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Nested performance bounds and approximate
solutions for the sensor placement problem

muhammad sharif uddin1, anthony kuh1, aleksandar kavcic1 and toshihisa tanaka2

This paper considers the placement of m sensors at n > m possible locations. Given noisy observations, knowledge of the state
correlation matrix, and a mean-square error criterion (equivalently maximizing an efficacy cost criterion), the problem is for-
mulated as an integer programming problem. Computing the solution for large m and n is infeasible, requiring us to look at
approximate algorithms and bounding optimal performance. Approximate algorithms include greedy algorithms and varia-
tions based on examining the efficacy cost function and projection-based methods that all run in polynomial time of m and n.
A sequence of nested bounds are found that upper bound the optimal performance (with analysis based on using matrix pencils
and generalized eigenvectors). Finally, we show through simulations that the approximate algorithms perform well and provide
tight implementable lower bounds to optimal performance and the nested bounds provide upper bounds to optimal performance
with tighter bounds achieved with increasing complexity. The sensor placement problem has many energy applications where
we are often confronted with limited resources. Some examples include where to place environmental sensors for an area in
which there are many distributed solar photovoltaic generators and where to place grid monitors on an electrical distribution
microgrid.
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I . I NTRODUCT ION

This paperdevelops a number of tools and algorithms to
analyze the sensor placement problem. The problem is
formulated as an optimization problem where a limited
number of sensors is placed to maximize an efficacy cost
criterion. The solution involves solving an integer program-
ming problem that becomes infeasible when the number
of sensors and locations becomes large. The paper makes
two key contributions; development of set of approximation
algorithms (greedy algorithms and variations using the effi-
cacy cost and also a projection-based method) that run in
polynomial time in the number of parameters and derives
a set of analytical nested performance upper bounds to the
optimal solution based on the structure of the data corre-
lation matrix. Simulations are conducted on a number of
experiments from random correlation matrices, to a simu-
lated sensor network, to an IEEE 57- bus test system [1] that
show how tight the nested performance upper bounds are
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and that the approximation algorithms give lower bounds to
the optimal solution that are close to the optimal solution.

Data gathering, data mining, or data analytics have
become increasingly more important in a wide range of
areas from energy to health care to social networking to
business to the environment. TheNational Science Founda-
tion recently had a call for proposals on “Big Data” to study
these problems. An important part is how data are gath-
ered which in many cases require using distributed sensor
networks and monitors. In applications ranging from the
electrical power grid to the natural environment to biomed-
ical monitoring there is a need to deploy sensors to monitor
and estimate the behavior of different complex systems.
Often the number of sensors that can be deployed is lim-
ited by cost and other constraints (e.g. communication and
energy constraints of the sensors).

There has been much previous work on the optimal
placement of sensors. In Dhillon et al. [2, 3] the optimal
placement of sensors is considered where the probability of
sensor detection depends upondistancewith sensors placed
on a two- or three-dimensional grid. Other research has
considered sensor placement for the power grid by con-
sidering placement of phasor measurement units (PMUs)
[4, 5]. In their research the problem is formulated as a
state estimation problem with PMU placement depend-
ing on a key condition to make the system observable.
In [6, 7], the optimization criterion is to maximize the
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measurement redundancy while minimizing the required
number of PMUs. To solve this problem, Dua et al. [6] con-
sidered the phasing of PMUdeployment in an integer linear
programming (ILP) framework, while Chakrabarti et al. [7]
took a binary particle swarm optimization (BPSO)-based
approach. In work by Krause et al. [8] they model spa-
tial phenomena as a Gaussian Process and consider place-
ment of sensors again using optimal experimental design.
The goal is to maximize mutual information and the prob-
lem again becomes a combinatorial optimization problem
that is NP-complete. This paper also discusses a greedy
algorithm and shows that mutual information is submod-
ular and is monotonically increasing for small number of
sensors. Performance bounds are obtained for the greedy
algorithm. Simpler reduced computation algorithms and
robust algorithms are also considered. More recently in [9],
PMU placement is considered in a different context where
observability is assumed and the goal is to optimize the
experimental design using a different criterion. The solution
involves solving an integer programming problem, which
is NP-complete. However, an approximate greedy solution
is found that gives good results and runs in polynomial
time. Then the greedy algorithm is tied to submodular and
monotonic functions where bounds can be obtained to the
greedy algorithm in relationship to the optimal algorithm.
An estimation-theoretic approach to the PMU placement
problem is proposed in [10, 11]; after posing system state
estimation as a linear regression problem, a convex relax-
ation is developed to suboptimally solve the PMU place-
ment problem. In [12], the authors consider the sensor
selection problem in a wireless sensor network for event
detection, under two hypotheses – event occurring and
event not occurring. They propose the maximization of
the Kullback–Liebler and Chernoff distances between the
probability distributions of the selected sensor measure-
ments, under these hypotheses, as the optimization criteria.
After proving that this problem isNP-hard, the authors pro-
pose a greedy algorithm as a general approach to solve this
problem suboptimally.

We consider a static discrete optimization problem
where we have n discrete node locations where we can
deploy sensors and we have m sensors to place. The objec-
tive is to minimize the sum of the mean-squared error at all
node locations. This has some close ties to [8, 9] and has
applications to energy problems. Examples include place-
ment of meters such as advanced metering infrastructure
(AMI) on the distribution grid or to deploy environmental
resource sensors where distributed photovoltaic (PV) solar
panels are located.

The optimization criteria we consider is also known as
the A- optimality design of experiments maximizing the
trace of the inverse of the information matrix also con-
sidered in [8–11]. A key difference between this paper and
the others is that here we consider a variety of computa-
tionally efficient approximation algorithms for the sensor
placement problem and come up with analytical nested
lower and upper bounds (depending on the structure of
the correlation matrix) for the cost function of the optimal

sensor placement. In [9], the authors present a bound on
the optimal PMU placement problem under the assump-
tion that the reward function is submodular. Under the
submodularity assumption, the optimal solution is upper
bounded by the greedy solution factored by e/(e − 1). This
bound is usually not very tight, because it does not take the
covariance matrix structure (i.e. eigenvalues, eigenvectors,
etc.) into account. In contrast, we do not assume any sub-
modularity condition and the upper bounds are obtained
analytically in terms of the eigenvalues of the covariance
matrix. This paper significantly extends work by the authors
in [13, 14] by considering a broader array of approxima-
tion algorithms including projection-based algorithms, pre-
senting nested upper performance bounds with a complete
analysis of these bounds (based on matrix pencils, general-
ized eigenvectors, and matrix manipulations), and a more
complete set of simulation studies.

