signals and words from social tags. Hu
and Saul [19] used the Latent Dirichlet Allocation (LDA)
method in a musical key-profiling application.

The first contribution of this paper is the introduction
of a generative model to capture contextual information in
generic audio signals, a model that is distinct from the well-
known content-based methods which are based on mod-
eling realizations of sound sources. These two approaches
differ in the sense that the context-based approach seeks to
model the latent generative rules that generate observations
in audio content based on co-occurring acoustic properties.
We also describe an approach to process audio signals in a

text-like manner and how to interpret the topics in audio
signals. The benefits of the proposed modeling of unstruc-
tured audio are evaluated on an audio tag classification task.
Our goal is to consider the context dependency in classi-
fying the audio tags using the latent acoustic topic models
that are directly obtained from the audio signals. The basic
idea is to model the distributions over latent acoustic top-
ics with supervised classifiers assuming that audio signals
in the same category (e.g., annotations, labels, and tags)
would have similar latent acoustic topic distributions. We
also report experiments using a hybrid method that uti-
lizes the proposed acoustic topic model as complementary
features to conventional content-based methods.

The paper is organized as follows. A description of
the proposed latent acoustic topic model along with the
background, implementation, and interpretation is pro-
vided in Section II. The audio tag classification task,
which is the experimental framework of this paper, is
described in Section III. The experimental setup and results
are described in Section IV followed by conclusions in
Section V.

I I . LATENT ACOUST IC TOP IC
MODEL

In this section, we describe the proposed acoustic topic
model and its realization in detail. First we provide a brief
overview of the LDA method that is popularly used to
implement latent topic models.

A) LDA
As discussed earlier, the latent topic model that was orig-
inally proposed for text signal processing assumes that a
document consists of latent topics and each topic has a dis-
tribution over words in a dictionary [7]. This idea can be
realized using a generative model such as LDA. Figure 1
illustrates the basic concept of LDA in a graphical represen-
tation as a three-level hierarchical Bayesian model.

Let V be the number of words in a dictionary andw be a
V-dimensional vector whose elements are zero except for
the corresponding word index in the dictionary. Assume
that a document consists of N words, and be represented
as d = {w1, w2, . . . , wi , . . . , wN}, where wi is the i th word
in the document. Let the dataset consist of M documents
and be represented as S = {d1, d2, . . . , dM}.

In this work, we define k latent topics and assume that
each word wi is generated by its corresponding topic. The
generative process can be described as follows:

1) For each document d in dataset S
a) Choose the topic distribution θ ∼ Dir (α), where

Dir (·) and α represent a Dirichlet distribution and
its Dirichlet coefficient, respectively.

2) For each word wi in document d,
a) Choose a topic ti ∼ Multi(θ), where ti is the topic

that corresponds with the word wi and Multi(·)
represents a multinomial distribution.
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Fig. 1. Graphical representation of the topic model using LDA.

b) Choose a word wi with a probability p(wi |ti , β),
where β denotes a k × V matrix whose elements
represent the probability of a word with a given
topic, i.e., βnm = p(wi = m|ti = n).

It is apparent from the above that LDA assumes a large
number of hidden or latent parameters (θ , t, α, and β)
and only one observable variable w. In many estimation
problems, parameters are often chosen to maximize the
likelihood values of a given data w. The likelihood can be
defined as

l(α, β) =
∑
w∈w

log p(w|α, β). (1)

Once α and β are estimated, the joint probability of θ and t
with given w should be estimated as

p(θ , t|w, α, β) = p(θ , t,w|α, β)

p(w|α, β)
. (2)

These steps, however, are not computationally feasible
because both inference and estimation require computing
p(w|α, β), which includes intractable integral operations as
follows:

p(w|α, β) = �(
∑k

i=1 αi )∏k
i=1 �(αi )

∫ k∏
n=1

(θn)
αn−1

×
N∏

i=1

k∑
n=1

V∏
m=1

(θnβnm)wimdθ . (3)

To solve this problem, various approaches such as Markov
ChainMonte Carlo (MCMC) [8], the gradient descent opti-
mization method [20], and variational approximation [6]
have been proposed. In this work, we use the variational
approximation method. While the Gibbs sampling method
is based on MCMC, which is an iterative process of obtain-
ing samples by allowing a Markov chain to converge to
the target distribution [8, 21], the rationale behind the
variational approximation method is to minimize distance
between the real distribution and the simplified distribution
using Jensen’s inequality [6, 22]. The simplified version con-
sists of the Dirichlet parameter that determines θ and the
multinomial parameter that generates topics, respectively
(see [6] for more details).

