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Constant frame quality control for H.264/AVC
ching-yu wu, po-chyi su, long-wang huang and chia-yang chiou

A frame quality control mechanism for H.264/AVC is proposed in this research. The research objective is to ensure that a suitable
quantization parameter (QP) can be assigned to each frame so that the target quality of each frame will be achieved. One of
the potential application is consistently maintaining frame quality during the encoding process to facilitate video archiving
and/or video surveillance. A single-parameter distortion to quantization (D–Q) model is derived by training a large number of
frame blocks. Themodel parameter can be determined from the frame content before the exact encoding process. Given the target
quality for a video frame, we can then select an appropriate QP according to the proposedD–Qmodel.Model refinement andQP
adjustment of subsequent frames can be applied by examining the coding results of previous data. Such quality measurements
as peak signal to noise ratio (PSNR) and structural similarity (SSIM) can be employed. The experimental results verify the
feasibility of the proposed constant quality video coding framework.
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I . I NTRODUCT ION

H.264/AVC [1] is widely adopted inmany applications these
days due to its advanced coding tools. Under the same
quality constraint, the bit-rate saving of H.264/AVC is sig-
nificant when comparedwith such predecessors asMPEG-2
and MPEG-4. It should be noted that video frame qual-
ity is considerably affected by the quantization parameter
(QP) assigned to each frame. Owing to varying contents in
video frames, the quality may fluctuate a lot and careless
assignment of QP may result in serious distortion in cer-
tain frames. This negative effect may not be acceptable in
such applications of video surveillance and/or video archiv-
ing, sincewe require that the quality of each frame should be
equally preserved well under these scenarios, in which the
recorded video frames may be critically viewed afterwards.
The objective of this research is to develop a distortion–
quantization (D–Q) model so that a suitable QP can be
assigned to each frame efficiently according to the frame
content to help achieve constant quality video coding.

The measurement of quality has long been a research
focus of video processing. Themost commonly usedmetric
is peak signal to noise ratio (PSNR), which is defined as

P S N R(x, y) = 10log10
255 × 255

MS E (x, y)
, (1)

where MS E (x, y) is the mean squared error between two
contents x and y, e.g., the original/reference frame and
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the coded/processed frame, respectively. Simplicity is the
major advantage of PSNR and comparing different algo-
rithms based on PSNR is easy. Although PSNR is sometimes
questioned for its lack of representing subjective or per-
ceptual quality, when the original video is available, PSNR
still serves as a pretty good indicator of quality degradation
from the process of lossy compression. To further reflect the
subjective quality in measurement, many researchers [2–5]
tried to take human visual systems (HVS) into account.
Structural SIMilarity index, SSIM [2], is one of the well-
known metrics. SSIM of two contents x and y is defined as

SS I M(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
, (2)

whereμx (μy) and σx (σy) are the local mean and standard
deviation of x (y), respectively. σxy is the local correlation
coefficient of x and y.C1 andC2 are small constants to avoid
instability when the denominator is close to zero. Consid-
ered being more related to HVS, SSIM is also suggested
these days to evaluate the quality of processed frame in
video coding. The encoding algorithms explicitly employ-
ing SSIM have also been proposed [6, 7]. Since PSNR and
SSIM are commonly used in video codec designs, we adopt
them as examples to demonstrate the idea of constant qual-
ity coding. Other quality metrics that have a higher corre-
lation with human perceptual quality can be better choices
but their computational complexities may be too high to be
used in a real-time encoding system.

