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OVERVIEW PAPER

Visual quality assessment: recent developments,
coding applications and future trends
tsung-jung liu1, yu-chieh lin1, weisi lin2, and c.-c. jay kuo1

Research on visual quality assessment has been active during the last decade. In this work, we provide an in-depth review of
recent developments in the field. As compared with existing survey papers, our current work has several unique contributions.
First, besides image quality databases and metrics, we put equal emphasis on video quality databases and metrics as this is a
less investigated area. Second, we discuss the application of visual quality evaluation to perceptual coding as an example for
applications. Third, we benchmark the performance of state-of-the-art visual quality metrics with experiments. Finally, future
trends in visual quality assessment are discussed.
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I . I NTRODUCT ION

During recent years, digital images and videos have played
more andmore important roles in our work and life because
of increasing availability and accessibility. Thanks to the
rapid advancement of new technology, people can easily
have an imaging device, such as a digital camera, camcorder,
and cellular phone, to capture what they see and what hap-
pens in daily life. In addition, with the development of
social network andmobile devices, photo and video sharing
over the Internet becomes much more popular than before.
Quality assessment and assurance for digital images and
videos in an objective manner have become an increasingly
useful and interesting topic in the research community.

In general, visual quality assessment can be divided into
two categories. One is subjective visual quality assessment,
and the other is objective visual quality assessment. As the
name implies, the former is done by humans. It represents
the most realistic opinion of humans toward an image or a
video, and also the most reliable measure of visual quality
among all available means (if the pool of subjects is suffi-
ciently large and the nature of the circumstances allows such
assessments).

For subjective evaluation of visual quality, the tests can
be performed with the methods defined in [20, 23]: (a)
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pair comparison (PC); (b) absolute category rating (ACR);
(c) degradation category rating (DCR) (also called double-
stimulus impairment scale (DSIS)); (d) double-stimulus
continuous quality scale (DSCQS); (e) single-stimulus
continuous quality evaluation (SSCQE); (f) simultaneous
double-stimulus for continuous evaluation (SDSCE). We
have presented these methods in the Appendix for easy
reference.

In general, methods (a)–(c) above can be used in mul-
timedia applications. Television pictures can be evaluated
with methods (c)–(f). In all these test methods, visual qual-
ity ratings evaluated by test subjects are then averaged to
obtain the mean opinion score (MOS). In some cases, dif-
ference mean opinion score (DMOS) is used to represent
the mean of differential subjective score instead of MOS.

However, the subjective method is time-consuming, and
not applicable for real-time processing because the test has
to be performed carefully in order to obtain meaningful
results. Moreover, it is not feasible to have human interven-
tion with in-loop and on-service processes (such as video
encoding, transmission, etc.). Thus, most research has been
focused on automatic assessment of quality for an image or
a video.

This paper aims at an overview and discussion of the lat-
est research in the area of objective quality evaluation of
visual signal (both image and video). There have been a few
good survey papers in this area before, such as [35, 56, 105].
Our current work has several new contributions. First, we
put an equal emphasis on image and video quality assess-
ment. Video quality assessment is a rapidly growing field
and has progressed a lot in the last 3–4 years. The recent
developments have not been well covered in the existing
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survey papers. Here, we provide the most updated results
in this field. Second, we have an in-depth discussion on
the application of visual quality assessment to perceptual
image/video coding, which is one of the most researched
areas in applications. Third, we benchmark the perfor-
mance of several state-of-the-art quality metrics for both
images and videos with appropriate databases and experi-
ments. Finally, future trends in visual quality assessment are
discussed.

The rest of the paper is organized as follows. In Section
II, the classification of objective quality assessment meth-
ods will be presented. Recent developments, applications,
and publicly available databases in image quality assess-
ment (IQA) will be examined in Section III, whereas those
in video quality assessment (VQA) are to be introduced
in Section IV. We follow the similar format of writing for
images and videos respectively, for readers’ easy reading,
reference and comparison. Section V will present perfor-
mance comparison for some recent popular visual quality
metrics. Then, we will point out several possible future
trends for visual quality assessment in Section VI. Finally,
the conclusion will be drawn in Section VII.

I I . C LASS I F ICAT ION OF OBJECT IVE
V ISUAL QUAL ITY ASSESSMENT
METHODS

There are several popular ways to classify the visual qual-
ity assessment methods [35, 56, 105]. In this section, we
present two possibilities of classification to facilitate the
presentation and understanding of the related problems,
the existing solutions (taking into account the most recent
developments), and future trends.

A) Classification based on the availability of
reference
The classification depends on the availability of original
(reference) image/video. If there is no reference signal avail-
able for the distorted (test) one to compare with, then a
quality evaluationmethod is termed as ano-reference (NR)
one [64]. The current NR methods [74, 90] do not per-
form well in general because they judge the quality solely
based on the distorted medium and without any reference
available.

If the information of the reference medium is partially
available, e.g., in the form of a set of extracted features, then
this is the so-called reduced-reference (RR) method [78].
Since the extracted partial reference information is much
sparser than the whole reference, the RR approach can be
used in a remote location (e.g., the relay site and receiv-
ing end of transmission) with reasonable bandwidth over-
heads to achieve better results than the NR method, or
in a situation where the reference is available (such as a
video encoder) to reduce the computational requirement
(especially in repeated manipulation and optimization).

The last one is the full-reference (FR)method (e.g., [96]),
as the opposite of the NR method. As the name suggests,
an FR metric needs the complete reference medium to
assess the distorted (test) medium. Since it has full infor-
mation about the originalmedium, it is expected to have the
best quality prediction performance. Most existing quality
assessment schemes belong to this category, and can be usu-
ally used in image and video coding. We will discuss more
in Sections III and IV.

B) Classification based upon methodology for
assessment
The first type in this classification is image/video fidelity
metrics, which operate based only on direct accumulation
of errors and therefore are usually FR. Mean-squared error
(MSE) and peak signal-to-noise ratio (PSNR) are two repre-
sentatives in this category. Although being the simplest and
still widely used, such a metric is often not a good reflection
of perceived visual quality if the distortion is not additive.

The second type is human visual system (HVS) model-
based metrics, which typically employ a frequency-based
decomposition, and take into account various aspects of the
HVS. This can includemodeling of contrast and orientation
sensitivity, spatial and temporal masking effects, frequency
selectivity and color perception. Owing to the complexity
of the HVS, these metrics can become very complex and
computationally expensive. Examples of the work follow-
ing this framework include the works in [32, 43, 62, 89],
perceptual distortion metric (PDM) [104], the continuous
VQM in [66], and the scalable wavelet-based video distor-
tion index [65]. Recently, a new strategy to measure image
quality, called most apparent distortion (MAD) [48], also
belongs to this category.

Signal structure (information or other feature)-based
metrics are the third type ofmetrics. Some of themquantify
visual fidelity based on the assumption that a high-quality
image or video is the one whose structural content, such as
object boundaries or regions of high entropy, most closely
matches that of the original image or video [84, 85, 96].
Other metrics of this type are based on the assumption
that the HVS understands an imagemainly through its low-
level features. Hence, image degradations can be perceived
by comparing the low-level features between the distorted
and the reference images. The latest work is called feature-
similarity (FSIM) index [108].Wewill discuss inmore detail
on this type of metric in Section III.

The fourth type in the classification is packet-analysis-
basedmetrics. This type of metric focuses on assessment of
the impact caused by network impairments on visual qual-
ity. It is usually based on the parameters extracted from the
transport stream to measure the quality loss. It also has the
advantage of measuring the quality of several image/video
streams in parallel. Lately, this type of metric has become
more popular because of increasing video delivery service
over networks, such as IPTV or Internet streaming. One
example of such metrics is the V-Factor [105]. The details
about this metric will be introduced in Section IV.
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The last type ofmetric is the emerging learning-oriented
metrics. Some recent works are [57–59, 63, 68, 70, 87]. Basi-
cally, it extracts specific features from the image or video,
and then uses the machine learning approach to obtain a
trained model. Finally, the trained model is used to predict
the perceived quality of images/videos. The obtained exper-
imental results are quite promising, especially for multi-
metric fusion (MMF) approach [57, 59] that uses the major
existing metrics as the components for the learnt model.
The MMF is expected to outperform all the existing met-
rics as the fusion-based approach to allow the combination
of merits from each metric.

I I I . RECENT DEVELOPMENTS
IN IQA

A) Image quality databases
Databases with subjective data facilitate metric develop-
ment and benchmarking, as the ground truth and source of
inspiration. There are a number of publicly available image
quality databases, including LIVE [9], TID2008 [15], CSIQ
[2], IVC [7], IVC-LAR [8], Toyoma [16], WIQ [19], A57 [1],
and MMSP 3D Image [12]. We will give a brief introduction
for each database below.

LIVE Image Quality Database has 29 reference images
(also called source reference circuits (SRC)) and 779 test
images, including five distortion types – JPEG2000, JPEG,
white noise in the RGB components, Gaussian blur, and
transmission errors in the JPEG2000 bitstream using a
fast-fading Rayleigh channel model. The subjective quality
scores provided in this database are DMOS, ranging from 0
to 100.

Tampere Image Database 2008 (TID2008) has 25 ref-
erence images and 1700 distorted images, including 17 types
of distortions and four different levels for each type of dis-
tortion. Hence, there are 68 test conditions (also called
hypothetical reference circuits (HRC)). MOS is provided in
this database, and the scores range from 0 to 9.