Section II gives a formulation of the problem. Since the
optimal solution is computationally difficult to obtain for
large n and m, we present some approximation solutions
and lower bounds to the optimal solution in Section III.
These include the expedient solution, greedy algorithm, and
an algorithm based on dynamic programming heuristics.
Next, in Section IV we find a family of upper bounds to the
optimal solution. In Section V, we present somemore lower
bounds based on the projections of the solution subspace
that achieved the upper bounds in Section IV. In SectionVI,
we present simulation results for randomly generated data, a
5× 5 grid model, and data generated from the IEEE 57-bus
test system [1]. Finally, Section VII summarizes results of
this paper and suggests directions for further work. In this
paper, we do not present any iterative solutions, however,
any of the approximate solutions presented can be used as a
starting point of an iterative algorithm [15].

Notation:
Upper and lower case letters denote random variables and
their realizations, respectively; underlined letters stand for
vectors; boldface upper case letters denote matrices, and I
denotes the identity matrix; 〈· , ·〉 denotes a matrix pen-
cil; (·)T and E(·) stand for transposition and expectation,
respectively.

I I . PROBLEM STATEMENT

We assume that the state vector is X ∈ R
n and the observa-

tion vector isY ∈ R
m wherem ≤ n. Sensors are all identical

and give noisy readings of the state, where the variance of
each sensor reading is σ 2. The model is described by

Y = C(X + σ N), (1)

where N is a random vector with mean 0 and covariance
matrix �N = In with In being an identity matrix of dimen-
sion n and X are random vectors with mean 0 and covari-
ance matrix �X . X and N are jointly independent. C is a
binary matrix with orthonormal rows, where each row has
one ‘1’. In otherwords,C is composed ofm rows of then× n
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identity matrix In. The positions of ones in the matrix C
denote the position of the sensors.

The linear minimum mean-squared error estimator is
given by [16]

X̂(Y) = E
(
X YT

)
E
(
Y YT

)−1
Y . (2)

The error is defined by E = X − X̂(Y) and the error covari-
ance matrix is given by [16]

E
(E ET

) = �X − E
(
X YT

)
E
(
Y YT

)−1 E
(
Y XT

)
, (3)

where

E
(
X YT

) = �XCT , (4)

and

E
(
Y YT

) = C�XCT + σ 2Im. (5)

Our task is to find the matrix C that minimizes the total
error trE

(E ET
)
.

Definition. Let C[m×n] denote the set of all m× n matrices
composed of m rows of the identity matrix In.

The optimization problem is then given by

C∗ = arg min
C∈C[m×n]

trE
(E ET

) = arg min
C∈C[m×n]

E
(ETE) . (6)

Since the first term in (3) (i.e. �X) does not depend on the
choice of matrixC, we can restate the optimization problem
as an equivalent maximization problem using the following
definition.

Definition. Let the efficacy of matrix C be defined as

J (C)
�= tr

{
E
(
X YT

)
E
(
Y YT

)−1 E
(
Y XT

)}
(7)

= tr
{[

C(�X + σ 2I)CT
]−1

C�2
XCT

}
. (8)

where the final equality follows from the properties of the
trace operator. (Note that (8) has the form of the generalized
Rayleigh quotient.)

The optimization problem (6) is then equivalent to

C∗ = arg max
C∈C[m×n]

J (C), (9)

which is an integer programming problem of choosing
m rows of the identity matrix In that maximize the effi-
cacy. The optimum solutions to (9) requires an exhaustive
search by testing all

(n
m

)
possible choices of m rows. Even

for a moderately sized n and m this becomes computa-
tionally infeasible. In fact, the sensor placement problem is
NP-complete [17].

We can further rewrite the efficacy to take advantage of
the eigenstructure of the underlying matrices.

Definition. Let C̄ denote a complement of C, with con-
straints C̄ ∈ C[(n−m)×n] and C̄CT = 0.

We perform the eigendecomposition of C�XCT =
U(C)D(C)UT

(C) where the columns of U(C) are the eigen-
vectors of C�XCT and D(C) is a diagonal matrix whose
diagonal entries are the eigenvalues of C�XCT . Let
λ(C),1, · · · , λ(C),m be the eigenvalues of C�XCT . Let the
permutation matrix P = [CT , C̄T ] and note that

C�2
XCT = C�XPPT�XCT = U(C)D

2
(C)U

T
(C)

+ C�XC̄T C̄�XCT (10)

Then combining this with (8) we have that

J (C) = tr
{
U(C)

[
D(C) + σ 2I

]−1
D2

(C)U
T
(C)

}
+ tr

{
C̄�XCT U(C)

[
D(C) + σ 2I

]−1
UT

(C)C�XC̄T
}

.

(11)

The first term in (11) is the trace of a diagonal matrix and it
contributes to the efficacy by summing the diagonal terms
λ2

(C),i/(λ(C),i + σ 2). The second term accounts for the state
correlations. It is the second term that is most difficult to
deal with when attempting to solve (9). Intuitively, we want
to pick the matrix C such that the second term contributes
considerably to the efficacy, i.e., we want to place sensors in
locations that are highly correlated to the remaining states.

We can restate (11) using inner products (i.e., correla-
tions).

Definition. Let g
i
be the vector of inner products between

the i th eigenvector in U(C) and the columns of C�XC̄T , i.e.,

g
i
= (C̄�XCT

) (
U(C)e

T
i

)
, (12)

where ei is the i th unit row vector and
(
U(C)eT

i

)
is the i th

eigenvector in U(C).