To achieve constant quality video coding, one may think
that using a fixed QP value to encode the entire video may
work. Figure 1 shows an example of encoding the video
“Foreman” with a fixed QP equal to 30. We can see that
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Fig. 1. PSNR variation when the fixed QP = 30 is used to encode the video
Foreman.

the PSNR values vary and that smaller QP values should
have been assigned in the latter part of this video. A sim-
ilar problem exists if SSIM is used as the measurement.
Therefore, constant quality video coding is not a trivial issue
and extra attention should be paid to the encoder. Up to
now, most of the existing work related to constant quality
video coding adopted PSNR as the measurement. Huang
et al. [8] proposed one of the early researches by encoding
the video several times and employing theViterbi algorithm
to pick a suitable QP for each frame. To be more specific,
a trellis structure is formed with each node representing a
QP value. After encoding the video with different QP’s, a
few nodes resulting in similar PSNR values are clustered.
By connecting nodes (of adjacent frames) in clusters, we
can assign a QP value for each frame so that the result-
ing PSNR values are within a pre-defined range. However,
since every frame has to be encoded several times, this
scheme is quite time-consuming and only acceptable in off-
line applications. To attain more efficient quality control,
D–Q and/or rate-distortion (R–D) models are developed to
facilitate QP assignment. Ma et al. determined the relation-
ship between PSNR and QP to develop a rate–quantization
(R–Q) model for effectively allocating bit budgets [9].
Kamaci et al.made use of Cauchy-density function to depict
the distribution ofACcoefficients after block discrete cosine
transform for developing an effective D–Q model [10].

In [11], sum of absolute transform differences is used to
determine the related parameters of a D–Q model, which
can accurately predict the PSNR in intra coded frames.
De Vito et al. assigned or adjusted the QP values accord-
ing to the difference between the average PSNR of pre-
viously encoded frames and the target PSNR [12]. If the
difference is small, the QP of previous frame is used. Han
et al. encoded the video twice and used the information of
first-run encoding as the reference to attain constant qual-
ity coding [13]. In our opinion, the major drawback of
the existing methods is the requirement of encoding the
video several times. In addition, a practical D–Q model
has not been successfully developed. In this research, we

aim at proposing a framework, which can adopt more flexi-
ble quality measurements, to achieve constant quality video
coding. Before encoding a frame, we will approximately
predict its D–Q relationship from frame content to help
determine a suitable QP such that the resultant quality is
close to the target value. The model parameters should be
content adaptive since frames with different characteristics
should have varying D–Q relationships. Different from the
existing approaches, we do not encode every single frame
several times to collect the data points for forming the D–Q
curve. A trained content adaptive D–Q model is built for
assigning a QP value efficiently and most of the frames will
thus be encoded just once. A few frames will be encoded
at most twice to pursue the objective of constant quality
encoding and to avoid significant increase of encoding time
as well.

The rest of the paper is organized as follows. Model
training of our proposed scheme is described in Section II
and the complete QP assignment procedure is presented
in Section III. Section IV demonstrates the experimental
results, followed by the conclusion in Section V.

I I . D –Q MODEL

As we aim at building a model that links the distortion and
QP, the measurement of distortion has to be defined first.
The measurement of distortion based on PSNR, DPSNR, is
related to MSE and we can simply use the sum of squared
errors (SSE) as the measurement. For SSIM, it will be close
to one if the contents to be compared are similar, so we
define the distortion DSSIM as 1 − SS I M. It is observed that
a power function can reasonably depict the relation between
DPSNR and quantization in both intra- and inter-coding.We
employ the following function to describe the relationship,
i.e.,

DPSNR = α × Q P β , (3)

where α and β are the two model parameters. It should be
noted that most of the existing algorithms usedQstep in the
fitting function while we chooseQP instead. The reason for
doing so is to develop a single-parameter model, which will
be explained later. To verify the power function, we encode
some test CIF videos, including Foreman,Coastguard, Con-
tainer, Football, Mobile, Paris, and Stefan, each with 100
frames, by using intra coding with QP’s ranging from 20 to
40 and record the corresponding DPSNR. The curves from
the collected data are matched with the above power func-
tion by regression. The R2 values are all very close to one,
which means that the chosen function can fit the data very
well. In fact, by replacing DPSNR by DSSIM, we also observe a
similar relationship. Again, the R2 values are almost equal to
one. However, we list the parameters, α and β in Table 1 and
we can see that the two values vary in each video. Existing
work usually chose to train some data in the same video or
employ the data in the previously decoded frames to acquire
these parameters for subsequent encoding. The major dis-
advantage is that quality fluctuation may be observed in the



constant frame quality control for h.264/avc 3

Table 1. The relationship between distortion and QP.