Categorical Image Quality (CSIQ) Database contains
30 reference images, and each image is distorted using
six types of distortions – JPEG compression, JPEG2000
compression, global contrast decrements, additiveGaussian
white noise, additive Gaussian pink noise, and Gaussian
blurring – at 4–5 different levels, resulting in 866 distorted
images. The score ratings (0–1) are reported in the form of
DMOS.

IVC Database has 10 original images and 235 dis-
torted images, including four types of distortions – JPEG,
JPEG2000, locally adaptive resolution (LAR) coding, and
blurring. The subjective quality scores provided in this
database are MOS, ranging from 1 to 5.

IVC-LARDatabase contains eight original images (four
natural images and four art images) and 120 distorted
images, including three distortion types – JPEG, JPEG2000,
and LAR coding. The subjective quality scores provided in
this database are MOS, ranging from 1 to 5.

Toyoma Database has 14 original images and 168 dis-
torted images, including two types of distortions – JPEG
and JPEG2000. The subjective scores in this database are
MOS, ranging from 1 to 5.

Wireless Imaging Quality (WIQ) Database has seven
reference images and 80 distorted images. The subjective
quality scores used in this database are DMOS, ranging
from 0 to 100.

A57 Database has three original images and 54 distorted
images, including six distortion types – quantization of the
LH subbands of a five-level DWT of the image using the
9/7 filters, additive Gaussian white noise, JPEG compres-
sion, JPEG2000 compression, JPEG2000 compression with
Dynamic Contrast-Based Quantization (DCQ), and Gaus-
sian blurring. The subjective quality scores used for this
database are DOMS, ranging from 0 to 1.

MMSP 3D Image Quality Assessment Database con-
tains stereoscopic images with a resolution of 1920 × 1080
pixels. Various indoor and outdoor scenes with a large vari-
ety of colors, textures, and depth structures have been cap-
tured. The database contains 10 scenes. Seventeen subjects
participated in the test. For each of the scenes, six differ-
ent stimuli have been considered corresponding to different
camera distances (10, 20, 30, 40, 50, and 60 cm).

To make a clear comparison among these databases, we
list important information for each database in Table 1.

B) Major IQAmetrics
As mentioned earlier, the simplest and most widely used
image quality metrics are MSE and PSNR because they are
easy to calculate and are also mathematically convenient
in the optimization sense. However, they often correlate
poorly with subjective visual quality [95].

Hence, researchers have done a lot of work to include the
characteristics of the HVS to improve the performance of
quality prediction. The noise quality measure (NQM) [33],
PSNR-HVS-M [79], and the visual signal-to-noise ratio
(VSNR) [27] are several representatives in this category.

NQM (FR, HVS model-based metric), which is based
on Peli’s contrast pyramid [77], takes into account the
following:

(1) variation in contrast sensitivity with distance, image
dimensions, and spatial frequency;

(2) variation in the local luminance mean;
(3) contrast interaction between spatial frequencies; and
(4) contrast masking effects.

It has been demonstrated that the nonlinear NQM is a
bettermeasure of additive noise than PSNR and other linear
quality measures [33].

PSNR-HVS-M (FR, HVS model-based metric) is a still
image quality metric that takes into account contrast sen-
sitivity function (CSF) and between-coefficient contrast
masking of DCT basis functions. It has been shown that
PSNR-HVS-M outperforms other well-known reference-
based quality metrics and demonstrated high correlation
with the results of subjective experiments [79].
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Table 1. Comparison of image quality databases.

SRC (no. of HRC Total Subjective
reference (no. of test no. of test Testing Subjective Applications

Database Year images) conditions) images Method score and merits

IVC 2005 10 25 235 DSIS MOS (1–5) For testing IQA metrics on images having compres-
sion distortions

LIVE 2006 29 27 779 ACR DMOS (0–100) For testing IQA metrics on images having compres-
sion distortions, transmission distortions, and acqui-
sition distortions

A57 2007 3 18 54 − DMOS (0–1) For testing IQA metrics on images having compres-
sion distortions and acquisition distortions

Toyoma 2008 14 12 168 ACR MOS (1–5) For testing IQA metrics on images having compres-
sion distortions

TID2008 2008 25 68 1700 Proprietary MOS (0–9) For testing IQA metrics on images having compres-
sion distortions, transmission distortions and acqui-
sition distortions

CSIQ 2009 30 29 866 Proprietary DMOS (0–1) For testing IQA metrics on images having compres-
sion distortions, transmission distortions and acqui-
sition distortions

IVC-LAR 2009 8 15 120 DSIS MOS (1–5) For testing IQA metrics on images having compres-
sion distortions

WIQ 2009 7 − 80 DSCQS DMOS (0–100) For testing IQA metrics on images having transmis-
sion distortions

MMSP 3D
Image

2009 9 6 54 SSCQE MOS (0–100) For testing images on 3DQuality of Experience (QoE)

(Notes: ‘-’ Means no information available; ‘proprietary’ means the testing method is designed by the authors, not in [23] and [20].)

VSNR (FR, HVS model-based metric) is a metric com-
puted by a two-stage approach [27]. In the first stage, con-
trast thresholds for detection of distortions in the presence
of natural images are computed via wavelet-based models
of visual masking and visual summation in order to deter-
mine whether distortions in the distorted image are visible.
If the distortions are below the threshold of detection, the
distorted image is claimed to be of perfect visual quality. If
the distortions are higher than a threshold, a second stage is
applied, which operates based on the visual property of per-
ceived contrast and global precedence. These two properties
are modeled as Euclidean distances in distortion-contrast
space of a multi-scale wavelet decomposition, and the final
VSNR is obtained by linearly summing these distances.

However, the HVS is a nonlinear and highly complicated
system, and most models so far are only based on quasi-
linear or linear operators. Hence, a different framework
was introduced, based on the assumption that a measure-
ment of structural information change should provide a
good approximation to perceived image distortion. Struc-
tural similarity (SSIM) index (FR, signal structure-based
metric) [96] is the most well-known one in this category.

Suppose two image signals x and y, and let μx , μy , σ 2
x ,

σ 2
y , and σxy be the mean of x, the mean of y, the variance of

x, the variance of y, and the covariance of x and y respec-
tively. Wang et al. [96] define the luminance, contrast, and
structure comparison measures as follows:

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
, c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
,

s (x, y) = σxy + C3

σxσy + C3
, (1)

where the constants C1, C2, and C3 are included to avoid
instabilities when μ2

x + μ2
y , σ 2

x + σ 2
y , and σxσy are very

close to zeros. Finally, they combine these three compar-
ison measures and name the resulting similarity measure
between image signals x and y as

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s (x, y)]γ , (2)

where α > 0, β > 0, and γ > 0 are the parameters used to
adjust the relative importance of these three components.
In order to simplify the expression, set α = β = γ = 1 and
C3 = C2/2. This results in a specific form of the SSIM index
between image signals x and y:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
. (3)

However, the standard SSIM defined above is only a
single-scale method. To be able to consider image details at
different resolutions (we do not know the right object sizes
in general), a multi-scale SSIM (MS-SSIM) (FR, signal
structure-based metric) [101] is adopted. Taking the refer-
ence and distorted image signals as the input, the system
iteratively applies a low-pass filter and down-samples the fil-
tered image by a factor of two. The original image is labeled
as scale 1, and the highest scale as M, which is obtained after
M − 1 iterations; at the j -th scale, the contrast comparison
and the structure comparison are calculated and denoted as
c j (x, y) and s j (x, y), respectively. The luminance compar-
ison is computed only at scale M and denoted as lM(x, y).
The overall SSIM evaluation is obtained by combining the
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measurement at different scales using

MS-SSIM(x, y) = [lM(x, y)]αM

M∏

j=1

[c j (x, y)]β j [s j (x, y)]γ j .

(4)
Similarly, exponents αM , β j and γ j are used to adjust
the relative importance of different components. As the
simplest parameter selection, α j = β j = γ j for all j ’s. In
addition, normalization is performed for the cross-scale
settings such that

∑M
j=1 γ j = 1.

Since SSIM is sensitive to relative translations, rotations,
and scalings of images [95], complex-wavelet SSIM (CW-
SSIM) [100] has been developed. The CW-SSIM is locally
computed from each subband, and then averaged over
space and subbands, yielding an overall CW-SSIM index
between the original and the distorted images. The CW-
SSIM method is robust with respect to luminance changes,
contrast changes, and translations [100].

Afterward, some researchers have tried to propose a
new metric by modifying SSIM, such as three-component
weighted SSIM (3-SSIM) [51], and information content
weighted SSIM (IW-SSIM) [98]. They are all based on the
similar strategy to assign different weightings to the SSIM
scores.

Anothermetric based on the information theory tomea-
sure image fidelity is called information fidelity criterion
(IFC) (FR, signal information-extractedmetric) [85]. It was
later extended to visual information fidelity (VIF) met-
ric (FR, signal information-extracted metric) [84]. The VIF
attempts to relate signal fidelity to the amount of informa-
tion that is shared between two signals. The shared informa-
tion is quantified using the concept of mutual information.
The reference image is modeled by a wavelet domain Gaus-
sian scale mixture (GSM), which has been shown to model
the non-Gaussian marginal distributions of the wavelet
coefficients of natural images effectively, and also capture
the dependencies between the magnitudes of neighboring
wavelet coefficients. Therefore, it brings good performance
to the VIF index over a wide range of distortion types [86].