B) Realization
To apply and extend the notion of latent topics to the pro-
posed latent acoustic topics, here we introduce a couple of
new ideas. Toward that, we need to define what documents
andwords are in the acoustic domain. Similar to the applica-
tions of latent topic models for text documents and images,

Fig. 2. Diagram of the proposed acoustic topic modeling procedure for
unstructured audio signals.

we introduce the notion of acoustic words that play a similar
role as words in text documents. An audio clip, intuitively,
can be defined as an acoustic document that represents a
sequence of acoustic words. With the extracted acoustic
words, LDA can be used to model hidden acoustic topics.
Figure 2 summarizes the proposed acoustic topic modeling
procedure, and further details are given below.

To define acoustic words, one may come up with various
methodologies to transform an audio signal to a sequence
of word-like units that represent specific characteristics of
the audio signal. There are several critical questions that
arise in that regard. These include how to segment the
audio, what to extract, how to discretize, etc. In this paper,
for simplicity, we adopt conventional Mel Frequency Cep-
stral Coefficients (MFCCs) to parameterize the audio signal
and use vector quantization (VQ) to derive the acoustic
words. Note that, however, the VQmethodmight introduce
quantization errors. Watanabe et al. [23] have introduced a
probabilistic method instead.

Using fixed length frame-based analysis, we calculate
MFCCs to represent the audio signal’s time varying acoustic
properties. The MFCCs provide spectral parameterization
of the audio signal considering human auditory proper-
ties and have been widely used in many sound-related
applications, such as speech recognition and audio classi-
fication [24]. In this work, we use 20ms hamming win-
dows with 50 overlap to extract 12-dimensional feature
vectors.

With a given set of acoustic features, we derive an acous-
tic dictionary of codewords using the Linde-Buzo-Gray Vec-
tor Quantization (LBG-VQ) algorithm [25]. Similar ideas
to create acoustic words can also be found in [4, 15, 26,
27]. The rationale is to cluster audio segments that have
similar acoustic characteristics and to represent them as
discrete indexing numbers. In this work, we empirically
set the number of words in the dictionary, i.e., vocabu-
lary size V . Specifically, we consider one of the values from
V ∈ {200, 500, 1000, 2000, 4000} for the number of words
in the dictionary. Once the dictionary is built, the extracted
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Fig. 3. An example of interpretation of the acoustic topic models as a type of probabilistic clustering.

acoustic feature vectors from sound clips can be mapped to
acoustic words by choosing the closest word in the dictio-
nary. Further processing, such as n-grammodeling [28] and
stopword detection [29], can be also used to deal with the
text-like audio signals.

C) Interpretation of acoustic topic modeling
One of theways to interpret the topicmodeling procedure is
as a dimension reduction process [30]. Instead of using bag-
of-words approachwith high dimensional yet sparse feature
vectors, one can extract k-dimensional feature vectors, i.e.,
the topic distributions, from V-dimensional feature vectors,
i.e., the word counts in documents [31].

On the other hand, the topics can be interpreted as clus-
ters. Figure 3 visualizes an example of the acoustic topic
model as a probabilistic clustering (also known as soft clus-
tering). A given audio signal can be transformed into a
sequence of acoustic words (depicted as gray boxes), and
each acoustic word can be generated by different clus-
ters (depicted as circles; different colors represent different
clusters and size of the circles represent the probability of
being generated by the corresponding cluster). Again, these
clustering results are not based on geometrical similari-
ties but based on contextual modeling using co-occurrence
information.