DPSNR vs. QP DSSIM vs. QP

Video α β α β

Foreman 3.38 × 10−2 5.15 2.30 × 10−6 3.00
Coastguard 8.20 × 10−2 5.07 2.75 × 10−8 4.37
Container 1.29 × 10−2 5.48 1.26 × 10−5 2.57
Football 3.03 × 10−2 5.23 4.64 × 10−7 3.52
Mobile 3.76 × 10−4 6.66 3.39 × 10−10 5.40
Paris 4.50 × 10−4 6.50 2.93 × 10−8 4.18
Stefan 2.09 × 10−4 6.73 1.74 × 10−10 5.49

first few encoded frames if inappropriate parameters are set.
More encoding processes may thus be required. In addi-
tion, when the scene changes happen, the parameters have
to be determined again or the performance will be affected
seriously.

The objective of this research is to appropriately estimate
these parameters by using a content-adaptive model. The
first step is to collect various data samples for training. To
begin with, the frame will be divided into basic units. There
are several choices for deciding the size of basic units, e.g.,
an entire frame, a group of macroblocks (MB’s) or a sin-
gle MB. Designing a frame model, i.e., determining a QP
value according to the feature representing the entire frame,
sounds a reasonable and straightforward approach. A fea-
ture representing the frame is computed to determine α and
β in equation (3) for the whole frame. However, we found
that a slight model inaccuracy will result in poor determi-
nation of QP. UsingMB’s directly for model training should
be more flexible. Nevertheless, according to our experience,
when the unit size is too small, it will be difficult to deter-
mine a well-defined relationship between the content and
the parameters. An obvious example is that we may easily
obtain small blocks with uniform colors and encoding such
blocks with different QP values may generate unexpected
results. It is worth noting that such blocks occupy a large
portion in common frames. In other words, there will be a
large number of outliers in our training data. Training the
model with so many “unusual” blocks will be challenging
and the model parameters may not be acquired accurately.
Therefore, we choose to use a group ofMB’s as the basic unit
in our framework. For a CIF video frame, we divide it into
basic units as shown in Fig. 2. A unit contains 33 MB’s so a
frame contains 12 basic units. Such division may look a bit
awkward but we have a reason for this choice. By dividing
the frame across the center as shown in Fig. 2, we can obtain
blocks or basic units that contain meaningful content more
easily since there are usually important objects at the cen-
ter of a frame. Besides, the units should be reasonably large
too. In other words, we expect that a unit can consist of areas
with different characteristics so that the number of outliers
can be reduced to facilitate the training process. Further-
more, a larger number of “meaningful” units certainly helps
QP determination.

We first deal with the intra-coded frames. Since many
frames in a video have similar content, we do not use video

Fig. 2. Partition of a frame into basic units.

sequences for training but select still images. We use 200
images from Berkeley image database [14]. Each image is
scaled and cropped properly to the CIF frame size. These
images are concatenated into a video, which is encodedwith
various QP’s. The quality distortion of each basic unit and
the corresponding QP values are collected. The relationship
between the distortion and QP shown in equation (3) still
holds. A very important finding is that there exists a lin-
ear relationship between ln(α) and β for both PSNR and
SSIM as shown in Fig. 3. The R2 values of using this lin-
ear relationship are both as high as 0.99. The fact indicates
that equation (3) can be reduced to only one variable. For
I-frames, the D–Q model can thus be expressed as

DI
PSNR = e−2.83β+9.06 × Q P β (4)

for PSNR, and

DI
SSIM = e−3.35β−3.32 × Q P β (5)

for SSIM. These relationships are derived by regression. In
fact, according to our tests, a similar relation can also be
found in P-frames and the data can be fitted well by

DP
PSNR = e−2.91β+10.06 × Q P β (6)

and

DP
SSIM = e−3.48β−2.55 × Q P β . (7)

The R2 values in P-frames can also reach 0.99 in both distor-
tion measurements. In our opinion, since PSNR and SSIM
perform quite differently, such a relationship may exist in
many different quality metrics. If PSNR is adopted as the
quality metric, we can use Equations (4) and (6) to deter-
mine mapping between QP and the distortion for a given
frame. For SSIM, Equations (5) and (7) will be employed.

