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Demand response based on voluntary
time-dependent pricing scheme
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With the introduction of enhanced metering and communication capabilities in smart grids, utility companies will have the
ability to extend Demand Response (DR) to small customers through Time-Dependent Pricing (TDP). By using pricing signals
that more accurately reflect the demand-supply situation of an electricity network, utility companies can induce customers to
shift their consumptions to off-peak periods, thus reducing the cost and improving the reliability of the network. Despite its
promises, large scale deployment of DR still faces many obstacles, in particular, resistance from customers due to concerns over
cost, uncertain price and privacy issues. In this paper, we propose a dual-price DR scheme to overcome some of these issues.
The proposed scheme offers both regulated flat price and TDP to customers to meet their different risk-taking profiles. The TDP
rates are computed from a cost minimization problem considering both consumption behaviours of customers and generation
cost. We also present an analysis for solving the optimization problem and find a closed form solution for TDP. It is shown
that the proposed scheme is effective in inducing the desired consumption behaviours. In addition, it is found that with proper
price signals, the proposed scheme can provide incentives to both utility companies and TDP customers, thus encouraging the
adoption of TDP. Theoretical results from this paper are illustrated using numerical examples.
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I . I NTRODUCT ION

In a traditional electricity market, end users seldom partic-
ipate in the market activities, where they simply accept a
flat price of electricity. In recent years, there is an increasing
attention to demand side management (DSM), which refers
to programs implemented by utility companies to control
energy consumption at the customer side [1–5]. Immediate
benefits of DSM programs are mainly economic, includ-
ing reduced electricity cost and price volatility in wholesale
market [6] by proper load reduction and load shifting. Many
bulk services traditionally provided by power plants, such as
frequency response, regulation, and contingency reserves,
can partially be supplied from load resources at potentially
lower cost [7]. In addition, DSM programs also improve
the reliability of electricity network through load reduction,
and therefore avoid or defer the need for distribution and
transmission infrastructure reinforcements and upgrades.
All the cost savings will be eventually translated into eco-
nomic benefits to consumers through reduced electricity
bills due to market competition or regulation. The DSM
programs bring long-term environmental and sociological
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benefits aswell, as improved energy efficiency throughDSM
will eventually reduce the energy usage and green house gas
emission.

Traditionally, the DSM programs are mainly targeted at
large commercial and industrial (C&I) users through direct
load control (DLC) [8], where utility companies have the
ability to remotely shut down participant equipments on
a short notice based on an agreement between the utility
companies and the customers [8]. Participation of residen-
tial users in DSM programs, if any, has been very limited.
In recent years, with the increasing demand of balancing
and reserve power due to penetration of renewable energy
sources (RES), there is an increasing interest in extend-
ing DR program to residential users through price-based
DSM programs [9, 10]. DR programs encourage customers
to voluntarily reduce or reschedule their consumption dur-
ing peak periods through time-dependent electricity prices
[1–5]. Several TDP schemes have been proposed for DR,
including time-of-use (ToU) rate, critical peak price (CPP),
extreme day pricing (EDP), and real-time pricing (RTP) [5].

Despite the promises, introducing TDP to residential
users has lagged behind when compared to the wholesale
market where sophisticated market mechanisms have been
developed. Most retail markets have retained traditional
flat price (FP) structure for end-users, which is adjusted to
wholesale price movement at a much slower rate. Obsta-
cles to TDP include concerns over cost and uncertainties of
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TDP, and privacy concern that the utility company is in the
possession of too much energy consumption information
from individual customers [11]. It is thus important to estab-
lish appropriate mechanisms to overcome these concerns to
pave the path for the future smart grid.