Reduced-reference image quality assessment (RRIQA)
(RR, signal feature-extracted metric) is proposed in [52].
The authors use GSM statistical model of image wavelet
coefficients to compute a divisive normalization transform
(DNT) for images. Then, they evaluate the image quality
based on the comparison between features extracted from
the DNT of reference and distorted images. The proposed
RR approach has improved performance and even works
better than FR PSNR in LIVE Image Quality Database.

In [39], multi-scale geometric analysis (MGA) is used to
decompose images and extract features to model the multi-
channel structure of HVS. Moreover, several transforms
(e.g., wavelet, curvelet, bandelet, and contourlet) are also
utilized to capture different kinds of geometric information
of images. CSF is used to weight the coefficients obtained by
theMGA. Next, Just Noticeable Difference (JND) is applied
to produce a noticeable variation. Finally, the quality of the
distorted image is obtained by comparing the normalized

histogram between the distorted image and reference one.
In addition to the good consistency with human subjec-
tive evaluation, this MGA-based IQA (RR, signal feature-
extracted metric) also has the advantage of using low data
rate to represent features.

Ferzli et al. [36] proposed an objective image sharpness
metric, called Just Noticeable Blur Metric (JNBM) (NR,
HVS model-based metric). They claimed the just notice-
able blur (JNB) is a function of local contrast and can be
used to derive an edge-based sharpness metric with proba-
bility summation model over space. The experiment results
showed this method can successfully predict the relative
amount of sharpness/blurriness in images, even with dif-
ferent scenes.

In [30], the authors presented a method for IQA by
combining the features obtained from the computation of
mean and ratio of edge blurriness and noise (MREBN).
The proposedmetricMREBN (NR, signal feature-extracted
metric) has high correlation with subjective quality scores.
They also claimed the low computational load of the model
because of linear combination of the features obtained.

In [48], Larson and Chandler suggested that a single
strategy may not be sufficient to determine the image qual-
ity. They presented a quality assessment method, called
most apparent distortion (MAD) (FR, HVS model-based
metric), which can model two different strategies. First,
they used local luminance and contrast masking to esti-
mate detection-based perceived distortions in high-quality
images. Then changes in the local statistics of spatial-
frequency components are used to estimate the appearance-
based perceived distortions in low quality images. In the
end, the authors showed that combining these two strategies
can predict subjective ratings of image quality well.

FSIM (FR, signal feature-extracted metric) [108] is a
recently developed image quality metric, which compares
the low-level feature sets between the reference image and
the distorted image based on the fact that the HVS under-
stands an image mainly according to its low-level features.
Phase congruency (PC) is the primary feature to be used in
computing FSIM. Gradient magnitude (GM) is the second
feature to be added in FSIM metric because PC is contrast
invariant and contrast information also affects the HVS’
perception of image quality. Actually, in the FSIM index,
similarity measures for PC and GM all follow the same
formula as in the SSIM metric.

More recently, we proposed a multi-metric fusion
(MMF) (FR, learning-orientedmetrics) approach for visual
quality assessment [57, 59]. This method is motivated by the
observation that no single metric can give the best perfor-
mance scores in all situations. To achieveMMF, a regression
approach is adopted. First, we collected a large number
of image samples, each of which has a score labeled by
human observers and scores associated with different qual-
ity metrics. The new MMF score is set to be the nonlinear
combination of scores obtained bymultiple existingmetrics
(including SSIM [96], MS-SSIM [101], VSNR [27], IFC [85],
VIF [84], PSNR, PSNR-HVS [34], NQM [33], FSIM [108],
andMAD [48]) with suitable weights via a training process.
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Table 2. Classification of IQA models based on reference availability and assessment methodology.

IQA model Reference availability Assessment methodology Remarks (strength and weakness)

PSNR FR Image fidelity • Simple
• Low correlation

NQM FR HVS model • Better measure of additive noise than PSNR
• 80 correlation to visual results

PSNR-HVS-M FR HVS model • Incorporate CSF model
• 98 correlation with subjective scores

VSNR FR HVS model • Low computational complexity and memory requirements
• Accommodate different viewing conditions
• 88.9 correlation with subjective scores in LIVE database

SSIM FR Signal structure • Easy to implement
• Good correlation with subjective scores

MS-SSIM FR Signal structure • Incorporate image details at different resolutions
• Better correlation with subjective scores than SSIM

IFC FR Signal structure • Use mutual information to quantify signal fidelity
• Better correlation with subjective scores than SSIM

VIF FR Signal structure • Use mutual information to quantify signal fidelity
• Better correlation with subjective scores than IFC

RRIQA RR Signal structure • Better performance than PSNR
MGA-based IQA RR Signal structure • Good consistency with subjective scores

• Low data rate to represent features
JNBM NR HVS model • Can predict the relative amount of sharpness/blurriness in images
MREBN NR Signal structure • Good correlation with subjective scores

• Low computation load
FSIM FR Signal structure • Use low-level features

• Very good correlation with subjective scores
MAD FR HVS model • Combine two different strategies to predict visual quality

• Good correlation with subjective scores
MMF FR Learning-oriented • Use machine learning to automatically fuse the scores from

multiple quality metrics
• Very high correlation with subjective scores
• Can incorporate new IQA metrics

We also term it as context-free MMF (CF-MMF) because it
does not depend on image contexts. Furthermore, we divide
image distortions into several groups and perform regres-
sion within each group, which is called context-dependent
MMF (CD-MMF). One task in CD-MMF is to determine
the context automatically, which is achieved by a machine
learning approach. It is shown by experimental results that
the proposed MMFmetric outperforms all existing metrics
by a significant margin.

Table 2 summarizes the IQA models that we have men-
tioned so far and the corresponding classifications based
on reference availability and assessment methodology; we
have also commented on the strength and weakness of the
models under discussion in the table.

C) Application in perceptual image coding
IQA metrics are widely exploited for image coding.
Different metrics, such as SSIM [28, 96] and VIF [84]
are used to improve the perceptual performance of JPEG
and JPEG2000 compression and provide feedback to rate-
control algorithms. In other words, the concept of per-
ceptual image coding is to assess the quality of the
target image by using IQAs and then apply the index
to improve coding efficiency. Each IQA reflects specific

features. Thus, choosing the perceptual model is based on
the need of specific application or codec. Coding distortion
can be approximated from the extracted perceptual features
and used to guide an image coder.

Yim and Bovik [107] analyzed the blockiness of com-
pressed JPEG images. The proposed metric index focuses
on discrete cosine transformed and quantized images. It
has been shown that the blocking effect can be assessed
by using the quality metric which detects differences of
the neighborhoods of the target block. The blocking effect
factor (BEF) is defined by the difference of themean bound-
ary pixel squared difference and the mean non-boundary
pixel squared difference. Themean-squared error including
the blocking effect (MSE-B) is calculated from the corre-
sponded BEF and MSE and leads to peak signal-to-noise
ratio including the blocking effect (PSNR-B). The PSNR-B
can quantify the blocking effect in a boundary of mac-
roblocks. Moreover, this can help to develop H.264/AVC
de-blocking filters.

Hontzsch and Karam [41] presented a locally adaptive
perceptual image coder, which optimizes the bit alloca-
tion of the targeted distortion type. The algorithm starts
from extracting visual properties adaptively based on the
local image features. It decomposes data into discrete
cosine transform (DCT) coefficients, which are fed to the
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perceptual model to generate perceptual properties. These
properties are used to compute the local distortion adap-
tively and result in local distortion sensitivity profiles. The
thresholds, which are derived from the profiles, reflect the
characteristics of local image data. Two visual phenomena,
contrast sensitivity dependent on background luminance
and contrast masking, are modeled to generate the thresh-
olds. For contrast sensitivity, the threshold is defined related
to the luminance of the background to verify the sensitiv-
ity of the eye under the condition of the background. For
contrast masking adjustment, contrast masking pertains to
the visual change. The masker signal is in the form of the
DCT subband coefficients of the input image comparing to
the quantization error. Thus, the quantization step size is
calculated from the threshold in order to achieve the target
bitrate.

Rehman and Wang [80] addressed the practical use of
SSIM. Instead of fully accessing the original image, reduced
reference technique only uses partial information. The first
step of the algorithm is the multi-scale multi-orientation
DNT which extracts the neural features of the biological
HVS. DNT coefficient distribution is parameterized and
provides needed partial information of the reference image.
This information can be used to define the distortion of
the compressed image and reflect the SSIM value of the
images. The proposed reduced reference version of SSIM
shows linear relationship to the full reference version in spe-
cific circumstances. The application of the algorithm does
not only measure the SSIM but also repair some distor-
tions.

Besides VIF, other approaches are taken to JPEG2000.
Tan et al. [88] proposed an image coder based on the
just-noticeable distortion model which considers a vari-
ety of perceptual aspects. The algorithm is developed from
a monochromatic vision model to a color image one.
The monochromatic contrast gain control (CGC) model
includes spatial masking, orientation masking and con-
trast sensitivity. The luminance and chromatic parts are
modeled by the CGC. The distortion metric is designed
to estimate perceptual error and applied to replace MSE
which is used in the cost function in embedded block
coding with optimal truncation (EBCOT). The 14 param-
eters in the metric are optimized with a two tiered
approach. One calculates the parameter set recursively;
the other fine-tunes the parameter set via algorithmic
optimization.