The next step is to seek an efficient way to choose suitable
β for a basic unit. It is worth noting thatβ is content-related.
According to our observations, if the content can be affected
by lossy coding more easily, the value of β will be larger. On
the other hand, for the unit with relatively more uniform
content, β will be quite small. Therefore, we would like to
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Fig. 3. The relationship between ln(α) and β for using (a) PSNR and (b) SSIM as the measurement in I-frames.

Fig. 4. The preprocessed frames of Foreman by (a) resizing and (b) SVD.
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Fig. 5. The relationship between the extracted feature and β for (a) PSNR and (b) SSIM in I-frames.
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predict the effects of compression on content so that a rea-
sonably good β can be selected. One way to achieve this is
to encode the framewith different QP’s to observe the curve
but it may be computationally prohibitive. In other words,
this “pre-processing” has to be efficient to avoid consider-
able increase in the load of video coding. Besides, we aim at
developing a more general framework for constant quality
H.264 video coding, in which the distortion measurement
may be different in targeted applications. We thus adopt the
following strategy. The pre-processing or, in fact, a process
of distortion is applied on the input frame and then the
selected quality measurement will be used to evaluate the
degradation of these distorted versions. That is, we make
use of these degradation measurements to help us select a
suitable β .

Again, we collect training data for coding with different
QP’s to determine β and, at the same time, preprocess these
training data to obtain the distortions. By examining β and
the degradations, we would like to know whether such a
solid relationship exists. After various trials, the preprocess-
ing we consider right now includes two parts: resizing and
singular value decomposition (SVD). The resizing process
quickly removes high-frequency textures. We simply cal-
culate the 16 × 16 block means to obtain a down-sampled
version of an input frame. Then, this small frame is fil-
tered by a 3 × 3Gaussian low-pass filter. Finally, we linearly
interpolate it to form the frame with the original frame
size. Figure 4(a) shows a seriously blurred version of Fore-
man. The reason for removing high-frequency textures is
to predict the effects of lossy compression as these parts
are affected more. The other process is applying 16 × 16
block SVD after the block mean is removed. We then use
the blockmean and the important eigenvectors/eigenvalues
to reconstruct the block. Such blocks will contain signifi-
cant content and can serve as reliable references to see what
may be left after coding. The first and second eigenvector
pairs are used to reconstruct the block as shown in Fig. 4(b).
Although the blocky artifacts are seen, the content can still
be preserved quite well. In addition, we found that this SVD
process performs better in blocks withmore textures. Given
these two pre-processed or distorted frames, we calculate
their quality degradation (DPSNR or DSSIM for now) com-
pared with the raw input frame. Then, the two distortion
measurements are combined to form a so-called “content
feature” for evaluating the single parameter β in our model.
Since it can be shown from Fig. 4 that the degrees of distor-
tions in these two steps are quite different as resizing results
inmore serious quality degradation, the two evaluations are
weighted and summed to form the feature. In our training
data evaluated in SSIM, the average distortion for resized
frames, Dresize

SSIM , is around K = 4 times that of SVD pro-
cessed frames, Dsvd

SSIM. We thus calculate the “spatial feature”,
F spatial
SSIM , by

F spatial
SSIM = 0.2 × Dresize

SSIM + 0.8 × Dsvd
SSIM, (8)

which will be used to determine β . In the case of using
PSNR, K is around 5.5 and the two values are weighted

accordingly to obtain F spatial
PSNR , i.e.,

F spatial
PSNR = 0.15 × Dresize

PSNR + 0.85 × Dsvd
PSNR. (9)

Figure 5 shows the relationship between the extracted
feature and β in the training data of I-frames.We also found
that the data are clustered and can be fitted well by using
regression. For PSNR, the data can be depicted reasonably
well by

β = 0.49 × (F spatial
PSNR )0.16. (10)

The fitting function for SSIM is

β = 6.96 × (F spatial
SSIM )0.68. (11)

Since only intra-coding is applied in I-frames, the feature
for I-frames, F I

P S N R/SS I M , is simply F spatial
P S N R/SS I M .