In this paper, we focus on these issues and design a TDP
scheme to provide such a mechanism. The main contri-
bution of this paper is a price-based incentive scheme for
utility companies to launch DR programs in the electric-
ity retail market where both FP and TDP schemes coex-
ist. The TDP is calculated to minimize the total cost for
the utility company. A benefit-sharing scheme is also pro-
posed to distribute the economic benefits fromDR between
the utility company and end customers. Specifically, we
consider a dual-price scheme that comprises both conven-
tional regulated FP, and a voluntary TDP scheme. The FP
scheme provides regulated flat electricity price to users,
which is fixed and not subject to change by utility com-
panies. On top of it, electricity users have the flexibility
to opt for TDP to enjoy additional economic benefits. For
TDP, the price signal is formulated as a cost minimiza-
tion problem considering both the price response behaviors
from electricity users and energy procurement costs. We
focus on day-ahead TDP where the TDP prices are known
to electricity users sufficiently ahead of time, so that they
could plan their activities in advance based on the price
information. It is shown that the proposed DR scheme is
effective in terms of encouraging the desired consump-
tion behaviors from electricity users towards more efficient
grid operation. In addition, with proper price signaling,
the proposed DR scheme can effectively reduce the total
cost to the utility company, and at the same time pro-
vide incentive to TDP users to encourage the adoption
of TDP. The privacy concern is also mitigated since the
price signals in the proposed scheme are calculated base on
aggregated loads rather than load scheduling of individual
users.

Incorporating demand elasticity model in determining
optimal TDP has been previously studied in [12–14] with
focuses on economic dispatch and pricing problem for
wholesale market. It has been shown in [15] that a naive
approach which directly links the retail price to the whole-
sale price creates a close-loop feedback system in which
price may oscillate or diverge to unacceptable limits. To
address this issue, a stabilizing pricing algorithm has been
proposed in [16]. Game-theoretic-based distributed algo-
rithms were recently proposed in [17, 18] where optimal
energy consumption scheduling and electricity pricing that
minimize energy costs are jointly determined from theNash
equilibrium of a cooperative game played among electricity
users and utility company. Moreover, sharing of schedul-
ing information between users and utility is necessary in
order to derive the optimal results. In [19], a stochastic
strategy was proposed to solve the electricity scheduling
and pricing problem when there is only limited informa-
tion, e.g., the instantaneous total load on the grid, shared
among users, and utility company. Optimal day-ahead pric-
ing was studied in [20] based on cost minimization for

utility, and in [21] based on social welfare maximization.
Heterogeneous consumption behaviors of different loads
were considered in these works at device level. In [22],
the optimal TDP is calculated based on maximization of
expected social welfare, where the price responsive behav-
ior of aggregated demand from users are derived statis-
tically from the time-utility models of different loads. In
these works, it is commonly assumed that TDP is manda-
tory. The implications and consequences of having a dual-
price scheme where both TFP and FP exist have not been
studied.

The benefits, especially economic benefits, fromDR pro-
grams with dynamic pricing schemes have been studied
extensively [23–25]. In [23], a wholesale market with a day-
ahead market clearing mechanism is considered to enable
price-sensitive demand-side bids. The demand elasticity
is modelled as a function of the load participation factor
(LPF), which is the ratio of price-responsive demand to
total demand. The benefits of increasing LPF to aggregate
customers are analyzed, and results showed that DR ben-
efits all bidders due to the decrease in the market-clearing
price. The work in [24] considered a dual-price retail mar-
ket with increasing shares of RTP subscribers, and focused
on the benefits of RTP to various individual consumers
with different levels of capacity and willingness for DR.
The work in [25] analyzed the efficiency gains from RTP
in a competitive, hybrid market where both RTP and time-
invariant flat rate exist. While cross-elasticities are assumed
to be zero throughout the analysis, results revealed that effi-
ciency gains from RTP can be significant even with small
self elasticities. The author also pointed out that incorpora-
tion of nonzero cross-elasticities would very likely increase
the gains from RTP, which is supported in our work where
non-zero self and cross-elasticities are both considered. A
fundamental difference between [25] and our work is the
mechanism used in determining the RTP of the electricity.
In [25] the prices (both FP and RTP) of electricity are deter-
mined to allow the retailer to exactly break even on service
to each group of customers, which are obtained based on
the economic analysis of the equilibrium point in the dereg-
ulated competitive market [26]. In our work, we alleviate
this constraint on the RTP, and provide a new RTP design
that allows the utility to use RTP alone as a control sig-
nal to induce the desired electricity consumption behavior,
and share the economic benefits among utility company and
customers. Simulation results also show that our scheme
provides more economic benefits to both utility company
and customers compared to naive approach where the RTP
is determined based on the clear price of the whole-sale
market.