Figure 4 illustrates an example of acoustic topic model-
ing results (where the number of acoustic words is 1000 and
the number of latent topics is 100; we use a sound clip from
the BBC sound effects library whose filename is 1-GOAT-
MACHINE-MILKED-BB.wav). Figure 4(a) shows the topic
distribution in the given audio clip, while Figure 4(b)–4(f)
represent the five most probable acoustic words with their
probabilities in the five most probable topics (the acoustic
words were depicted as the centroids of MFCC codebooks
and the probabilities of words are denoted in the legend). In
Fig. 4(a), there are only a few topics strongly present among
the 100 latent acoustic topics.

As illustrated in Figs. 4(b)–(f), each topic has a prob-
ability distribution over acoustic words (12-dimensional
MFCC). Each topic can be interpreted as a cluster of
acoustic features in terms of their co-occurrence probabil-
ities instead of geometrical similarity measurements such

as Euclidean distance or Mahalanobis distance. From the
figure, it is remarkable that the highly probable acoustic fea-
tures in an acoustic topic seem geometrically similar. This
implies that the acoustic features that often co-occur may
be close in the geometrical sense as well, although it is not
guaranteed for the reverse to be true.

Note that these latent topics do not directly correspond
to any semantic interpretations. Having said that the pro-
posed acoustic topic models are learned in an unsupervised
way without any class information, and the topics simply
represent the clusters of acoustic words as we discussed
above. As an alternative, one can think of using super-
vised LDA (sLDA), which includes class informationwithin
the latent topic modeling framework [32]. Indeed, in our
previous work [33, 34], we had shown that using sLDA
can help to cluster audio features into a sparse topic space
and consequently improve the overall classification perfor-
mance. Even in the sLDA framework, however, the topics
are not directly mapped to class information. Therefore,
in this work, we employ a two-step strategy to study the
relationship between the topic distribution and semantic
interpretations.

I I I . AUD IO TAG CLASS I F ICAT ION

We now evaluate the potential of acoustic topic models in
the context of audio tag classification, a task that exemplifies
automatic audio annotation and example-based retrieval.
The tags considered are semantic and onomatopoeic cat-
egories. The rationale behind this choice is that these two
descriptive categories can provide an intermediate layer on
which users’ naïve text query can bemapped to prevent out-
of-vocabulary problems [35]. In this work, the classification
performance of audio clips for semantic and onomatopoeic
labels are individually demonstrated.

As shown in Fig. 5, we adopt a two-step learning strategy
for the audio tag classification tasks: an unsupervised acous-
tic modeling step and a supervised classifier step. For the
unsupervised modeling step, the proposed acoustic topic
model is used. This unsupervised modeling step can be
also considered as a feature extraction step in the sense
that its output can be fed into a classifier subsequently.
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Fig. 4. Illustrative examples of acoustic topic modeling: (a) topic distribution in a given audio clip, (b) the 5 most probable acoustic words in the most probable
topic #46, (c) the 5 most probable acoustic words in the second most probable topic #80, (d) the 5 most probable acoustic words in the third most probable topic
#50, (e) the 5 most probable acoustic words in the fourth most probable topic #66, and (f) the 5 most probable acoustic words in the fifth most probable topic #83
(the number of acoustic words is 1000 and the number of latent topics is 100).

Specifically, we use the posterior Dirichlet parameter that
represents the probability distribution over latent acous-
tic topics as the feature vector of the corresponding audio

clip, assuming that audio signals under the same cate-
gory would have similar latent acoustic topic distributions.
For the supervised classifier step, we utilize a Support
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Fig. 5. A simple diagram of two-step learning strategy for audio tag classification task.

Vector Machine (SVM) with Bhattacharyya kernel [36] as
the machine-learning algorithm. Since the SVM was orig-
inally designed for binary classification tasks, we use a
one-against-one structure for a multi-class classifier which
trainsC (C − 1)/2 binary classifiers, whereC represents the
number of classes.