In P-frames, temporal information is required. As in reg-
ular video coding, we applymotion estimationwith 16 × 16
blocks and with the searching range set as ±8 to form a
motion compensated frame. Only the integer positions are
searched. Similar towhatwe have done for I-frames, the dis-
tortion of this compensated frame is computed to determine
the temporal feature, F temporal

P S N R/SS I M . However, since intra-
codingmay still be employed on P-frames, we also calculate
the spatial feature, F spatial

P S N R/SS I M , and use the average of the
two features to determine most of the P-frame features by

F P
P S N R/SS I M = 0.5 × F spatial

P S N R/SS I M + 0.5 × F temporal
P S N R/SS I M .

(12)

The method of calculating the average value to form the
feature does look a bit heuristic and one may even think
of estimating the percentages of intra and inter coding in
a frame to decide a more suitable weighting function. How-
ever, whether a block will be intra or inter coded may
depend on the QP value. A block may become intra-coded
when a smaller QP is used. Applying the block type pre-
diction or classification before the QP assignment is thus
less reasonable. In addition, separating the intra and inter
coding in the model training process of P-frames is rather
complicated. Therefore, we choose to take both spatial and
temporal characteristics into account to form a P-frame fea-
ture and resort to the simplified model training process on
a large number of collected data to achieve good perfor-
mances. Figure 6 shows the relationship between the feature
and β in P-frames in the case of PSNR and SSIM. Although
some outliers exist, the fitting can still be good enough to
help us choose suitable QP values of P-frames. The fitting
curve for PSNR is

β = 0.34 × (F P
PSNR)

0.17 (13)

and that for SSIM is

β = 17.32 × (F P
SSIM)0.96. (14)

As mentioned before, we will calculate the feature to
determine the single parameter β for each basic unit. Then,
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Fig. 6. The relationship between the extracted feature and β for (a) PSNR and (b) SSIM in P-frames.

Fig. 7. The flowchart of the encoding procedure.

the frame QP, Q PF , is determined such that the overall
distortion will be as close to target distortion as possible.
That is,

Q PF = arg min
Q P∈[0,51]

12∑

i=1

(D(i)(Q P ) − Dtarget)2, (15)

where D(i)(Q P ) is the distortion of the i th basic unit esti-
mated by Equations (4), (6) or Equations (5), (7), and Dtarget

is target distortion. The use of 12 units helps to reduce
the negative effects from possible model inaccuracy of a
single unit.

I I I . THE ENCOD ING PROCEDURE

Our objective is to strictly maintain the quality of each
frame. That is, after a target distortion is set, e.g., PSNR
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equal to 40 dB or SSIM equal to 0.92, the distortion mea-
surement of each decoded frame should reach the target
value as close as possible so that constant quality coding can
be successfully achieved. With the proposed D–Q model,
the selection of QP can be done in a straightforward man-
ner. Given an input frame, the feature is computed to deter-
mine the D–Q relations of basic units and the frame QP
will be chosen according to Equation (15). There are a few
issues that will affect the designs of our proposed encod-
ing procedure. First, adjacent frames in a video usually have
similar content, which will result in similar features. Then,
calculating features in each frame does not seem that neces-
sary. The spatial feature F spatial is relatively efficient but the
temporal feature F temporal is more time-consuming because
of motion estimation. Therefore, if we can reuse the fea-
ture of a previous frame with similar content for computing
the model parameter β , the whole encoding procedure will
be more efficient. In other words, the spatial and tempo-
ral features of a frame will only be re-calculated if such
a feature with the same frame type or similar content is
not available. Second, the quality of the reference frame
will affect that of the currently encoded frame. Especially
when a scene change frame appears and its QP is not appro-
priately assigned. The quality of the subsequent frames
may be poor and larger quality variations may also be
observed, especiallywhen a scene change frame appears and
its QP is not appropriately assigned. Our strategy is to apply
the scene change detection to determine the so-called key
frames to build the D–Q model. We will then encode these
frames carefully, probably with two runs, so that the qual-
ity of subsequent frames can also be maintained. Third, as
mentioned before, the content of adjacent frames will be
similar. If the frame coding types are also the same, the cod-
ing results of the previous frame can serve as a good indica-
tion of model accuracy. Therefore, the coding performance
of the previous frame of the same type will be examined for
model adjustment so that single-run coding may work as
well as multiple-run coding. The flowchart of the encoding
process is demonstrated in Fig. 7 and explained as follows.