The rest of this paper is organized as follows. Section II
introduces the system model as well as models for energy
procurement cost and price-responsive energy consump-
tion. In Section III, the problem of optimal day-ahead TDP
under the dual-price scheme is formulated and the dynamic
incentive scheme is introduced, followed by the analysis
and derivation of the closed-form solution for the TDP.
Numerical examples of the proposed pricing scheme are
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Fig. 1. Block diagram of a simplified smart grid system composed of a utility company implementing dual-price scheme. The time-dependent electricity price
signals are announced to TDP users by utility company via digital communication network enabled by smart grid.

given in Section IV and finally, the paper concludes in
Section V.

I I . SYSTEM MODEL

The presumed electricity retail market is described as fol-
lows. Consider that a group of electricity customers are
served by a utility company that works essentially as a reg-
ulated monopoly. The utility company procures electricity
from the wholesale market, and makes profit by selling it to
end-users.

We foresee that various pricing programs will arise for
end customers to subscribe with different utility companies
in a deregulated retail market. Therefore a hybrid market
structure is assumed where multiple pricing schemes coex-
ist. More specifically, consider a scenario where a dual-price
scheme that comprises the traditional FP scheme and a vol-
untary TDP scheme is implemented by a utility company
in the retail market (Fig. 1). In the FP scheme, the electric-
ity price is fixed and regulated under the natural monopoly
doctrine. FP customers, which are also called price-taking
customers, can be guaranteed with prescribed electricity
price without overspending. On the other hand, in the TDP
scheme, electricity price will be pre-calculated by the util-
ity company to minimize cost by considering both energy
procurement cost and demand elasticity of end users, and
will be broadcasted to users over communication networks.
This pre-calculation feature is important to improve the
predictability of TDP because it enables the utility com-
pany to announce the price signals sufficiently ahead of
time (e.g., day-ahead) such that TDP customers, which
are also called price-responsive customers, could have suf-
ficient knowledge about future electricity prices in order to
adjust their electricity consumption accordingly. Under the
proposed scheme, customers have the flexibility to choose
either FP scheme so that they can enjoy assured electric-
ity price, or TDP scheme to enjoy its potential economic
benefits.

A) Utility company behavior
In a power supply system, electricity market may have a
number of generating firms, which owns different number
of units. Each unit submits an hourly bid according to its

marginal cost curve to provide electricity to an indepen-
dent system operator (ISO). Each bid is in the form of a
linear nondecreasingmarginal price function. The ISO then
clears the market by ranking all of the bids in ascending
order to form an aggregate supply curve and selecting the
total quantity to clear supply and demand. According to the
marginal cost of each unit and its corresponding operational
constraints, the generation cost can be modeled as [23]

Gt =
L−1∑
l = 0

(
ul ,t Nl +

B−1∑
b = 0

MP l ,b P l ,b,t
Sg

+ Sl ,t

)
, (1)

where, L is the number of generating units, B is the number
of segments in the generator’s offer curve, ul ,t is the on/off
status of the generating unit l at period t, Nl is the no-load
cost of generating unit l , MP l ,b is the marginal production
cost of generating unit l on segment b of its piecewise lin-
ear cost curve, P l ,b,t

Sg
is the output of generating unit l on

segment b of its piecewise linear cost curve during period t,
and Sl ,t is the start-up cost of generating unit l at period t.

The above model is complicated and very often leads to
untrackablemathematical formulation. In practical applica-
tions, piecewise linear interpolation and quadratic function
are two commonly used approaches to simplify this model.