The efficacy in (11) now takes the form

J (C) =
m∑

i=1

λ2
(C),i

λ(C),i + σ 2
+

m∑
i=1

g T
i

g
i

λ(C),i + σ 2
. (13)

We can readily interpret the second term in (13) as the con-
tribution of the energy in the correlations (between sensor
readings and the remaining states) to the efficacy. Clearly,
we would like to find a matrix C, so that the eigenvalues are
large and themeasurements aremaximally correlated to the
remaining states.

Problem (9) is an integer-programming problem of
choosing m rows of the identity matrix In that maximize
the efficacy in (13). This can be solved by an exhaustive
search requiring testing all

(n
m

)
possible choices of m rows.

Even for amoderately sized n andm this becomes computa-
tionally infeasible. The sensor placement problem is in fact
NP-complete [17]. Section III gives computationally feasible
approximation algorithms to solve (9) and Section IV gives
upper bounds to maximum efficacy in (9).
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I I I . E FF ICACY -BASED
APPROX IMATE SOLUT IONS

Since the optimization in (9) is difficult to perform, we
resort to approximate solutions. Each approximate solu-
tion is in fact an ad hoc solution because the exact solution
requires an exhaustive search. If C is an ad hoc solution to
(9), then it provides a lower bound on the optimal efficacy
J (C∗), i.e. J (C) ≤ J (C∗). Therefore, the search for good
(suboptimal) solutions to (9) is equivalent to constructing
tight lower bounds on J (C∗). Here we consider approx-
imate solutions to the optimization problem requiring a
much lower search complexity thanO ((n

m

))
.

A) Expedient solution
This is a trivial approximate solution to consider. Let J (ek)

be the efficacy of the kth unit row vector, i.e., the efficacy
of the sensor placed at the location of the kth state variable
when m = 1. Then using (8) we have

J (ek) =
n∑

i=1

(
ek �X eT

i

)2
ek �X eT

k + σ 2
. (14)

We rank the vectors ek in descending order of their effi-
cacies J (ek). For any arbitrary m, we pick the m highest
ranked vectors ek and stack them to be the rows of the
approximate solution CE . Clearly we have J (CE ) ≤ J (C∗).

Since this algorithm requires sorting and picking m
highest ranked vectors ek , it has search complexity at
most O(n log n). Thus, this algorithm finds an approxi-
mate solution very fast. Hence, the solution obtained by this
algorithm can be used as a good starting point of an iterative
algorithm [15].

B) Greedy solution
A greedy algorithm obtains an approximate solution to
(9) by making a sequence of choices [18]. At each step t,
it assumes that t sensor locations are fixed, and makes a
greedy choice where to place the (t + 1)-st sensor. Let CG

denote the solution provided by the greedy algorithm. The
algorithm can be described by the following.

Greedy Algorithm [18]

1. Initialization: Set iteration t = 1 and choose Ct = e∗

such that e∗ = arg maxe∈C[1×n] J (e) .

2. Find e∗ = arg maxe∈C[1×n]

: Ct eT=0

J

([
Ct

e

])
.

3. Set Ct+1 =
[
Ct

e∗

]
.

4. Increment: t ← t + 1.
5. If t = m set CG = Ct and stop, else go to 2. �

Note that the greedy solution may not be optimal even
for m = 2, but it has search complexity O(mn) which is
much smaller than O ((n

m

))
required to find the optimal

solution C∗.

C) n-path greedy solution
We propose the n-path greedy method to compute n candi-
date solutions where each candidate solution is attained by
starting the greedy algorithmusing each of the unit row vec-
tors ek , where k = 1, . . . , n. Let C(k)

m denote the candidate
solution when the greedy algorithm is initiated with vector
ek . Finally, we choose the n-path greedy solution CnG to be
the best of the n-different candidate solutions.

CnG = arg max
C∈
{
C(1)

m ,C(2)
m ,··· ,C(n)

m

} J (C). (15)

The n-path greedy algorithm runs in polynomial time.
It has search complexity O(mn2), which is larger than the
O(mn) search complexity of the plain greedy algorithm in
Section III.B, but the n-path greedy algorithmperforms bet-
ter than the plain greedy algorithm, thus giving a tighter
lower bound J (CnG ) on the optimal efficacy J (C∗), i.e.
J (CG ) ≤ J (CnG ) ≤ J (C∗).1

D) Backtraced n-path solution
We now propose a backtraced version of the n-path greedy
algorithm to solve the optimization problem (9). This
algorithm solves optimization problem (9) by dividing the
problem into smaller subproblems, which is similar to the
heuristics of the dynamic programming algorithm [18, 19].
However, the sensor placement problem does not have the
optimal substructure property. Thus, the backtraced n-path
solution is not optimal in general. In this algorithm, we use
a bottom-up approach to rank the subproblems in terms of
their problem sizes, smallest first. We save the intermediate
solutions of the subproblems in a table and later use them
to solve larger subproblems. For our optimization problem,
we define a subproblem of size (number of sensors) t as
finding the best candidate solution of size t − 1 for a newly
added sensor in a fixed location. Therefore, for any arbitrary
number of sensors t, we have n subproblems of size t. Let
C( j)

t be the solution to a subproblem of size t, where t ∈
{1, 2, . . . , m} is the number of sensors and j ∈ {1, 2, . . . , n}
is the index of the subproblem. In short, the goal of the back-
traced algorithm is to append the best existing solutionC( j)

t−1
to a fixed ek and thus construct a solution for a subproblem
of size t.

Let CBT denote the approximate solution to (9) com-
puted by the backtraced n-path algorithm, in terms of the
solutions of the subproblems as

CBT = arg max
C∈
{
C(1)

m ,C(2)
m ,··· ,C(n)

m

} J (C) , (16)

1Further improvement on the performance of the n-path greedy
algorithmmay be possible by considering a larger initial search space, such
as O(nk), so that the locations of the first k sensors are guaranteed to be
optimal. However, this comes at the cost of increased search complexity of
O(mnk+1). Usually, there is no or only marginal performance gain since
the n-path greedy solution often performs close or identical to the optimal
solution.
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where
{
C(1)

m , C(2)
m , . . . , C(n)

m

}
is the set of the solutions to

the subproblems of size m. The following procedure imple-
ments the backtraced n-path algorithm.