SSIM is also exploited in JPEG2000. Richter et al. [81]
proposed a JPEG encoder based on optimal Multi-scale
SSIM (MS-SSIM) [101]. Efforts are made to modify MS-
SSIM in order to be embedded to the encoder. The first
step of the algorithm is trying to modify MS-SSIM to the
logarithmic form. The contrast and the structure part of
the index can be expressed by the reconstruction error; the
luminance part is ignored due to its minor effect. The final
term of the index can be computed by utilizing the results
from EBCOT and wavelet decomposition process. Thus,
the implementation integrates MS-SSIM into a JPEG2000
encoder.

I V . RECENT DEVELOPMENTS
IN VQA

A) Video quality databases
To our knowledge, there are nine public video qual-
ity databases available, including VQEG FRTV-I [17],
IRCCyN/IVC 1080i [5], IRCCyN/IVC SD RoI [6], EPFL-
PoliMI [4], LIVE [10], LIVE Wireless [11], MMSP 3D
Video [13], MMSP SVD [14], and VQEG HDTV [18]. We
will briefly introduce them below.

VQEG FR-TV Phase I Database is the oldest public
database on video quality applied to MPEG-2 and H.263
video with two formats: 525@60Hz and 625@50Hz in this
database. The resolution for video sequence 525@60Hz is
720 × 486 pixels and 720 × 576 pixels for 625@50Hz. The
video format is 4:2:2. The subjective quality scores provided
are DMOS, ranging from 0 to 100.

IRCCyN/IVC 1080i Database contains 24 contents. For
each content, there is one reference and seven different com-
pression rates on H.264 video. The resolution is 1920 ×
1080 pixels, the display mode is interleaving and the field
display frequency is 50Hz. The provided subjective quality
scores are MOS, ranging from 1 to 5.

IRCCyN/IVC SD RoI Database contains six reference
videos and 14 HRCs (i.e., 84 videos in total). The HRCs
are H.264 coding with or without error transmission sim-
ulations. The contents of this database are SD videos. The
resolution is 720 × 576 pixels, the displaymode is interleav-
ing, and the field display frequency is 50Hz withMOS from
1 to 5.

EPFL-PoliMI Video Quality Assessment Database
contains 12 reference videos (6 in CIF, and 6 in 4CIF), and
144 distorted videos, which are encoded with H.264/AVC
and corrupted by simulating the packet loss due to trans-
mission over an error-prone network. For CIF, the res-
olution is 352 × 288 pixels, and frame rate is 30 fps.
For 4CIF, the resolution is 704 × 576 pixels, and frame
rates are 30 fps and 25 fps. For each of the 12 origi-
nal H.264/AVC videos, they have generated a number
of corrupted ones by dropping packets according to a
given error pattern. To simulate burst errors, patterns have
been generated at six different packet-loss rates (PLR)
and two channel realizations have been selected for each
PLR.

LIVEVideoQualityDatabase [83] includes 10 reference
videos. All videos are 10 s long, except for Blue Sky. The Blue
Sky sequence is 8.68 s long. The first seven sequences have
a frame rate of 25 fps, while the remaining three (Mobile
& Calendar, Park Run, and Shields) have a frame rate of
50 fps. There are 15 test sequences from each of the reference
sequences using four different distortion processes – sim-
ulated transmission of H.264 compressed videos through
error-prone wireless networks and through error-prone IP
networks, H.264 compression, and MPEG-2 compression.
All video files have planar YUV 4:2:0 formats and do not
contain any headers. The spatial resolution of all videos is
768 × 432 pixels.
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Table 3. Comparison of video quality databases.

SRC (no. of HRC (no. Total no. Subjective
reference of test of test Testing Subjective

Database Year videos) conditions) videos Method score Applications and merits

VQEG FR-TV-I 2000 20 16 320 DSCQS DMOS (0–100) For testing VQA metrics on videos
having compression distortions

IRCCyN/IVC
1080i

2008 24 7 192 ACR MOS (1–5) For testing VQA metrics on videos
having compression distortions

IRCCyN/IVC SD
RoI

2009 6 14 84 ACR MOS (1–5) For testing VQA metrics on videos
having compression distortions
and transmission distortions

EPFL-PoliMI 2009 16 9 165 ACR MOS (0–5) For testing VQA metrics on videos
having compression distortions
and transmission distortions

LIVE 2009 10 15 150 ACR DMOS (0–100) For testing VQA metrics on videos
having compression distortions
and transmission distortions

LIVE wireless 2009 10 16 160 SSCQE DMOS (0–100) For testing VQA metrics on videos
having compression distortions
and transmission distortions

MMSP 3D video 2010 6 5 30 SSCQE MOS (0–100) For testing videos on 3D quality of
experience (QoE)

MMSP SVD 2010 3 24 72 PC MOS (0–100) For testing VQA metrics on videos
having compression distortions
and transmission distortions

VQEG HDTV 2010 45 15 675 ACR MOS (0–5), DMOS (1–5) For testing VQA metrics on videos
having compression distortions
and transmission distortions

LIVE Wireless Video Quality Assessment Database
has 10 reference videos, and 160 distorted videos, which
focus on H.264/AVC compressed video transmission over
wireless networks. The video is YUV 4:2:0 formats with a
resolution of 768 × 480 and a frame rate of 30 fps. Four bit-
rates and four packet-loss rates are performed. However,
this database has been taken offline temporarily because it
has limited video level contents and a tendency to cluster at
0.95–0.96 correlation for most objective metrics.

MMSP 3D Video Quality Assessment Database con-
tains stereoscopic videos with a resolution of 1920 × 1080
pixels and a frame rate of 25 fps. Various indoor and out-
door scenes with a large variety of color, texture, motion,
and depth structure have been captured. The database con-
tains 6 scenes, and 20 subjects participated in the test. For
each of the scenes, 5 different stimuli have been considered
corresponding to different camera distances (10, 20, 30, 40,
and 50 cm).

MMSP Scalable Video Database is related to two scal-
able video codecs (SVC and wavelet-based codec), three
HD contents, and bit rates ranging between 300 kbps and
4Mbps. There are three spatial resolutions (320 × 180,
640 × 360, and 1280 × 720), and four temporal resolutions
(6.25 fps, 12.5 fps, 25 fps, and 50 fps). In total, 28 and 44 video
sequences were considered for each codec, respectively. The
video data are in the YUV 4:2:0 formats.

VQEG HDTV Database has four different video for-
mats – 1080p at 25 and 29.97 fps, 1080i at 50 and 59.94 fps.
The impairments are restricted toMPEG-2 andH.264, with
both coding-only error and coding-plus-transmission error.

The video sequences are released progressively via the Con-
sumer Digital Video Library (CDVL) [3].

We summarize and compare these video quality databases
in Table 3 for the convenience of readers.

B) Major VQAmetrics
One obvious way to implement VQMs is to apply a still IQA
metric on a frame-by-frame basis. The quality of each frame
is evaluated independently, and the global quality of the
video sequence can be obtained by a simple time average.

SSIM has been applied in VQA as reported in [99]. The
quality of the distorted video is measured in three levels: the
local region level, the frame level, and the sequence level.
First, the SSIM indexing approach is applied to the Y, Cb,
andCr color components independently and combined into
a local quality measure using a weighted summation. In the
second level of quality evaluation, the local quality values
are weighted to obtain a frame level quality index. Finally, in
the third level, overall quality of the video sequence is given
by weighted summation of the frame level quality index.
This approach is often calledV-SSIM (FR, signal structure-
basedmetric), and has been demonstrated to performbetter
than KPN/Swisscom CT [91] (the best metric for the Video
Quality Experts Group (VQEG) Phase I test dataset [17]) in
[99].

Wang and Li [97] proposed Speed-SSIM (FR, sig-
nal structure based metric) that incorporated a model of
the human visual speed perception by formulating the
visual perception process in an information communication
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framework. Consistent improvement over existing VQA
algorithms has been observed in the validation with the
VQEG Phase I test dataset [17].

Watson et al. [102] developed a VQM, which they call
digital video quality (DVQ) (FR, HVS model-based met-
ric). The DVQ accepts a pair of video sequences and com-
putes a measure of the magnitude of the visible difference
between them. The first step consists of various sampling,
cropping, and color transformations that serve to restrict
processing to a region of interest (ROI) and to express the
sequence in a perceptual color space. This stage also deals
with de-interlacing and de-gamma-correcting the input
video. The sequence is then subjected to a blocking and a
discrete cosine transform (DCT), and the results are trans-
formed to local contrast. Then, the next steps are temporal,
spatial filtering, and a contrast masking operation. Finally,
the masked differences are pooled over spatial, temporal
and chromatic dimensions to compute a quality measure.

Video Quality Metric (VQM) (RR, HVS model-based
metric) [78] is developed by National Telecommunica-
tions and Information Administration (NTIA) to provide
an objective measurement for perceived video quality. The
NTIA VQM provides several quality models, such as the
Television Model, the General Model, and the Video Con-
ferencing Model, based on the video sequence under con-
sideration and with several calibration options prior to
feature extraction in order to produce efficient quality
ratings. The General Model contains seven independent
parameters. Four parameters (si_loss, hv_loss, hv_gain, and
si_gain) are based on the features extracted from spa-
tial gradients of Y luminance component, two parame-
ters (chroma_spread, chroma_extreme) are based on the
features extracted from the vector formed by the two
chrominance components (Cb, Cr), and one parameter
(ct_ati_gain) is based on the product of features that mea-
sure contrast and motion, both of which are extracted from
Y luminance component. TheVQM takes the original video
and the processed video as inputs and is computed using
the linear combination of these seven parameters. Owing
to its good performance in the VQEG Phase II validation
tests, the VQMmethod was adopted as a national standard
by the American National Standards Institute (ANSI) and
as International TelecommunicationsUnionRecommenda-
tions [21, 22].