For comparison purposes, we consider other latent vari-
able approaches, i.e., LSA [15] and pLSA [17], as baseline
systems. The fundamental difference between LSA, pLSA,
and LDA is in the way of inferring the topic distribution.
LSA estimates the topic distribution deterministically using
Singular Value Decomposition (SVD) [37], whereas pLSA
and LDA use statistical inference. On the other hand, LDA
differs from pLSA in that it includes Dirichlet prior to the
distribution [6, 38].

We also consider a GMM-based classifier to represent
content-based classification tasks. Particularly, we use the
GMM–SVM framework that is widely used in many pat-
tern recognition tasks such as speaker verification [39].
Similar to the proposed acoustic topic model, it utilizes
a two-step learning strategy that learns feature distribu-
tions with GMM in the first step and uses mean super-
vectors as features for the consequent SVM classifier in
the second step. We use this methodology because it
is convenient to compare performance and to examine
complementary information since they share a similar
two-step structure, whereas our preliminary experiments
show comparable performance with other GMM-based
methodologies.

We perform a 5-fold cross-validation by randomly parti-
tioning the database into five equal-size but exclusive sub-
sets and retain one subset for testing, while using the rest
for training. All the training procedures such as building
an acoustic dictionary, modeling acoustic topics, and train-
ing SVM classifiers are done using the training subsets. The
overall performance is obtained by the held out test subsets.
Other baseline systems, i.e., LSA and GMM-SVM, are han-
dled in the same way. To evaluate the performance of the
proposed framework, we use the F-measure that is widely
used for evaluating information retrieval systems [40]. The

metric considers both precision and recall, and can be writ-
ten as

F = 2
precision × recall
precision + recall

,

where

precision = number of correctly classified trials in class C
total number of test trials classified as class C

,

recall = number of correctly classified trials in class C
total number of test trials from class C

.

Since there are multiple classes, we calculate the F-measure
values separately over the different classes. The overall
F-measure value can be computed as a weighted average
of individual F-measures by the number of trials in corre-
sponding classes.

I V . EXPER IMENTS AND
D ISCUSS ION

A) Database
A selection of 2140 audio clips from the BBC Sound Effects
Library [1] was used for the experiments. Each clip is anno-
tated in three different ways: single-word semantic labels,
onomatopoeic labels, and short multi-word descriptions.
The semantic labels and short descriptions are made avail-
able as a part of the database and belong in one of 21
predetermined categories. They include general categories
such as transportation,military, ambience, and human. Each
linguistic description consists of, on average, 7.2 words after
removing stop words and punctuation marks. There was
no existing annotation in terms of onomatopoeic words;
therefore, we undertook this task through subjective anno-
tation of all audio clips. We asked subjects to label the
audio clip by choosing from among 22 onomatopoeic words
[15]. It is notable that the overlap between different sound
sources within a clip is, if any, rarely present in the database.
This property enables us not to wrestle with sound source
separation problems that are very challenging as well.
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Table 1. Summary of BBC sound effect
library.

Number of sound clips 2,140
Number of semantic labels 21
Number of onomatopoeic labels 22
Average length of an audio clip 13 sec

The audio clips are available in two-channel format with
44.1 kHz sampling rate and are down-sampled to 16 kHz
(mono) for acoustic feature extraction. The average audio
clip length is about 13 seconds and generates about 1300
acoustic words. A summary of the database is given in
Table 1. Table 2 shows the distribution of onomatopoeic
words and semantic labels for the database. For example,
there are 349 audio clips whose semantic labels are ‘ani-
mals’. In the category of ‘animals’, there exist various ono-
matopoeic words to represent the audio clips (e.g., 62 clips
for ‘growl’ and 60 clips ‘meow’).