Backtraced n-path Algorithm

1. Initialization: Set iteration t = 1 and initial matrices
C(1)

1 = e1, C
(2)
1 = e2, . . . , C(n)

1 = en.
2. Set k← 1.

3. Find j ∗ = arg max j :C( j)
t eT

k =0 J

([
C( j)

t

ek

])
.

4. C(k)
t+1 =

[
C( j∗)

t

ek

]
.

5. k← k + 1.
6. If k = n, continue to step 7, else go to step 3.
7. t ← t + 1.
8. If t = m, set CD P = arg max

C∈
{
C(1)

t ,··· ,C(n)
t

} J (C) and

stop, else go to 2.

The backtraced version has the same search complex-
ity O(mn2) as the n-path greedy algorithm, and performs
better than the plain greedy approximation, i.e., J (CG ) ≤
J (CBT ) ≤ J (C∗). However, we cannot provide an a priori
comparison between J (CnG ) and J (CBT )without explicitly
computing both values.

I V . UPPER BOUNDS ON THE
OPT IMAL EFF ICACY

It is clear from the previous section that there exist numer-
ous ways of obtaining a lower bound on the optimal efficacy
J (C∗). However, to evaluate the performance of these lower
bounds we want to obtain a numerically computable upper
bound for the difference J (C∗)− J (C). One way to achieve
this goal is to find a numerically computable upper bound,
say J̄ , on the optimal J (C∗) such that

J (C∗)− J (C) ≤ J̄ − J (C). (17)

Hence, we devote this section to finding a family of upper
bounds J̄ k on the optimal efficacy J (C∗) by relaxing con-
ditions on C. In Section IV.A we present some definitions,
which describe the relaxation of the optimization con-
straints for problem (9).Next, Section IV.B gives the canonic
theorems used to calculate the family of upper bounds.
Specifically, in Lemma B, we devise a method of calculating
a family of upper bounds if the optimal solution is available
for some k ≤ m. Finally, in Section IV.C, we show that these
bounds are nested and can be calculated in terms of the gen-
eralized eigenvalues of matrix pencils, using Theorem 1 and
Lemma B.

A) Definitions
To develop a family of upper bounds on the optimal efficacy,
we generalize the reward function (efficacy), and general-
ize the optimization problem and its constraints. Instead of
considering two matrices �2

X and �X + σ 2I, in this section
we consider a general matrix pencil 〈A, B〉, where A and

B do not necessarily equal �2
X and �X + σ 2I, respectively.

Next, instead of considering a matrix C whose entries take
values in the set {0, 1}, in this section we consider a gener-
alized matrix F whose entries take values in R. Finally, we
introduce a modified optimization problem (different from
the one in Section II) that leads to the upper bounds. The
following definitions set the stage.

Definition. For two n× n matrices A and B, we define
the efficacy of a matrix C, with respect to the matrix pencil
〈A, B〉, as

J 〈A, B〉(C)
�= tr

{(
CBCT

)−1
CACT

}
, (18)

[should the inverse (CBCT )−1 exist].

Definition. For m ≤ n, let F [m×n] be the set of all m× n
matrices with rank m.

Definition. We define F∗〈A, B〉 to be the argument that solves
the following optimization problem:

F∗〈A, B〉
�= arg max

F∈F [m×n]

J 〈A, B〉(F) (19)

= arg max
F∈F [m×n]

tr
{(

FBFT
)−1

FAFT
}

. (20)

Definition. We define J ∗〈A, B〉 as the solution to the optimiza-
tion problem in (19).

J ∗〈A, B〉
�= max

F∈F [m×n]
J 〈A, B〉(F) = J 〈A, B〉

(
F∗〈A, B〉

)
. (21)

B) Canonic theorem
If A and B are n× n symmetric matrices, there exist
n generalized eigenvectors v1, v2, . . . , vn, with correspond-
ing generalized eigenvalues δ1, δ2, . . . , δn such that Av j =
δ j Bv j . [Note: δ1, δ2, . . . , δn need not be distinct.] We
arrange the generalized eigenvalues as the diagonal ele-
ments of a diagonal matrix D,

D
�=

⎡
⎢⎣

δ1 0
. . .

0 δn

⎤
⎥⎦ , (22)

and we arrange the generalized eigenvectors as the columns
of a matrix V,

V
�= [v1 · · · vn

]
. (23)

Lemma A. If A and B are symmetric n× n matrices and B
is positive definite, then

VT BV = I, (24)

and
VT AV = D. (25)

Proof : See in [20]. �
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Theorem 1. Let A and B be symmetric and B be positive
definite, and let D and V denote the generalized eigenvalue
matrix and generalized eigenvectormatrix as in (22) and (23),
respectively. If the eigenvalues are ordered as δ1 ≥ δ2 ≥ · · · ≥
δn ≥ 0, then

J ∗〈A, B〉 = tr
{[

Im 0
]

D
[
Im 0

]T} = m∑
j=1

δ j , (26)

and

F∗〈A, B〉 =
[
Im 0

]
VT = [v1 · · · vm

]T
. (27)

[Note: The solution F∗〈A, B〉 in (27) is not unique.]

Proof : [21] provides a proof for this theorem.Weprovide
an alternative proof using Lemma A in Appendix A. �

Remark 1. If A = �2
X and B = �X + σ 2I, and λ1 ≥ · · · ≥

λn ≥ 0 are the eigenvalues of�X , then the generalized eigen-
values of the pencil

〈
�2

X , �X + σ 2I
〉
are

δ j =
λ2

j

λ j + σ 2
. (28)

Thus, using Theorem 1 we can write

J ∗〈
�2

X , �X+σ 2I
〉 =

m∑
j=1

λ2
j

λ j + σ 2
. (29)

Theorem 1 provides an upper bound for the optimal effi-
cacy J 〈A, B〉(C∗) in terms of the generalized eigenvalues of
the pencil 〈A, B〉. We now devise a method to calculate a
family of upper bounds for the optimal efficacy when the
optimal solution is available for some k ≤ m. These upper
bounds get tighter as k increases. To develop a family of
upper bounds, we find it useful to solve a series of modi-
fied efficacymaximization problems for all k ≤ m. The next
definition addresses the modified efficacy maximization
problem.