By analyzing subjective scores of various video sequences,
Lee et al. [49] found out that the HVS is sensitive to degra-
dation around edges. In other words, when edge areas of
a video sequence are degraded, human evaluators tend to
give low-quality scores to the video, even though the overall
MSE is not large. Based on this observation, they proposed
an objective video quality measurement method based on
degradation around edges. In the proposed method, they
first applied an edge detection algorithm to videos and
located edge areas. Then, they measured degradation of
those edge areas by computing MSEs and used it as a VQM
after some post-processing. Experiments show that this
proposed method EPSNR (FR, video fidelity metric) out-
performs the conventional PSNR. This method was also

evaluated by independent laboratory groups in the VQEG
Phase II test. As a result, it was included in international
recommendations for objective video qualitymeasurement.

Kawayoke et al. [46] suggested a new objective VQA
method, called continuous video quality (CVQ) (NR,
learning-oriented metric). The metric can provide qual-
ity values at a rate of two scores per second according to
the data obtained from subjective assessment tests under a
SSCQEmethod. It is based on the concept that frame quality
value needs to be adjusted by spatial and temporal informa-
tion. As a result, the objective quality scores computed by
this approach have a higher estimation accuracy than frame
quality scores.

More recently, an approach integrates both spatial
and temporal aspects of distortion assessment, known
as MOtion-based Video Integrity Evaluation (MOVIE)
index (FR,HVSmodel basedmetric) [82]. TheMOVIE uses
optical flow estimation to adaptively guide spatial–temporal
filtering using three-dimensional (3D) Gabor filterbanks.
The key differentiation of this method is that a subset of
filters is selected adaptively at each location based on the
direction and speed of motion, such that the major axis of
the filter set is oriented along the direction of motion in
the frequency domain. The video quality evaluation pro-
cess is carried out with coefficients computed from these
selected filters only. One component of the MOVIE frame-
work, known as the SpatialMOVIE index, uses the output of
the multi-scale decomposition of reference and test videos
to measure spatial distortions in the video. The second
component of the MOVIE index, known as the Temporal
MOVIE index, captures temporal degradations in the video.
The Temporal MOVIE index computes and uses motion
information from the reference video, and evaluates the
quality of the test video along the motion trajectories of
the reference video. Finally, the Spatial MOVIE index and
the Temporal MOVIE index are combined to obtain a sin-
gle measure of video quality known as the MOVIE index.
The performance of MOVIE on the VQEG FRTV Phase I
dataset is summarized in [82].

In addition, TetraVQM (FR, HVS model-based metric)
[25] has been proposed to utilize motion estimation within
a VQA framework, where motion-compensated errors are
computed between reference and distorted images. Based
on the motion vectors and the motion prediction error,
the appearance of new image areas and the display time of
objects are evaluated. In addition, degradations on mov-
ing objects can be judged more exactly. In [72], Ninassi
et al. tried to utilize models of visual attention (VA) and
human eye movements to improve VQA performance. The
temporal variations of the spatial distortions are evaluated
both at eye fixation level and on the whole video sequence.
These two kinds of temporal variations are assimilated into
a short-term temporal pooling and a long-term temporal
pooling, respectively.

V-Factor (NR, packet-analysis-based metric) [105] is a
real-time, packet-based VQM, which works without the
need of references. In [105], this metric is primarily used
in MPEG-2 and H.264 video streamings over IP networks.
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First, it inspects several parts of the video stream, including
the transport stream (TS) headers, the packetized elemen-
tary stream (PES) headers, the video coding layer (VCL),
and the decoded video signal. Then, it analyzes the bit-
stream to obtain static parameters, such as the frame rate
and the image size. The dynamic parameters (e.g., varia-
tion of quantization steps) are also obtained along with the
analysis. The final video quality is estimated based upon the
content characteristics, compression methods, bandwidth
constraints, delays, jitter, and packet loss. Among these six
factors, the first three are affected by video impairments and
the last three are caused by network impairments. In addi-
tion, this metric also analyzes real-time network impair-
ments to calculate the packet loss probability ratio by using
hidden Markov models. The final V-Factor value (i.e., the
estimate of MOS) is obtained by using a codec-specific
curve fit equation and inputs from the following threemod-
els: the bandwidth model, the VCL complexity model, and
the loss model.

Li et al. [54] proposed to use temporal inconsistency
measure (TIM) to describe visual disparity of the same
object in consecutive distortion frames. First, they per-
formed block-based motion estimation on the reference
video to obtain the motion vectors. Then, the motion vec-
tors can be used to create motion-compensated frames for
reference and distorted videos, respectively. The difference
between motion compensated and real frames of the ref-
erence video (DoR) is called inherent difference. Similarly,
there is also a difference between motion compensated
and real frames of the distorted video (DoD). However,
DoD consists of two components, including inherent dif-
ference and temporal inconsistency. Hence, the TIM can
be computed by subtracting DoR from DoD. In the end,
they incorporated TIM into MSE, called MSE_TIM (FR,
video fidelity metrics) and introduced a weighting param-
eter to adjust the importance between spatial impairment
and TIM in quality prediction. The experiment results show
that TIM improves the performance of MSE. Moreover, the
performance becomes even better when using TIM alone.

In [24], the authors proposed a new VQM, named
spatial–temporal assessment of quality (STAQ) (RR, HVS
model-basedmetric). As the name suggests, it includes both
spatial and temporal parts. In the first step, they used a tem-
poral approach to find the matching regions in adjacent
frames. One important change from existing motion esti-
mationmethods during this step is to use CW-SSIM instead
of the mean absolute difference to compute the motion vec-
tors. This will increase the precision of finding thematching
regions. In the second step, a spatial method is used to com-
pute the quality of the matching regions extracted via the
temporal approach. The visual attentionmap (VAM) is used
to weight each sub-block in the luminance channel based
on the importance. In the final step, the video quality is
estimated according to the values obtained from both the
spatial and temporal domains, and quality of experience
(QoE) is introduced as a function related to the motion
activity density group of the video to control the pooling
function. The results are quite promising in H.264 distorted

video case, but are less competitive than MOVIE in either
MPEG-2 or IP case.

There is also another approach integrating both spa-
tial and temporal domains, called spatiotemporal MAD
(ST-MAD) (FR, HVS model-based metric) [93], which is
extended from the image quality metric MAD [48]. First,
a spatiotemporal slice (STS) image is constructed from the
time-based slices of the reference and distorted videos. The
detailed procedure is as follows: a single column or row
of the frame is extracted for each video frame, and these
columns (or rows) are stacked from left to right (or top to
bottom) to become a STS image. Then ST-MAD estimates
motion-based distortions by using MAD’s appearance-
based model to STS images. Next, it gives larger weights to
the fast-moving regions by applying optical-flow algorithm.
Finally, it employs a combination rule to add spatial and
temporal distortions together. Experimental results show
that ST-MAD performs better than other state-of-the-art
quality metrics in LIVE Video Quality Database, espe-
cially on H.264 and MPEG-2 distorted videos. However,
MOVIE only outperforms ST-MAD for wireless distorted
videos.

To summarize these VQA models, we present a simple
comparison based on reference availability and assessment
methodology in Table 4, as well as providing comments on
strength and weakness of each metric.

C) Application in perceptual video coding
Since perceptual quality assessment is a hot topic in video
coding, we use this as an example for applications. Cur-
rently, there are two main approaches of perceptual video
coding. One is to use different IQA or VQAmetrics to mea-
sure distortions and develop the perceptual rate-distortion
model to achieve better performance in a perceptual sense.
The other one is to utilize human visual features to develop a
just noticeable distortion (JND)model for quantization step
(QP) selection, or a visual attention (VA) model in order to
find the ROI in the target video and optimize the bit allo-
cation corresponding to ROI information. A JND model
may be combined with a VA one for a more comprehensive
evaluation (to become a foveated JND model).

For the former approach, not all applications are devel-
oped to the whole codec. Some efforts [31, 106] are made to
tune the performance of encoding intra frames or made to
optimize the coding efficiency of inter frames. The others
target overall rate-distortion optimization of video cod-
ing. The algorithms are strongly bound to the codec type
because the measurement of distortion is replaced in a
perceptual fashion.

For the latter approach, the JNDmodel is used to analyze
the image features. Compared to the former method, it is
more independent of the codec type.

Use of IQA or VQA metrics
Chen et al. [42, 75] proposed rate-distortion framework
based on the SSIM index. In [42], the mode decision of
H.264 intra-frame and inter-frame coding is optimized
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Table 4. Classification of VQA models based on reference availability and assessment methodology.