B) Audio tag classification results
There are two parameters that can be empirically tuned for
obtaining a reasonable model for classification: the size of
the acoustic dictionary and the number of latent compo-
nents. Figure 6 shows the results of audio classification tasks
using LSA (dashed lines), pLSA (dotted lines), and acous-
tic topic model (ATM, solid lines) according to the number
of latent components. The size of the dictionary is set to
1000 for this experiment. Figure 6(a) and 6(b) represent
the results with respect to onomatopoeic words and seman-
tic labels, respectively. The number of latent components
can be interpreted as the dimension of the feature vector
extracted from an audio clip.

The results clearly show that classification using the pro-
posed acoustic topic model outperforms LSA and pLSA for
both onomatopoeia labels and semantic labels. This sig-
nificant improvement is evident regardless of the number
of latent components1. We argue that this benefit comes
from utilizing LDA to model the latent topics. Although
the semantic space is powerful to cluster the words that are
highly related, the capability to predict the clusters from
which the words are generated is somewhat limited in a
Euclidean space. With the proposed topic model, on the
other hand, we are able to model the probabilities of acous-
tic topics and their priors that generate a specific acoustic
word using a generative model.

In classifying onomatopoeia labels, the overall perfor-
mance is lower than for the task of classifying semantic
labels. This might be because the onomatopoeic words are
related to context-free subjective (as opposed to context-
dependent exact) interpretation of sound content that
results in greater overlap between the categories.

Another significant trend that can be observed is that the
performance increases as the number of latent components

1The Wilcoxon signed-rank test was used to show the statistical
significance.

increase. This is reasonable in the sense of more informa-
tion being captured for the classification task. It should
be noted, however, that there is a trade-off between per-
formance and complexity. Increasing the number of latent
components to represent audio clips would also increase
computing requirements.

Figures 7 and 8 show the classification results as a func-
tion of the number of latent components for different
codebook. Figure 7 represents the results with respect to
onomatopoeic words, while Fig. 8 represents the results
with respect to semantic labels. As shown in the fig-
ures, the overall performance increases as the number of
latent components increases regardless of codebook sizes
and types of categories. It is consistent with the previous
experimental results with 1000 codewords. Note that the
performance variations with respect to the codebook size
within a certain number of latent components are greater
when the LSA is used. This indicates that the proposed
ATM is less sensitive to the number of acoustic words
defined, instead its performance depends on the number of
latent topics.

Interestingly, the performance with the same number
of latent components in LSA decreases as the codebook
size increases, although one might expect tasks with larger
codebook should yield better performance sincemore code-
words generally indicate higher resolution to describe given
audio signals. It can be partially explained by the fact that
the LSA can be considered as a dimension reduction process
since it only considers part of eigenvectors, by the nature
of SVD; in the case of using 100 latent components, 50 of
eigenvectors are used after the decomposition with code-
book size 200 while only 2.5 of eigenvectors are used with
codebook size 4000. Figure 9 shows additional experiments
regarding the codebook size. It illustrates the classification
results as a function of the size of the acoustic dictionary
while the percentage of latent components are fixed. In this
experiment, we set the number of latent components as 5%
of the size of the acoustic dictionary for simplicity (e.g., 10
latent components for 200 acoustic words and 200 latent
components for 4000 acoustic words). The results again
confirm that the proposed acoustic topic model outper-
forms LSA and pLSA for both onomatopoeia (Fig. 9(a)) and
semantic labels (Fig. 9(b)) of audio clips. The performance
does not seem to be monotonically improving as the size of
the acoustic dictionary increases in the LSA cases. This is
because these results are not directly comparable between
the different sizes of the acoustic dictionary; the number of
latent components requiredmay also be different if we apply
different sizes of acoustic dictionary.