Definition. For any k ≤ m, we define F(k)∗
〈A, B〉 and J (k)∗

〈A, B〉 as
the solution pair of the following modified efficacy maximiza-
tion:

F(k)∗
〈A, B〉

�= arg max
F∈F [(m−k)×(n−k)]

J 〈A, B〉

([
Ik 0
0 F

])
, (30)

and

J (k)∗
〈A, B〉

�= max
F∈F [(m−k)×(n−k)]

J 〈A, B〉

([
Ik 0
0 F

])
(31)

= J 〈A, B〉

([
Ik 0
0 F(k)∗

〈A, B〉

])
. (32)

In order to solve the modified efficacy maximization
problem in (30)–(31), it is convenient to split the efficacy

J 〈A, B〉

([
Ik 0
0 F

])

into two terms such that

(i) the first term does not depend on F, and
(ii) the second term equals the efficacy of F with respect to

a modified pencil of lower dimensions.

We formulate the split in the following lemma.

Lemma B. In the optimization problem (31), the efficacy can
be expressed as

J 〈A, B〉

([
Ik 0
0 F

])
= tk + J 〈Ak , Bk〉(F), (33)

where the additive term tk and the modified pencil 〈Ak , Bk〉
satisfy

tk = tr

{
A

[
P−1

k 0
0 0

]}
, (34)

Ak =
[
P−1

k Qk

−In−k

]T

A

[
P−1

k Qk

−In−k

]
, (35)

Bk = Rk −QT
k P−1

k Qk , (36)

Pk =
[
Ik

0

]T

B

[
Ik

0

]
, (37)

Qk =
[
Ik

0

]T

B

[
0

In−k

]
, (38)

Rk =
[

0
In−k

]T

B

[
0

In−k

]
. (39)

Proof : See Appendix B. �

LemmaBnow lets us express the solution of themodified
optimization problem (30)–(31) equivalently as the solution
of a regular efficacy maximization (i.e. using Theorem 1),
but for a modified matrix pencil. Hence, we have the fol-
lowing corollary of Theorem 1:

Corollary 1.1.

F(k)∗
〈A, B〉 = F∗〈Ak , Bk〉, (40)

and

J (k)∗
〈A, B〉 = tk + J ∗〈Ak , Bk〉. (41)

Proof : In (33), tk does not depend on F. Therefore, (40)
and (41) hold. �

Remark 2.

J (0)∗
〈A, B〉 = J ∗〈A, B〉. (42)

Remark 3.

J (m)∗
〈A, B〉 = tm. (43)

From Corollary 1.1, we observe that the nested bounds
are calculated in terms of the generalized eigenvalues of a
matrix pencil with smaller dimensions.
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C) Nested bounds
We dedicate this section to applying the upper bounds,
obtained for the modified optimization problem in
Section IV.B, to the optimization problem defined in
Section II. We obtain these nested upper bounds assuming
that the optimal solution to (9) is calculable for any k ≤ m.
We define the nested upper bounds J̄ k as follows.

Definition.

J̄ k
�= max

C∈C[k×n]

⎧⎨
⎩ max

F∈F [(m−k)×n]

FCT=0

J 〈
�2

X , �X+σ 2I
〉
([

C
F

])⎫⎬
⎭ . (44)

From Remark 2, we clearly see that J̄ 0 ≥ J (C∗). We next
show that J̄ k ≥ J (C∗) for any k ≤ m.

Theorem 2. For any k ≤ m,

J̄ k ≥ J
(
C∗
)

. (45)

Proof :

J (C∗) = max
C∈C[m×n]

J (C) (46)

= max
C1∈C[k×n]

max
C2∈C[(m−k)×n]

C2CT
1 =0

J

([
C1

C2

])
(47)

≤ max
C1∈C[k×n]

max
F∈F [(m−k)×n]

FCT
1 =0

J

([
C1

F

])
(48)

= J̄ k , (49)

where the inequality follows from the set relationship
C[(m−k)×n] ⊂ F [(m−k)×n]. �

Remark 4. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of
�X . Then, for k = 0,

J̄ 0 = J ∗〈
�2

X , �X+σ 2I
〉 =

m∑
j=1

λ2
j

λ j + σ 2
. (50)

Remark 5. When k = m,

J̄m = J(C∗) (51)

We now show that the upper bounds are nested.

Theorem 3. For any k ≤ m− 1,

J̄ k ≥ J̄ k+1. (52)

Proof :

J̄ k+1 = max
C∈C[(k+1)×n]

max
F∈F [(m−k−1)×n]

FCT=0

J

([
C
F

])
(53)

= max
C1∈C[k×n]

max
e∈C[1×n]

C1eT=0

max
F∈F [(m−k−1)×n]

FCT
1 =0

FeT=0

J

⎛
⎜⎝
⎡
⎢⎣

C1

e

F

⎤
⎥⎦
⎞
⎟⎠ (54)

≤ max
C1∈C[k×n]

max
f ∈F [1×n]

C1 f T=0

max
F∈F [(m−k−1)×n]

FCT
1 =0

F f T=0

J

⎛
⎜⎝
⎡
⎢⎣

C1

f

F

⎤
⎥⎦
⎞
⎟⎠ (55)

= max
C1∈C[k×n]

max
F1∈F [(m−k)×n]

F1CT
1 =0

J

([
C1

F1

])
(56)

= J̄ k , (57)

where the inequality is the consequence of the relationship
C[1×n] ⊂ F [1×n]. �

Corollary 3.1.

m∑
j=1

λ2
j

λ j + σ 2
= J̄ 0 ≥ J̄ 1 ≥ · · · ≥ J̄m = J(C∗). (58)

Proof : Combine (50)–(52). �

We next want to utilize Theorem 1 (more specifically,
Corollary 1.1) to efficiently compute the upper bounds J̄ k .
To that end, we define the matrix pencil

〈
A(C), B(C)

〉
as a

permutation of the matrix pencil
〈
�2

X , �X + σ 2I
〉
.