VQAModel Reference availability Assessment methodology Remarks (strength and weakness)

V-SSIM FR Signal structure •Utilize different weighting strategy
for the quality scores in three levels

•Perform better than KPN/Swisscom
CT in VQEG FR-TV-I database

Speed-SSIM FR Signal structure • Incorporated a model of human
visual speed perception

•Consistent improvement in valida-
tion with the VQEG Phase I test
dataset

DVQ FR HVS model •Contrast masked differences are
pooled over spatial temporal and
chromatic dimensions to compute
a quality measure

VQM RR HVS model •Provide several quality models
•Good performance in the VQEG
Phase II validation tests, VQM was
adopted as a national standard

EPSNR FR Video fidelity •Video quality measurement based
on degradation around edges

•Outperform conventional PSNR
CVQ NR Learning-oriented •Adjust frame quality value by spatial

and temporal information
•Have higher estimation accuracy
than frame quality scores

MOVIE FR HVS model •Use optical flow estimation to adap-
tively guide spatial–temporal filter-
ing using 3D Gabor filterbanks

•Perform the best in both LIVE and
VQEG FR-TV-I databases

TetraVQM FR HVS model •Based on themotion vectors and the
motion prediction error, the appear-
ance of new image areas and the
display time of objects are evaluated

•Degradations on moving objects are
judged more exactly

V-Factor NR Packet analysis •Real-time
•Primarily used on MPEG-2 and
H.264 video streaming

MSE_TIM FR Video fidelity • Incorporate TIM into MSE and
introduce a weighting parameter to
adjust the importance between spa-
tial impairment and TIM in quality
prediction

• Improves the performance of MSE
STAQ RR HVS model •QoE is introduced as a function

related to motion activity density
group of the video to control the
pooling function

•The results are quite promising for
H.264 distorted videos

ST-MAD FR HVS model •A spatiotemporal slice (STS) image
is constructed from the time-based
slices of the reference and distorted
videos

•Give larger weights to fast-moving
regions

•Perform better than other state-
of-the-art quality metrics in LIVE
Video Quality Database, especially
on H.264 and MPEG-2 distorted
videos
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perceptually by using SSIM index. The SSIM index is
applied to replace the SSD to measure the difference
between the reference block and the reconstructed block.
Since it is hard to determine rate-distortion optimization by
the SSIM index, the proposed approach to rate-distortion
modeling provides a way to determine the Lagrange mul-
tiplier which is related to SSIM in the cost function. The
rate-distortion curve fitting is defined by two parameters
α and β which can be computed from two data points of
the key frame. By using the data, the rate-distortion curves
of subsequent frames can be estimated. For the given rate-
distortion curve, the Lagrange multiplier can be calculated
by the gradient or slope of the curve. In [75], the percep-
tual encoding scheme is based on the rate control algorithm
in [42] and extended to bit allocation. The proposed rate-
control scheme separates the coding methods of key frames
and other frames. The algorithm adopts extra quantiza-
tion parameters for key frames to update the rate-distortion
model. More precisely, the Lagrange multiplier is selected
adaptively according to the input data from key frames.

The perceptual cost function determines the target bit
budget in the frame level and the QP sizes. By combining
[42] and [75], the proposed technique is thoroughly imple-
mented to improve perceptual rate control optimization of
H.264/AVC.

In [94], a model related to the reduced reference SSIM is
developed to improve rate-distortion optimization. Instead
of DNT, the proposed algorithm extracts the frame features
from discrete cosine transform (DCT). With less comput-
ing complexity than DNT, the DCT coefficients provide
required partial information of the reference image and
lead to the estimated reduced reference SSIM index, which
is an important parameter of the proposed rate-distortion
model. The SSIM index is generated by the local SSIM index
via sliding windows. The SSIM is provided by overlapped
blocks, but the macroblocks are processed individually in
the encoder. Also, the boundaries of the macroblocks are
not continuous. To solve these issues, the macroblocks are
extended to 22 × 22 and a sliding 4 × 4 window is applied
to get the SSIM index. The reference-reduced SSIM index is
derived from the DCT coefficients. At first, the DCT coef-
ficients of 4 × 4 non-overlap blocks are calculated and then
grouped into 16 subbands. The reduced reference distor-
tion can be defined from the DCT subbands and MSE to
the reference frame. Since the measured distortion is lin-
early equivalent to the SSIM index, the reduced reference
SSIM index can be written in the form of the distortion. The
proposed algorithm tends to update the parameters of the
model in frame level and adjust the Lagrange multiplier in
macro-block level.

The SSIM index is introduced to video coding to model
the perceived distortion. Since SSIM is not a traditional
block-based distortion measurement, current video com-
pression standard can be optimized perceptually by intro-
ducing SSIM as a distortion measurement. In [42, 75], the
RD curve is parameterized to fit the SSIM RD curve; the
complexity of SSIM can be reduced and a more practical
method is proposed in [94].

Use of JND and VA models
Besides SSIM, JND is also applied to video coding algo-
rithms. The JND is measured based on sensitivity of the
HVS. With the JND, priority bit-allocation can be deter-
mined. In [29], a foveated JND model is proposed to mea-
sure distortion. Thismodel combines the spatial JNDmodel
and the temporal JNDmodel. For spatial JND, themeasure-
ment is based on the luminance of the background. If the
luminance of the background is not high enough for human
observers to recognize the targeted objects, then a larger
QP is used to encode the frame. The threshold of back-
ground luminance is not only defined by spatial features but
also considered temporal features. In the temporal model,
change of luminance across frames is the key point. In
the proposed model, inter-frame luminance change is con-
sidered as larger visibility threshold and separated in two
cases, which are high-to-low and low-to-high. The former
change results in more significant VA. The foveated JND is
integrated to the H.264/AVC encoder. The QP is adjusted
by weighting the macroblocks. If the macroblocks are per-
ceived in higher priority, they can tolerate less distortion
and preserve more bit budgets.

Itti et al. [55] developed a VA model to detect the ROI in
the video. The model is based on human visual character-
istics including color information, contrast, shape, motion,
etc. Themodel prediction generates the saliencymapwhich
is used in the bit allocation strategy. To improve the saliency
map, frame to frame information is considered to update
the salient locations of the objects. The relationships of the
object across frames are determined by the four criteria:
the Euclidean distance between the location in different
frames, the Euclidean distance between feature vectors cor-
responding to the locations, a penalty termof the differences
between frames to depress permuting pairings, and a track-
ing priority according to the intensity of the saliency to
encourage track of the salient objects. With the criteria,
the proposed algorithm can identify the salient objects and
track their locations in the map. Combing in the infor-
mation, the more significant object is assigned to higher
priority for bit allocation.

More consideration of temporal and textural
features
Motion and texture are significant features to the HVS for
videos. Video coding by considering texture and motion
can achieve good performance in a perceptual way. The
approach in [26] is based on texture and motion modeling.
The texture model employed in the algorithm is to sep-
arate perceptually relevant and non-relevant regions. The
relevant region needs more bits to encode. The temporal
(motion) model tries to improve consistency in textural
regions across frames. Texture analysis provides informa-
tion of textural regions to the encoder; the texture synthesis
is applied to the decoder to reconstruct the scene. In tex-
ture analysis, frames are divided into groups with the same
textures and the boundaries of the regions are detected.
The features extracted in this stage include gray-level co-
occurrence matrix, angular second moment, dissimilarity,
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correlation, entropy, sum of squares, and coefficients of
Gabor filters. The employed segmentation techniques are
split-and-merge method and K -means clustering. In order
to track the region from frame to frame, motion vectors
are bound to the textural regions. The temporal model is
parameterized by the motion vectors to obtain the location
of the regions in the consequent frames. In the encoder side,
only key frames and non-synthesizable parts are coded by
H.264/AVC. At the decoder, texture synthesis is designed
to construct the other parts. With the temporal informa-
tion, textures of the synthesizable frames are derived from
the key frames and segmentation information is also passed
from the encoder via the channel as side information to
reconstruct the frame at the decoder.

To guarantee temporal consistency of texture-based
video coding, a different approach was taken in [73]. The
framework is established on cube-based texture growing
method [71]. The proposed algorithm utilizes side infor-
mation, which is a coded bitstream with a larger QP of the
source video for two advantages. One is that the side infor-
mation can be generated by any coding tool hence it can be
associated to any video coding system. The other one is that
the amount of side information can be adjusted by the QP
with the result that the algorithm is flexible. To achieve the
goal, an area-adaptive side information selection scheme
that can decide the proper amount of side information is
devised. The scheme determines rate-distortion optimiza-
tion of the output coded data and side information bitrate.
The results show that the gap between the analyzed and syn-
thesized texture regions can be fulfilled and the perceptual
quality of the regions is similar. In [26], the algorithm can
significantly help to save more bits used in the side infor-
mation. For intra coding, the proposed algorithm in [73]
reconstructs the texture by the texture seed from a low-
quality video, so the side information can be reduced by
controlling the mechanism.

Naccari and Pereira [67] designed a complete perceptual
video coding algorithm covering decoding, encoding, and
testing tools. The JNDmodel generates a threshold for each
DCT subband coefficient. The adopted JND model con-
tains spatial masking and temporal masking components.
The spatialmaskingmodel is related to three properties: fre-
quency band masking, luminance variations masking, and
image pattern masking. Frequency band masking reflects
the visual sensitivity of the noise introduced in DCT coef-
ficients. Luminance variations masking reflects the change
of the luminance part in different image regions. The JND
threshold of image pattern masking varies with the thresh-
old of frequency band masking and luminance variations
masking.

The temporal masking model uses an existing model
[103] because of its performance compared to other solu-
tions. The model is established by using motion vector
information. To apply this model, the issues of B-frame
and intra frame are considered. Two motion vectors are
used in the B-frame, and only the past vector is adopted
in the model. For intra, skip motion vector is introduced
to the JND computation. In decoder side, the JND model

is employed to estimate average block luminance, integer
DCT coefficients, and JND thresholds. In encoder side,
the model is integrated into quantization, motion estima-
tion, and rate-distortion optimization. The QP for each
DCT band of a given macroblock is adjusted by the respec-
tive JND threshold. The motion estimation andthe rate-
distortion optimization processes are weighted by the JND
thresholds. The weighting process tends to weight the esti-
mation error to provide the error in a perceptual fashion.
Perceptual distortion is employed to motion estimation
and rate-distortion optimization. Thus, the cost function
of rate-distortion optimization is converted to perceptual
cost function and the Lagrangemultiplier is also changed in
the flavor. The proposed testing procedure is to assess rate-
distortion performance. The algorithm is to compare the
performance of a codec and another one based on a quality
metric.