We also perform the following experiments to use the
proposed ATM as complementary features within conven-
tional content-based audio tag classification task. The ratio-
nale is that the ATM can be used to disambiguate acoustic
features that are common in several sounding situations
while the content-based classification methods represent
the overall distribution of the acoustic features. In this work,
we use the GMM–SVM classifier for content-based audio
tag classification.
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Table 2. Distribution of onomatopoeic words and semantic labels in the BBC sound library (22 onomatopoeic labels and 21 semantic labels).
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Onomatopoeic labels

TWEET 53 1 0 0 0 0 0 0 1 0 50 3 0 0 0 0 0 0 0 0 0 108
SQUEAK 54 10 6 7 2 1 1 1 12 0 8 4 1 1 0 4 2 0 0 9 1 124
CLATTER 26 4 47 20 13 8 0 1 0 17 7 3 1 0 8 0 1 1 0 0 0 157
GABBLE 0 33 0 15 0 0 9 0 2 0 56 0 0 0 13 0 0 0 0 0 0 128
BURR 0 4 43 5 24 0 0 8 0 17 17 0 0 0 1 0 0 0 0 24 0 143
DONG 3 6 8 4 3 5 3 5 6 0 7 1 9 14 6 0 0 4 23 1 0 108
BUZZ 13 3 26 18 18 3 2 1 10 5 17 11 5 0 11 0 0 1 0 3 4 151
BLEAT 14 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17
GROWL 62 1 1 5 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 73
HUM 2 1 72 16 44 6 4 5 6 22 15 3 7 20 12 0 0 0 0 4 1 240
TAP 33 177 1 10 0 3 1 0 0 0 0 0 0 0 13 0 2 0 0 0 0 240
BEEP 0 3 5 5 0 17 0 46 2 0 1 0 0 30 0 0 0 0 0 1 1 111
WHOOSH 2 3 2 0 0 0 0 0 11 4 2 14 1 37 9 0 0 0 0 0 1 86
BANG 1 0 1 3 0 1 0 3 4 26 0 14 0 9 2 0 1 0 0 0 4 69
HONK 2 6 15 0 2 0 1 21 0 3 3 4 0 0 1 0 0 1 0 5 0 64
TICK 1 0 2 0 0 3 0 0 1 1 2 0 4 0 0 0 0 0 1 2 0 17
THUD 3 17 14 1 7 1 0 1 11 2 0 1 0 1 12 0 2 2 0 2 0 77
CRACKLE 1 8 0 0 1 0 0 0 2 3 0 14 1 1 0 0 0 0 0 0 3 34
CRUNCH 10 4 5 5 2 0 0 1 7 0 1 1 0 1 3 0 0 7 0 0 1 48
SPLASH 3 3 26 0 0 0 2 0 2 0 1 10 8 0 10 0 0 0 0 0 1 66
MEOW 60 0 0 6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 67
CROW 6 1 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 12

SUM 349 285 274 126 117 48 23 93 79 101 187 83 37 116 102 4 8 16 24 51 17 2140
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Fig. 6. Audio tag classification results using LSA, pLSA and ATM according to the number of latent components: (a) onomatopoeic labels and (b) semantic labels.
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Fig. 7. Audio tag classification results with respect to onomatopoeic labels using (a) ATM, (b) pLSA, and (c) LSA according to the number of latent components
and the size of acoustic word dictionary.



10 samuel kim, panayiotis georgiou and shrikanth narayanan

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

# of latent components

F
−

m
ea

su
re

200
500
1000
2000
4000

Semantic labels w/ ATM

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

# of latent components

F
−

m
ea

su
re

200
500
1000
2000
4000

Semantic labels w/ pLSA

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

# of latent components

F
−

m
ea

su
re

200
500
1000
2000
4000

Semantic labels w/ LSA

Fig. 8. Audio tag classification results with respect to semantic labels using (a) ATM, (b) pLSA, and (c) LSA according to the number of latent components and the
size of acoustic word dictionary.

Figures 10(a) and 11(a) show the classification results
as a function of the number of latent components when
we use the proposed ATM (colored bars) and the GMM–
SVM (solid lines) separately on onomatopoeic labels and
semantic labels. The number of latent components repre-
sents the number of latent topics for the ATM and the
number of Gaussian mixtures for the GMM–SVM. The
sizes of feature vectors are k and 12 × k for the ATM
and GMM–SVM, respectively, where k is the number of
latent components. Note that the size of acoustic dic-
tionary does not apply for the GMM–SVM cases since
there is no quantization process. The results show that
the ATM itself may not provide much information toward
audio tag information compared to the content-based
GMM–SVMmethod.