Definition. Let C̄ denote a complement of C, with con-
straints C̄ ∈ C[(n−m)×n] and C̄CT = 0.

Definition. We define

A(C) =
[
C
C̄

]
�2

X

[
C
C̄

]T

, (59)

and

B(C) =
[
C
C̄

] (
�X + σ 2I

) [C
C̄

]T

. (60)

Combining Theorem 1 and Lemma B, we now reformulate
the upper bounds J̄ k , so that the bounds can be calculated
in terms of the generalized eigenvalues of a matrix pencil of
smaller dimensions.

Corollary 3.2.

J̄ k = max
C∈C[k×n]

J (k)∗
〈A(C) , B(C)〉. (61)
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Proof : Let F ∈ F [(m−k)×(n−k)] and let F1 = FC̄, for any
C ∈ C[k×n]. Then, from (18), (59), and (60), it follows that

J〈A(C) , B(C)〉
([

Ik 0
0 F

])
= J 〈

�2
X , �X+σ 2I

〉
([

C
F1

])
. (62)

Since rank(F1) = rank(F) = m− k, and F1CT = 0, using
(31), (44), and (62) we can write

J̄ k = max
C∈C[k×n]

max
F1∈F [(m−k)×n]

F1CT=0

J 〈
�2

X , �X+σ 2I
〉
([

C
F1

])
(63)

= max
C∈C[k×n]

max
F∈F [(m−k)×(n−k)]

J〈A(C) , B(C)〉
([

Ik 0
0 F

])
(64)

= max
C∈C[k×n]

J (k)∗
〈A(C) , B(C)〉. (65)

�

For any k ≤ m, the computation of the upper bound J̄ k

requires searching over all
(n

k

)
matrices C ∈ C[k×n]. There-

fore, computation of J̄ k has search complexityO ((nk)).
V . PROJECT ION -BASED
APPROX IMATE SOLUT IONS

In the previous section, we obtained the subspace that max-
imizes the modified optimization problem (20) under the
constraint F ∈ F [m×n]. The rows of the solution F∗, i.e.
vT

1 , . . . , vT
m form a (not necessarily orthogonal) basis of the

maximizing subspace. However, the solution subspace of
the original optimization problem (18) has unit row vectors
as its basis. Hence, we may adopt the approximate solution
strategy that finds the best subspace spanned by unit vec-
tors using a projection approach. That is, we project n unit
row vectors2 onto the subspace F∗ to find good choices for
m rows of C (sensor locations).

So, instead of utilizing the efficacy as our reward func-
tion, here we utilize the norm of the projection as the
reward function. Thereby, similar to the approaches taken
in Section III, wemay nowdevelop several projection-based
approximate solutions (the expedient, greedy, and n-path
greedy) that have varying search complexities.

A) Expedient projection-based solution
This is a single shot solution. Let z(ek) be the norm of the
projection of the vector ek onto the subspace spanned by F∗

z(ek)
�=
∥∥∥∥F∗T (F∗F∗T)−1

F∗eT
k

∥∥∥∥ . (66)

We rank the vectors ek in descending order of z(ek). For
anym ≤ n, the approximate solutionCE-proj is constructed
by picking the m highest ranked vectors ek as rows of
CE-proj . The projection based expedient solution has the

2The projection of a unit row vector ek on the subspace F is given by
FT
(
FFT

)−1
FeT

k .

same search complexity as the efficacy-based expedient
solution, i.e.O(n log n). Owing to their low search complex-
ity, both are extremely good candidates for a solution when
a quick first-order approximation is needed, e.g., such when
starting an iterative refinement algorithm [15]. A direct
comparison of the efficacy-based expedient solutionCE and
the projection-based expedient solution CE-proj cannot be
made a priori, but must be done on a case by case basis.

B) Greedy projection-based solution
From Corollary 3.2 and Lemma B, we know that for any
lower order k < m, an optimal low-order matrix F (achiev-
ing the upper bound J̄ k) consists of the generalized eigen-
vectors of a lower-dimension pencil 〈Ak , Bk〉 given by (35)
and (36). Assuming that the generalized eigenvalues of
〈Ak , Bk〉 are sorted in descending order, the matrix that
upper bounds the efficacy is given by (27) as F∗〈Ak , Bk〉 =[
Im−k+1 0

]
VT
〈Ak , Bk〉, where VT

〈Ak , Bk〉 is the generalized
eigenvector matrix of 〈Ak , Bk〉. The greedy algorithm takes
advantage of this property. In each iteration k < m, we
assume that the solution is known for k sensors, and we
pick the (k + 1)-st sensor location as the unit row vector
e that has the highest norm when projected onto the sub-
space spanned by F∗〈Ak , Bk〉.

Greedy Algorithm [18]

1. Initialization: Set iteration k = 1, Ck−1 = [], and calcu-
late A(Ck−1) and B(Ck−1) using (59) and (60), respectively.

2. Find Ak , Bk using (35) and (36).
3. Set F = [Im−k+1 0

]
VT
〈Ak , Bk〉.

4. Find e∗ = arg maxe∈C[1×(n−k+1)]

∥∥∥FT
(
FFT

)−1
FeT
∥∥∥.

5. Set Ck =
[

Ck−1

e∗C̄k−1

]
.

6. If k = m, set CG-proj = Ck and stop, else set k← k + 1
and go to step 2.

The projection-based greedy algorithm has search com-
plexityO(mn).

C) n-path greedy projection-based solution
In the projection-based n-path greedy algorithm,
n candidate solutions are constructed by initializing the
projection-based greedy algorithm with each of n unit row
vectors ek . The best of the n candidate solutions is picked
as the approximate solution. The projection-based n-path
greedy algorithm runs in polynomial timewith search com-
plexityO(mn2).