Other attempts
Besides visual quality metrics and perceptual models, audio
information can be used to improve coding efficiency. In
practical cases, audio is bound to video, hence the audio
is also perceived by human observers synchronously. Lee
et al. [50] proposed the video coding algorithm combined
with audio information. The proposed scheme utilized the
relation of the sound source and corresponding spatial loca-
tion to gain the efficient coding with the scene that contains
multiple moving objects. The work is to find the sound
source and its region. Based on the assumption that human
observers tends to recognize the sound object as the ROI,
the corresponding region is encoded with more bits. The
implementation encoded the ROI blocks with smaller QP
relative to the non-ROI ones.

V . PERFORMANCE COMPAR ISON

We use the following three indexes to measure metric per-
formance [91, 92]. The first index is the Pearson linear cor-
relation coefficient (PLCC) between objective/subjective
scores after non-linear regression analysis. It provides an
evaluation of prediction accuracy. The second index is
the Spearman rank order correlation coefficient (SROCC)
between the objective/subjective scores. It is considered as
ameasure of predictionmonotonicity. The third index is the
root-mean-squared error (RMSE). Before computing the
first and second indexes, we need to use the logistic func-
tion and the procedure outlined in [91] to fit the objective
model scores to theMOS (orDMOS) in order to account for
quality rating compression at the extremes of the test range
and prevent the overfitting problem. The monotonic logis-
tic function used to fit the objective prediction scores to the
subjective quality scores [91] is:

f (x) = β1 − β2

1 + exp−(x−β3)/|β4| + β2, (5)

where x is the objective prediction score, f (x) is the fitted
objective score, and the parameters β j ( j = 1, 2, 3, 4) are
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Table 5. Performance comparison among
IQA models in CSIQ database.

Measure

IQA model PLCC SROCC RMSE

MS-SSIM 0.8666 0.8774 0.1310
SSIM 0.8594 0.8755 0.1342
VIF 0.9253 0.9194 0.0996
VSNR 0.8005 0.8108 0.1573
NQM 0.7422 0.7411 0.1759
PSNR-HVS 0.8231 0.8294 0.1491
IFC 0.8358 0.7671 0.1441
PSNR 0.8001 0.8057 0.1576
FSIM 0.9095 0.9242 0.1091
MAD 0.9502 0.9466 0.0818
IW-SSIM 0.9025 0.9212 0.1131
CF-MMF 0.9797 0.9755 0.0527
CD-MMF 0.9675 0.9668 0.0664

Table 6. Performance comparison among
IQA models in database.

Measure

IQA model PLCC SROCC RMSE

MS-SSIM 0.9402 0.9521 9.3038
SSIM 0.9384 0.9479 9.4439
VIF 0.9597 0.9636 7.6737
VSNR 0.9235 0.9279 10.4816
NQM 0.9128 0.9093 11.1570
PSNR-HVS 0.9134 0.9186 11.1228
IFC 0.9261 0.9259 10.3052
PSNR 0.8701 0.8756 13.4685
FSIM 0.9540 0.9634 8.1938
MAD 0.9672 0.9669 6.9419
IW-SSIM 0.9425 0.9567 9.1301
CF-MMF 0.9734 0.9732 6.2612
CD-MMF 0.9802 0.9805 5.4134

chosen tominimize the least squares error between the sub-
jective score and the fitted objective score. Initial estimates
of the parameters were chosen based on the recommen-
dation in [91]. For an ideal match between the objective
prediction scores and the subjective quality scores, PLCC =
1, SROCC = 1, and RMSE = 0.

A) Image quality metric benchmarking
To examine the performance of existing popular image
quality metrics in this work, we choose CSIQ, LIVE, and
TID2008 to test image quality metrics since they include
the largest number of distorted images and also span more
distortion types; these three databases cover most image
distortion types that other publicly available image quality
databases can provide. The performance results are listed in
Tables 5–7 with the three indexes given above. The two best
performing metrics are highlighted in bold. Clearly, MMF
(both CF-MMF and CD-MMF) [57, 59] have the highest
PLCCs, SROCCs, and the smallest RMSEs among the 13
image quality metrics under comparison.

Table 7. Performance comparison among
IQA models in TID2008 database.

Measure

IQA model PLCC SROCC RMSE

MS-SSIM 0.8389 0.8528 0.7303
SSIM 0.7715 0.7749 0.8537
VIF 0.8055 0.7496 0.7953
VSNR 0.6820 0.7046 0.9815
NQM 0.6103 0.6243 1.0631
PSNR-HVS 0.5977 0.5943 1.0759
IFC 0.7186 0.5707 0.9332
PSNR 0.5355 0.5245 1.1333
FSIM 0.8710 0.8805 0.6592
MAD 0.8306 0.8340 0.7474
IW-SSIM 0.8488 0.8559 0.7094
CF-MMF 0.9525 0.9487 0.4087
CD-MMF 0.9538 0.9463 0.4032

Table 8. Performance comparison of VQA
models in database.

Measure

VQA model PLCC SROCC RMSE

PSNR 0.5465 0.5205 9.1929
VSNR 0.6880 0.6714 7.9666
SSIM 0.5413 0.5233 9.2301
V-SSIM 0.6058 0.5924 8.7337
VQM 0.7695 0.7529 7.0111
QSVR [70] 0.7924 0.7820 6.6908
MOVIE 0.8116 0.7890 6.4130
ST-MAD [93] 0.8299 0.8242 −

Table 9. Performance comparison
of VQA models in EPFL-POLIMI

database [76].

Measure

VQA model PLCC SROCC

PSNR 0.7951 0.7983
VSNR 0.8955 0.8958
SSIM 0.8341 0.8357
VQM 0.8433 0.8375
MOVIE 0.9302 0.9203

B) Video quality metric benchmarking
For the comparison of the state-of-the-art VQMs, LIVE
Video Quality Database, and EPFL-PoliMI Video Quality
Assessment Database are adopted.

Althoughmost people useVQEG-FRTVPhase IDatabase
(built in 2000) to test their video metric performance pre-
viously [82, 99], we use LIVE Video Quality Database
(released in 2009) as our test database because it is new
and contains distortion types in more processes, such as
H.264 compression, simulated transmission of H.264 pack-
etized streams through error-prone wireless networks and
error-prone IP networks, and MPEG-2 compression. The
comparison results are summarized in Table 8. Here, the
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image quality metrics (i.e., PSNR, VSNR, and SSIM) are
used on a frame-by-frame basis for the video sequence, and
then time-averaging the frame scores to obtain the video
quality score.

In Table 8, the results of ST-MADare extracted from [93].
From Table 8, we can see that ST-MAD andMOVIE are the
best metrics (which are both highlighted in bold) for LIVE
Video Quality Database; VQM ranks the third. It means
that MOVIE and ST-MAD correlate better with subjective
results than other approaches under comparison. The rea-
son why ST-MAD and MOVIE perform well is that they
both consider the spatial and temporal features. In general,
consideration of temporal information as well as interaction
of spatial and temporal features [69] can improve the video
quality prediction performance.

In addition, we also summarize the performance results
in Table 9 from [76] to see if the existing quality metrics
can predict the quality well for videos distorted with differ-
ent PLRs. We can observe that MOVIE still works the best
compared to other metrics in Table 9 with packet loss.

V I . D ISCUSS ION ON FUTURE
TRENDS

Althoughmany visual quality assessmentmetrics have been
developed for both image and video during the past decade,
there are still great technological challenges ahead and
much space for improvement, toward effective, reliable, effi-
cient, and widely accepted replacement for MSE/PSNR,
for both standalone and embedded applications. We will
discuss the possible directions in this section.

A) PSNR or SSIM-modified metrics
PSNR has always been criticized for poor correlation with
human subjective evaluations. However, according to our
observations [57, 59], PSNR sometimes still can work very
well on some specific distortion types, such as additive
and quantization noise. Hence, a lot of metrics have been
developed or derived from PSNR, such as PSNR-HVS
[34], EPSNR [49], and SPHVSM [45]. They either incor-
porate some related HVS characteristics into PSNR or
include some experimental observations tomodify PSNR to
improve the correlation. Promising results can be achieved
in this way of modification. Among the quality metrics we
just mentioned above, only the EPSNR is developed to use
on VQA.

As a single metric, the SSIM is considered the well-
performed metric among all visual quality evaluation met-
rics, in terms of consistency. Thus, researchers in the field
have managed to transform it by changing its pooling
method or using other image features. Several examples of
the former are V-SSIM [99], Speed-SSIM [97], 3-SSIM [51],
and IW-SSIM [98], while FSIM index [108] is an example
of the latter. They are all proven quite useful in improv-
ing the quality prediction performance, especially FSIM,
which shows superior performance in several image quality
databases, including TID2008, CSIQ, LIVE, and IVC.

Building new metrics based upon more mature met-
rics (like PSNR and SSIM) is expected to continue, espe-
cially in new application scenarios (e.g., for 3D scenes,
mobile media, medical imaging, image/video retargeting,
computer graphics, and so on).