A simple scene-change detection process by examining
the luminance histograms of adjacent frames is adopted.
The Bhattacharyya distance of two histograms is calculated
and compared with a threshold. If the difference is larger
than the threshold, a scene change is detected and we call
this scene change frame as the key frame. It should be
noted that, although the key frame may need to be encoded
as a P-frame, we only use the spatial feature F spatial to cal-
culate β , instead of using the P-frame feature F P shown
in Equation (12), because a large number of intra-coded
blocks will appear in this frame. After using F spatial to deter-
mine the D–Q relation and the frame QP for encoding
this frame, we usually encode this frame once again if
the resulting quality of this decoded frame is not close
to the target value. This two-pass encoding is to ensure
that these important scene-change frames have the targeted
quality. The model will be slightly adjusted according to the
first-run encoding results. We call this process the model
update, which actually has an additional adjusting factor θ

defined by

θ = D p(Q PF )

e(a×β+b) × Q P β

F

, (16)

where a and b are the trained variables listed in Equa-
tions (4)–(7). That is, the denominator is the predicted
distortion by our model and D p(Q PF ) is the resulting
distortion by using Q PF to encode the frame in the first
run. In the second-run encoding of this frame, the model
becomes

θ × DI/P
P S N R/SS I M , (17)

where DP S N R/SS I M is defined in Equations (4)–(7), and
a better Q PF can then be chosen accordingly. In other
words, we simply adjust the parameter α in Equation (3)
and this strategy is quite effective. Figure 8 shows the com-
parison of coding results on Foreman by using the origi-
nal model and those by using the updated model with θ .
In Figs 8(a) and 8(c), we encode all the frames by using
intra coding only. In Figs 8(b) and 8(d), only the first
frame is an I-frame and the other frames are coded as P-
frames. The qualities of P-frames are then averaged. We
select Foreman in this test since it contains large content
variations and our original model does not perform that
well. By using the simple scaling factor θ , the predicted
quality, measured in either PSNR or SSIM, will be close
to the actual quality after model adjustment in second-run
encoding.

For other frames, we will use the coding result of the
previous frame with the same frame type as the reference
to adjust our D–Q model. That is, θ will be computed by
dividing the resulting distortion of the previous frame (i.e.,
D p(Q PF ) in Equation (16)) by the predicted distortion so
that most of the frames will be encoded only once. As men-
tioned before, only the spatial feature F spatial will be used
to find β in the scene-change frames. It should be noted
that there will be a couple of special cases for other frames.
(1) For the first P-frame after the scene-change frame, since
its temporal feature F temporal is not available, we will cal-
culate its own feature F P. In addition, since the previous
P-frames do not have similar content, this P-frame may be
encoded twice without referring to the coding results of
previous frames. (2) For the first I-frame after the scene-
change frame, we will calculate its own F spatial to calculate
β and may also encode this frame twice to use its own first-
run coding results for model adjustment. To sum up, the
features will be computed and the coding may be applied
twice in the following three cases: (1) The scene-change or
key frame, (2) the first I-frame after the key frame, and (3)
the first P-frame after the key frame. For most of the other
I/P-frames, we basically employ the existing features and
use the coding results of the frames with similar content
and with same frame type for model adjustment. Then, the
calculation of the features will not be applied repeatedly.
Finally, to achieve extremely consistent video quality, the
coding result of each frame will be checked. If the result
deviates from the target too far, we may encode that frame
once more and the model is also adjusted by Equation (17).
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Fig. 8. The comparison of coding results of Foreman by using the original model and updated model in the case of (a) PSNR in I-frames, (b) PSNR in P-frames,
(c) SSIM in I-frames, and (d) SSIM in P-frames.