V I . S IMULAT ION RESULTS

We considered different test scenarios to evaluate the per-
formances of the approximate solutions and the nested fam-
ily of upper bounds J̄ k (for k = 0–5). In Section VI.A we
considered realizations of the covariance matrix �X gener-
ated at random for different system sizes n = 20, and 50.
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Fig. 1. n = 20: average efficacies of approximate solutions and the upper bound
J(F∗) compared to the average optimal efficacy J(C∗).

Next in Section VI.B we created a 5× 5 grid with unit dis-
tance between neighboring points, i.e. each point is located
at unit distance from its horizontal and vertical neighbors.
We generated a covariance matrix using a Gaussian distri-
bution, where the variance between the points, considered
as vectors x1 and x2 is given by [8]:
∑

(x1, x2) = exp

(
−β
∥∥x1 − x2

∥∥2
2

/
(2π)

)
, (67)

where β > 0. Finally, we used the standard IEEE 57 bus test
system [1] in Section VI.C to show the performances of our
proposed algorithms.

A) Simulations with data generated at random
First, we consider the case where n = 20. We generated 100
realizations of the correlationmatrix�X at random; σ 2 was
kept constant for all realizations of �X . We compared the
efficacies of the expedient, optimal, greedy, n-path greedy,
and backtraced n-path solutions and the upper bounds for
each of the 100 realizations.

Figure 1 shows the average efficacies and the upper
bounds, averaged over 100 realizations. From Fig. 1 we note
that both efficacy-based expedient solution and projection-
based expedient solution get reasonably close to the opti-
mal solution for each value of m. In this scenario, the
projection-based expedient solution performs better than
the efficacy-based one. However, the efficacy-based greedy
solution performs better than the projection-based greedy
solution. The projection-based n-path greedy does better
than the efficacy-based greedy, but does worse than the
efficacy-based n-path greedy and backtraced n-path solu-
tion. Also the upper bound J (F∗) = J̄ 0 is not tight, but the
nested bounds J̄ k become tighter as k increases.

We then considered the case for n = 50. For this case, we
could not compute the optimal solution because of the pro-
hibitive complexity when n = 50. In Fig. 2, we observe that
the projection-based expedient algorithm performs better
than the efficacy-based expedient algorithm for some values
of m, whereas the latter performs better for other values of

Fig. 2. n = 50: average efficacies of approximate solutions and the upper bound
J(F∗).

Table 1. Average runtime of proposed algorithms.

Average Runtime
Algorithms (sec)

n = 20, n = 50,
m = 10 m = 25

Efficacy based Expedient 0.0003 0.0005
Greedy 0.008 0.15
n-path greedy 0.22 10.93
Backtraced n-path 0.25 12.76

Projection based Expedient 0.0003 0.001
Greedy 0.01 0.13
n-path Greedy 0.2 6.21

m. We also observe that the projection-based n-path greedy
algorithm does not always perform better than the efficacy-
based greedy algorithm. Therefore, we cannot make an a
priori comparison between these algorithms. However, we
note that the efficacy-based n-path greedy solution and the
backtraced n-path solution perform better than the rest of
the algorithms. The upper bound in this case is not tight.
Table 1 shows a comparison of average execution time of dif-
ferent proposed algorithms on an Intel Core i3 @ 2.10GHz
machine with 4GB RAM. From the table, we observe that
the projection-based algorithms have similar average run-
time as the efficacy-based algorithms.

B) 5× 5 grid model
Next, we apply the proposed algorithms to a 5× 5 grid
model where the variance between two points is given in
(67). We increased the parameter β from 0.5 to 8.0 in
three steps to evaluate the solutions. From Figs. 3–5, we
observe that the projection-based expedient solution is not
always monotonically increasing. Since the dimension of
the upper bounding subspace F∗ increases asm is increased,
the dimension of the subspace closest to F∗ also increases.
As a result the solution subspace for (m+ 1) sensors does
not always contain the solution subspace for m sensors.
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Fig. 3. β = 0.5: efficacies of approximate solutions and the upper bound J(F∗)
compared to the optimal efficacy J(C∗).

Fig. 4. β = 2.0: efficacies of approximate solutions and the upper bound J(F∗)
compared to the optimal efficacy J(C∗).

Thus, the efficacy obtained by projection-based expedient
algorithm is not always monotonic with increasing m.

We also note that the projection-based greedy and the
n-path greedy algorithm perform better than the efficacy-
based expedient solution, but perform worse than the
efficacy-based greedy solution in Fig. 3. But the projection-
base n-path greedy performs better than efficacy-based
greedy solution in Fig. 4, and performs as good as the
efficacy-based n-path greedy and backtraced solutions in
Fig. 5. The efficacy-based n-path greedy solution and the
backtraced n-path solution are almost indistinguishable
from the optimal solution in Figs. 3 and 4. In Fig. 5, the back-
traced algorithm performs slightly worse than the efficacy-
based n-path greedy algorithm. The family of upper bounds
from Section IV is not tight in Figs. 3–5. However, the
bounds get tighter as β increases.

C) IEEE 57-bus test system
Wenext apply the proposed sensor placement algorithms to
the IEEE 57-bus test system [1]. Traditional state estimators

Fig. 5. β = 8.0: Efficacies of approximate solutions and the upper bound J(F∗)
compared to the optimal efficacy J(C∗).

Fig. 6. IEEE 57-bus test case (voltage magnitudes): efficacies of approximate
solutions and the upper bound J(F∗).

(SE) in the power grid utilize the redundant measurements
taken by supervisory control and data acquisition (SCADA)
systems, and the states are estimated using iterative algo-
rithms [22]. With the advent of phasor technology, time
synchronized measurements can be obtained using PMUs.
The PMUs can directly measure the states at the PMU-
installed buses, and the states of all the connected buses
(given enough channels are available) [23]. Thus, the mea-
surement model (1) can be used as the PMU measurement
model for the state estimation problem in the power grid.
The storage and computational costs of the SE approaches
may be further reduced by assuming the voltage magni-
tudes and phase angles are independent [24, 25]. Thus, we
consider two independent measurement models for PMU
placement, one for voltage magnitudes and the other for
phase angles. For simulation purposes, without loss of gen-
erality, we assume that the conventional measurements of
the test bus system are available to us. We further assume
that a sensor is always placed at the swing bus [23] and
therefore, the swing bus is not considered in our sensor
placement algorithms.
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Fig. 7. IEEE 57-bus test case (phase angles): efficacies of approximate solutions
and the upper bound J(F∗).