B) Multiple strategies or MMF approaches
MAD [48] and MMF [57, 59] are representatives for mul-
tiple strategies and MMF, respectively. Especially for the
latter one, appropriate fusion of existing metrics opens the
chances to build on the strength of each participating met-
ric and the resultant framework can be even usedwhen new,
good metrics emerge. More careful and in-depth investiga-
tion is needed for this topic.

Most recently, a block-based MMF (BMMF) [44]
approach is proposed on coping with IQA. The authors first
decomposed images into smaller block size. Then they clas-
sify the blocks into three types (smooth, edge, and texture).
And they also divided all the images into five different dis-
tortion groups, like in [57, 59]. Finally, only one appropriate
quality metric is selected for each block based on the dis-
tortion groups and the block types. Fusion through all the
blocks leads to the final quality score for each image. Per-
formingMMF this way helps to reduce the high complexity
caused by using multiple metrics.

C) Migration from IQA to VQA
Up to now, more research has been performed for IQA.
As mentioned before, video quality evaluation can be done
by using image quality metrics on a frame-by-frame basis,
and then averaging to obtain a final video quality score.
However, this only works well when video contents do not
have large motion in temporal domain. When there exists
a large motion, we need to find the temporal structure and
temporal features.

The most common method is to use motion estimation
to find out the motion vectors and measure the variations
in the temporal domain. One simple realization of this idea
is in [60]. The authors extended one existing IQA metric
to a VQM by considering temporal information and con-
verted it into a compensation factor to correct the video
quality score obtained in the spatial domain. There are also
other VQMs that utilize motion estimation to detect tem-
poral variations, such as Speed-SSIM [97], MOVIE [82],
TetraVQM [25], MSE_TIM [54], STAQ [24], and ST-MAD
[93]. All of the above approaches improve the correlation
between predictions and subjective quality scores more or
less. This demonstrates that the temporal variation is indeed
an important factor that we need to consider for VQA.

Another feasible method is to extend original image
quality metric into a VQM by considering three additional
processing steps: temporal channel decomposition, tempo-
ral masking, and temporal pooling. One example of this
is recently proposed in [53]. Their resultant VQM shows a
quite good performance in matching subjective scores for
LIVE Video Quality Database.
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Similarly, we can also use theMMF strategy on VQA, via
fusing the scores obtained fromall availableVQMs.Apossi-
ble problem of this approach is the high complexity because
multiple metrics and video data are involved. One solution
to realize efficient MMF for video is to pick up the best
features used in all metrics, including both spatial and tem-
poral features, instead of using all participating metrics as
they are. Moreover, this solution gives a chance to eliminate
the repetition in feature detection among different metrics,
and propermachine learning techniques will be customized
for this purpose. In addition, VA modeling [61] may play a
more active role in VQA than IQA.

D) Audiovisual quality assessment for 4G
networks
During recent years, the term quality of experience (QoE)
has been used and defined as the users’ perceived quality
of service (QoS). More often than not in multimedia appli-
cations, quality assessment has to be performed with audio
and video (images) being presented together. It is an impor-
tant but less investigated research topic, in spite of some
early work in this area [37, 38, 40].

It has been proposed that a better QoE can be achieved
when the QoS is considered both in the network and appli-
cation layers as a whole [47]. In the application layer, QoS is
affected by the factors such as resolution, frame rate, sam-
pling rate, number of channels, color, video codec type,
audio codec type, and layering strategy. The network layer
introduces impairment parameters such as packet loss, jit-
ter, network delay, burstiness, decreased throughput, etc.
These are all the key factors that affect the overall audio-
visual QoE. Hence, the investigation into the quality assess-
ment methods for both audio and video is also important
and meaningful because video chats and video conferences
over 4G networks may be frequently used by the general
public in the near future. We believe this is a significant
extension of the current research work and verymeaningful
in total multimedia experience evaluation.

Currently, there is no public database for joint audio-
visual quality and experience evaluation. The establish-
ment of such databases will facilitate research and promote
advancement in this field.

E) Perceptual image/video coding
The accuracy of IQA is becoming better and better. The
performance of perceptual image coding could be further
improved under some specific conditions. Perceptual con-
siderations can help the performance to be enhanced com-
pared to the traditional image coding. As the introduced
applications above, IQA metrics have been associated to
video coding for some time.More andmore related research
is in progress.

In general, VQA-related video compression is less inves-
tigated. Seshadrinathan and Bovik [82] addressed motion-
based video integrity evaluation (MOVIE) index to evaluate

video quality. TheMOVIE index based onGabor decompo-
sition is calculated from two components, which are Spatial
MOVIEmap andTemporalMOVIEmap. The spatial part is
established as a combination of SSIM andVIF; the temporal
part is brought by using motion information. The perfor-
mance of MOVIE shows the potential to be employed to
video coding. Nevertheless, it is challenging to be handled
in video coding because it needs to parse the whole video to
give the index. Hence, modifying VQA to low complexity
and real-time processing would be a possible goal to inte-
grate VQA to video coding. These are issues to apply VQA
to perceptual video coding.

F) No-Reference (NR) quality metrics
As we know, the NR method does not perform as well as
the FR one in general because it judges the quality solely
based on the distorted medium and without any reference
available. However, it can be used in wider scope of appli-
cations because of its suitability in both situations with
andwithout reference information.Moreover, the computa-
tional requirement is usually less because there is no need to
process the reference. In addition to the traditionalNR cases
(like the relay site and receiving end of transmission), there
are emerging NR applications (e.g., super-resolution con-
struction, image, and video retargeting/adaption, and com-
puter graphics/animation). That is the reason why several
NR quality metrics have been proposed recently, including
MREBN [30] and JNBM [36] in images, and CVQ [46] and
V-Factor [105] in videos. We believe that there will be more
quality metrics developing along this direction.

V I I . CONCLUS ION

In this paper, we have first reviewed the existing visual
quality assessment methods and their classifications in a
comprehensive perspective. Then, we introduced recent
developments in IQA, including the popular public image
quality databases that play important roles in facilitating
relevant research activities in this field and several well-
performed image quality metrics. In a similar format, we
also discussed recent developments for VQA in general, the
publicly available video quality databases and several state-
of-the-art VQA metrics. In addition, we have presented
and discussed several possible directions for future visual
signal quality assessment, i.e., PSNRor SSIM-modifiedmet-
rics, multiple strategy and MMF approaches, migration
of IQA to VQA, joint audiovisual assessment, perceptual
image/video coding, and NR quality assessment, with rea-
soning based upon our experience and understanding of the
related research. In the end, we have compared the major
existing IQA and VQAmetrics, and given some discussion,
by using the most comprehensive image and video quality
databases, respectively.

One important class of applications of visual quality
assessment is perceptual image and video coding. The per-
ceptually driven coding methods have demonstrated their
merits, compared to the traditional MSE-based coding



visual quality assessment 17

techniques. Such research takes a different path (i.e., remov-
ing perceptual signal redundancy apart from the statistical
one) to further improve coding performance and makes it
more use-oriented because humans are the ultimate appre-
ciators of almost all processed visual signals. Existing and
interesting methods include: utilizing a perceptual quality
index to measure distortion; utilizing JND and VA mod-
els in coding; integrating motion or texture information to
improve coding efficiency in a perceptual sense. We believe
that there are still a lot of possibilities for perceptual coding
and beyond, which wait to be discovered.
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APPEND IX . STANDARD SUBJECT IVE

TEST ING METHODS [20 , 23 ]

a) Pair Comparison (PC)
The method of PCs implies that the test sequences
are presented in pairs, consisting of the same
sequence being presented first through one system
under test and then through another system.

b) Absolute Category Rating (ACR)
The ACR method is a category judgment where
the test sequences are presented one at a time and
are rated independently on a discrete five-level scale
from “bad” to “excellent”. This method is also called
Single Stimulus Method.

c) Degradation Category Rating (DCR) (also
called the Double-Stimulus Impairment Scale
(DSIS))
The reference picture (sequence) and the test pic-
ture (sequence) are presented only once or twice.
The reference is always shown before the test
sequence, and neither is repeated. Subjects rate the
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amount of impairment in the test sequence on a
discrete five-level scale from “very annoying” to
“imperceptible”.

d) Double-Stimulus Continuous Quality Scale
(DSCQS)
The reference and test sequences are presented twice
in alternating fashion, in the order of the two chosen
randomly for each trial. Subjects are not informed
which one is the reference and which one is the
test sequence. They rate each of the two separately
on a continuous quality scale ranging from “bad”
to “excellent”. Analysis is based on the difference
in rating for each pair, which is calculated from an
equivalent numerical scale from 0 to 100.

e) Single-Stimulus Continuous Quality
Evaluation (SSCQE)
Instead of seeing separate short sequence pairs, sub-
jects watch a program of 20–30 minutes duration
which has been processed by the system under
test. The reference is not shown. The subjects
continuously rate the perceived quality on the con-
tinuous scale from “bad” to “excellent” using a slider.

f) Simultaneous Double-Stimulus for
Continuous Evaluation (SDSCE)
The subjects watch two sequences at the same time.
One is the reference sequence, and the other one is
the test sequence. If the format of the sequences is
the standard image format (SIF) or smaller, the two
sequences can be displayed side by side on the same
monitor; otherwise two aligned monitors should
be used. Subjects are requested to check the differ-
ences between the two sequences and to judge the
fidelity of the video by moving the slider. When the
fidelity is perfect, the slider should be at the top
of the scale range (coded 100); when the fidelity is
the worst, the slider should be at the bottom of the
scale (coded 0). Subjects are aware of which one is
the reference and they are requested to express their
opinion while they view the sequences throughout
the whole duration.
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