In our scheme, if the absolute difference of target PSNR
and the resulting PSNR is larger than 0.25 dB, the frame
will be encoded again. In SSIM, the threshold of abso-
lute difference is set as 0.015. A frame will not be encoded
more than twice to maintain the efficiency of the proposed
method.

I V . EXPER IMENTAL RESULTS

We implemented our scheme in JM 15.1 reference software
of H.264/AVC [15] to evaluate the performances of our pro-
posedD–Qmodel and encoding procedure. The settings are
as follows:

(1) Rate distortion optimization is enabled.
(2)Motion search range for coding is ±16.
(3) Fast full search algorithm is used.
(4) CAVLC is used.
(5) De-blocking filter is enabled.

We set the target PSNR as 30, 35, 40, and 45 dB and tar-
get SSIM as 0.91, 0.95, and 0.99 to test the feasibility of

our scheme on different quality measures. SSIM is calcu-
lated in 8 × 8 blocks without overlapping. Eight CIF videos
including Coastguard, Monitor, Table, Foreman, Mobile,
Stefan, News, and Paris, each with 300 frames, are used in
our experiments. Figures 9 and 10 show the performance
of constant quality video coding measured in PSNR and
SSIM, respectively. We can see that the resulting quality can
achieve target quality in all of the cases. When the target
quality is set lower, the variations of both PSNR and SSIM
become larger because of wider range of QP. The variations
are more obvious in the latter part of Foreman because of
fast cameramotions. Two-pass encoding is not applied very
often and the most frequent case happens when the target
SSIM is set as 0.91 in Foreman, in which only 16 out of 300
frames are encoded twice. In other videos such as Moni-
tors and Mobile, except for the first two frames, which are
the first I- and P-frames, respectively, and do not have any
previous coding results, other frames are encoded just once.

Table 2 compares the performance of our quality control
algorithm with the one proposed by De Vito et al. [12], in
which the PSNR and QP values in previous frames are used
to maintain constant quality in one pass. Five sequences
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Fig. 9. The performances of constant quality (PSNR) video coding of (a) Coastguard, (b) Monitor, (c) Table, (d) Foreman, (e) Mobile, (f) Stefan, (g) News, and
(h) Paris.

at three different target PSNR values are tested. The aver-
age absolute deviations of PSNR are 0.42 and 1.02 dB in our
method and [12] respectively. The average PSNR variances
are 0.06 and 0.25 dB in our method and [12], respectively.
Therefore, our scheme can achieve better performances of
constant quality coding. Table 3 shows the other comparison
of our scheme with [13] and [16], both of which are two-
pass schemes. That is, they will apply first pass encoding
to estimate the R–D curve and second pass encoding to
achieve constant quality coding. We use the resulting PSNR
values of [13, 16] as targets to compress the videos by our
scheme. We can see that the average PSNR values are close

to the targeted ones and the PSNR variances of our scheme
are lower than those of the other two methods. It should be
noted that our scheme is more efficient since most of the
frames are encoded only once.

Furthermore, we demonstrate the performances of pro-
posed quality control in videos with a larger resolution.
Four 4CIF (704 × 576) videos are tested and the perfor-
mances of maintaining SSIM are shown in Fig. 11. The size
of basic unit is set as 11 × 3 MB’s, the same with what we
have done on CIF videos, and the same model parameters
are also employed. The reasonably good performances in
Fig. 11 indicate that, as long asmost of the basic units used in
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Fig. 10. The performances of constant quality (SSIM) video coding of (a) Coastguard, (b) Monitor, (c) Table, (d) Foreman, (e) Mobile, (f) Stefan, (g) News, and
(h) Paris.