To examine the complementary information embedded
in the ATM, we apply a feature-level hybrid method to
make a super-vector of the GMM mean super-vector and
the topic distribution. For simplicity, we choose to perform
the hybrid method for those cases that have the same num-
ber of latent components so that the size of feature vector
should be k + 12 × k = 13 × k. The classification results as
a function of the number of latent components are shown in
Figs 10(b) and 11(b) for the hybrid method (colored bars)
and the GMM-SVM (solid lines). In the figures we can
observe the feature-level hybrid method can improve over-
all performance by providing complementary information
in the topic distribution to content-based GMMmethod in
audio tag classification tasks: 8.6 ± 0.7% relative improve-
ment for each setting. We argue that these improvements
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Fig. 9. Audio tag classification results with respect to (a) onomatopoeic labels and (b) semantic labels using ATM, pLSA and LSA according to the size of acoustic
word dictionary; when the number of topics are 5 of size of the dictionary.
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Fig. 10. Audio tag classification results with respect to onomatopoeic labels using (a) ATM, GMM, and (b) their hybrid according to the number of latent clusters.

come from modeling the inherent structural context that
underscores the fact that perceptually similar acoustic con-
tent may lead to different semantic interpretation depend-
ing on the evidence provided by the co-occurring acoustic
sources.

Figure 12 provides further details of the classification
tasks, i.e., per-class F-measure using ATM, GMM, and their
hybrid method, particularly for the case that the num-
ber of latent components is 100 and the size of acoustic
word dictionary is 1000. The per-class F-measure is com-
puted by collecting all the classification results of the 5-fold

cross-validation. This reveals that the feature-level hybrid
method can improve the classification performance inmost
of the classes as well as the overall performance and sup-
ports our argument that the proposed topic models provide
complementary information to the content-based method
in audio tag classification tasks. Note that, however, there
are several classes that cannot be recognized at all in any
classification strategy, e.g., tick in onomatopoeia and office,
doors in semantic labels. Although the number of instances
for those classes might affect the performance, it is not
always true. For example, there only four instances for the
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Fig. 11. Audio tag classification results with respect to semantic labels using (a) ATM, GMM, and (b) their hybrid according to the number of latent clusters.
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semantic label doors while there are 126 instances for the
semantic label office.

V . CONCLUD ING REMARKS

In this paper, a novel approach to incorporate context
information for audio classification using acoustic topic
models was presented. The proposed approach was tested
using unstructured audio clips from the BBC Sound Effects
Library. The framework discussed here supports both
example-based and text-based query for audio informa-
tion retrieval. In this regard, the proposed work can be
viewed as contributing to a further generalization of the
content-based audio retrieval problems.

We proposed an acoustic topic model based on LDA,
which learns hidden acoustic topics in a given audio sig-
nal in an unsupervised manner. We adopted the variational
inference method to train the topic model and used the
posterior Dirichlet parameters as a representative feature
vector for the audio clip. Due to the rich acoustic informa-
tion present in audio clips, they can be categorized based
on the intermediate audio description layer which includes
semantic and onomatopoeic categories, and considered to
represent the cognition of the acoustic realization of a
scene and its perceptual experience, respectively. The clas-
sification results for the two descriptions showed that the
acoustic topic model significantly outperforms the conven-
tional latent structure analysis methods considered, such
as LSA and pLSA, and offer promising results in provid-
ing complementary information to improve content-based
modeling methods. Finally, experimental results show that
the proposed context-based classification method can be
advantageously combined with content-based classifica-
tion. Specifically, the combinations of the proposed acoustic
topic model with a GMM–SVM system was shown to yield
significant F-score performance improvements of about 9.

Our future work plans to test various refinements of the
LDAmodel to associate with descriptions of audio clips and
various fusion strategies with content-based approaches.
We will also perform similar tasks with even more hetero-
geneous audio clips that include overlaps between different
sound sources, such as audio signals fromTVprograms and
movies.
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