For each measurement model, we construct the sample
covariance matrix�X by running traditional SE algorithms
1000 times. We used the iterative state estimator based on
non-linear AC power flow equations in the MATPOWER
software package [26] for this purpose. Since the measure-
ment noise in the traditional state estimator is Gaussian,
the estimated state vectors are also Gaussian [9]. In the
state estimation process, the standard deviations for volt-
age magnitudes, bus power injections, and line power flows
measurements are 0.01, 0.015, and 0.02, respectively, in
accordance with the setups in [26]. The simulations results
of our proposed algorithms and nested bounds for voltage
magnitude measurement model and phase angle measure-
ment model are shown in Figs. 6 and 7, respectively. Again
due to the size of the system, the exhaustive search for opti-
mal solution was not possible. But it is observed that, for
both measurement models, all of the proposed solutions
perform very close to each other.

V I I . SUMMARY AND FURTHER
D IRECT IONS

This paper considers the optimal placement of m sensors
among n locations. The optimal solution involves solving
an integer-programming problem and is NP-complete [17].
We came up with a series of approximation algorithms,
including a greedy algorithm and a dynamic programming-
based algorithm, and their variations that have polynomial
complexities. Through simulations we verified that their
performances are close to the optimal solution. To fur-
ther understand the performance of the optimal solution
we come up with a series of nested upper bounds (using
matrix pencils, generalized eigenvectors, andmatrixmanip-
ulations) that give tighter upper bounds at increasing com-
plexity. From these nested upper bounds,we found anew set
of approximation algorithms that are based on finding pro-
jections of unit binary vectors on the subspace generated by
the nested upper bounds.

There are many further directions for this research. We
would like to come up with tighter upper bounds for the

optimal performance. Through simulations we showed that
many of the approximation algorithms perform quite well
when compared to the optimal algorithm. It would be inter-
esting to come up with tighter theoretical bounds. Algo-
rithms can also be considered when there are additional
constraints to the problem (e.g., sensors are not allowed
at certain locations), for incremental cases (e.g., want to
add some sensors given some sensors have already been
placed, which is a generalization of the greedy algorithm),
and for dynamic state estimation problems (important for
state estimation for the electrical power grid).

In the simulation section, we had an example for an
IEEE 57-bus test system. Approximation algorithms per-
form well and we could apply these algorithms for place-
ment of meters at the distribution level for microgrid state
estimation problems. The microgrid has specific local and
hierarchical correlations that can be represented by graphs
that for the most part are radial. In these cases, perhaps dis-
tributed algorithms (such as belief propagation) can be used
to find good approximate solutions to the sensor placement
problem.
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APPEND IX A : PROOF OF
THEOREM 1

Proof : Using (18), for any F ∈ F [m×n], we have

J 〈A, B〉(F) = tr
{[

FBFT
]−1

FAFT
}

. (A.1)

Let
G = FBFT . (A.2)

Since G is symmetric positive definite, there exists an m×
m invertible matrix G1/2 such that

G = G1/2GT/2. (A.3)

Define M of size m× n as

M = G−1/2FV−T . (A.4)

Combining Lemma A with (A.3)–(A.4) we have

MMT = Im. (A.5)

Further applying Lemma A and (A.2)–(A.4), the efficacy
now reads

J 〈A, B〉(F) = tr
[
G−1FAFT

]
(A.6)

= tr
[
G−1FV−T DV−1FT

]
(A.7)

= tr
[
G−1G1/2MDMT GT/2

]
(A.8)

= tr
[
MDMT

]
. (A.9)
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Under the constraint (A.5), the efficacy in (A.6) is maxi-
mized when M consists of the m eigenvectors of D that cor-
respond to the m highest eigenvalues. Since D is diagonal,
eigenvectors of D are the natural basis vectors. Therefore,

M∗ = [Im 0
]

. (A.10)

Thus, by substituting (A.10) into (A.6), the optimal efficacy
J ∗〈A, B〉 becomes

J ∗〈A, B〉 = tr
{[

Im 0
]

D
[
Im 0

]T} = m∑
j=1

δ j . (A.11)

Now set F = M∗VT = [Im 0
]

VT , and verify (using
Lemma A) that this choice of F has efficacy J 〈A, B〉(F) that
equals to the maximal efficacy in (A.11) . Consequently, the
optimal argument must equal

F∗〈A, B〉 =
[
Im 0

]
VT = [v1 · · · vm

]T
. (A.12)

�

APPEND IX B : PROOF OF
LEMMA B

Proof : For any F ∈ F [(m−k)×(n−k)], using (18) we express
the efficacy as

J 〈A, B〉

([
Ik 0
0 F

])
= tr

{([
Ik 0
0 F

]
B

[
Ik 0
0 F

]T
)−1

×
[
Ik 0
0 F

]
A

[
Ik 0
0 F

]T}
. (B.1)

Using (37), (38), and (39), we express B in terms of Pk , Qk

and Rk as

B =
[

Pk Qk

QT
k Rk

]
. (B.2)

Substituting B into (B.1) and using the partitioned matrix
inversion lemma [27], we write (B.1) as

J 〈A, B〉

([
Ik 0
0 F

])

= tr

{
A

[
P−1

k 0
0 0

]}
+ tr

{[
P−1

k QkFT

−Im−k

]

× {F(Rk −QT P−1
k Qk

)
FT
}−1
[
P−1

k QkFT

−Im−k

]T

×
[
Ik 0
0 F

]
A

[
Ik 0
0 F

]T }
. (B.3)

Using (34), (35), and (36), we simplify (B.3) as

J 〈A,B〉

([
Ik 0
0 F

])
= tk + tr

{(
FBkFT

)−1
FAkFT

}
(B.4)

= tk + J 〈Ak , Bk〉(F). (B.5)

�
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