Table 2. Performance comparison of our scheme with [12].

PSNR in dB (σ 2)

Target PSNR: 30 dB Target PSNR: 33 dB Target PSNR: 36 dB

Video Proposed [12] Proposed [12] Proposed [12]

Foreman 29.87(0.10) 29.93(0.22) 32.90(0.11) 33.07(0.24) 35.97(0.10) 35.92(0.13)
Paris 29.83(0.02) 30.14(0.25) 32.84(0.02) 32.52(0.11) 36.03(0.02) 35.69(0.09)
News 29.90(0.05) 29.78(0.61) 32.83(0.01) 33.31(0.39) 36.07(0.10) 36.15(0.29)
Table 29.88(0.11) 29.70(0.36) 32.94(0.04) 33.15(0.22) 36.01(0.03) 36.14(0.17)
Stefan 29.92(0.04) 29.85(0.25) 33.02(0.07) 32.66(0.25) 36.02(0.06) 35.84(0.23)
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Fig. 11. The performances of constant quality (SSIM) video coding in 4CIF videos: (a) City, (b) Crew, (c) Harbor, and (d) Soccer.

Table 3. Performance comparison of our scheme with [13, 16].

PSNR in dB (σ 2)

Video Proposed [13] Proposed [16]

Foreman 37.04(0.05) 36.98(0.25) 36.73(0.04) 36.72(0.39)
Paris 33.87(0.02) 33.89(0.12) 33.79(0.03) 33.68(0.06)
Mobile 29.69(0.04) 29.65(0.46) 31.22(0.05) 31.15(0.12)
Table 40.75(0.02) 40.78(0.12) 39.09(0.02) 39.07(0.07)
Stefan 32.41(0.05) 32.38(0.32) 31.87(0.03) 31.81(0.08)

the training process contain meaningful contents, the built
model can work well in videos with different resolutions.

Finally, we would like to discuss the strategy of video
encoding involving B-frames. In our framework, we choose
not to train the models of B-frames for the following rea-
sons. First, the number of B-frames (betweenP-frames)may
vary according to the settings of encoders. Training models
with different parameter settings is not a flexible approach.
Second, several prediction modes can be used in a B-frame,
including list 0, list 1, bi-predictive, and direct predictions.
As mentioned earlier, we will not perform block classifi-
cation before the exact encoding process hence it will be

difficult to determine reasonable features and the corre-
sponding weighting factors. Therefore, instead of training
the models for B-frames, we propose a simple QP deter-
mination method by assigning the QP value according to
the related P-frames. More specifically, the QP value for
a B-frame is set as � Q Plis t0+Q Plis t1

2 � when both list 0 and
list 1 are available and both of them are encoded as P-
frames. If one of list 0 and/or list 1 is unavailable or not a
P-frame, the QP value of the only reference P-frame will
be used to encode the current B-frame. Figure 12 illustrates
the performances of the proposed B-frame QP determina-
tion. We can see that the target PSNR can be achieved in all
of the sequences. Although the quality variations are a bit
larger than those shown in Fig. 9, the performances are still
satisfactory.

V . CONCLUS ION

In this research, a frame quality control mechanism for
H.264/AVC is proposed. A suitable QP can be assigned in
each frame so that target frame quality can be achieved.
A single-parameter D–Q model is derived and the model
parameter can be determined from the frame content. The
results by using such quality measurements as PSNR and



12 ching-yu wu et al.

Fig. 12. The performances of constant quality (PSNR) video coding with B-frames (IBBPBBP. . .) of (a) Coastguard, (b)Monitor, (c) Table, (d) Foreman, (e)Mobile,
(f) Stefan, (g) News, and (h) Paris.

SSIM verify the feasibility of our proposed method. We will
extend them to test more quality metrics to further prove
the generality of this framework.
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