The utility company procure electricity in the whole-
sale market and sell to end customers in the retail market.
To simplify the problem, we assume a perfectly competi-
tive market where the wholesale price is determined by the
marginal cost of electricity as follows:

MCt = ∂Gt

∂dt
, (2)

where dt is the total load at time t. Denote the load vector
as d = [d1, . . . , dt], the total electricity procurement cost to
the utility company is thus

C p(d) =
∑

t MCt · dt∑
t dt

. (3)

B) Customer behaviors
Let the time period of the study be divided into T time slots,
where T

�= |�| and� is the set of all time slots.Without los-
ing generality, hourly time slot is assumed in this paper. Let
p̃t denote the TDP at time slot t ∈ �, and p̄ the FP which is
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the same for all t. The original demands from all users with-
out adoption of TDP is denoted by dto . With the adoption
of TDP, the actual demand can be written as:

dt = d̄t + d̃t , ∀t ∈ �, (4)

where d̄t is the aggregated demand from the FP users, which
may be written as d̄t = (1 − α)dto where α is a ratio defined
as the percentage of electricity load under TDP, and d̃t is the
aggregated demand from the TDP users.

Price elasticity of demand is a basic concept in eco-
nomics, which states that consumers tend to consumemore
of a good or service when its price decreases and vice
versa. Unlike the demand of other types of commodities, the
demand of electricity shows not only self-elasticity where
the demand changes inversely proportional to the prevail-
ing electricity prices, but also cross-time elasticity where
demand at one time slot may also depend on the prices
prevailing at other time slots [27, 28]. The cross-time elastic-
ity can be considered as an extension to the cross-elasticity
in economics, which states that demand of one product
or service will depend on price of its “alternative” prod-
uct or service. To quantify the effect of price elasticity of
demand, the price consumption relationship can be lin-
earized around a given equilibrium point and the slopes of
these linear functions are denoted, respectively, as self and
cross-time elasticity factors defined as follows:

εtt = �dt/dto

�pt/pto
, (5)

εtτ = �dt/dto

�pτ /pτo
. (6)

Here, εtt is the self elasticity factor of time slot t, εtτ is
the cross-time elasticity factor that concerns the change
in demand of time slot t with respect to price changes in
time slot τ , and dto and pto are, respectively, demand and
price values at the equilibriumpoint where elasticity ismea-
sured. Considering both self and cross-time elasticity, the
change in electricity demand from the prices imposed to the
consumers can be written in vector format as

�d = E�p, (7)

where d � (d1, . . . , dT )
T , p � (p1, . . . , pT )

T , and E is the
elasticitymatrix inwhich the diagonal elements are self elas-
ticities and the off-diagonal elements are cross-time elastic-
ities. Here both prices and consumptions are assumed to be
normalized to the equilibrium point (dto , pto).

An elasticity matrix is called lossless [13] if the change in
electricity price only induces load rescheduling without a
reduction in energy consumption. In this case, the following
relation holds between the elements of each column of the
elasticity matrix:

1 · E = 0, (8)

where 1 is a row vector of all 1’s. Otherwise, if load shedding
exists due to high electricity price the relation becomes

1 · E ≺ 0. (9)

In practice, the values of both self- and cross-time elastic-
ity factors have to be determined through data analysis on
customers’ response to price signals. Privacy concerns can
be avoided here if the data analysis is performed only on
aggregated demands, or on a subset of voluntary customers
who are willing to share their consumption information to
help the efficient operation of power grid.

I I I . DYNAMIC INCENT IVE TDP
UNDER DUAL -PR ICE SCHEME

A) Optimization problem formulation
In this section, a dual-price scheme is proposed for the
utility company with the objective to maximize profit, or
equivalently, tominimize cost for the utility company. Based
on the system model introduced in Section II, the prob-
lem of calculating the optimal TDP price signals under
the dual-price DR program is formulated as an optimiza-
tion problem. In addition, the benefits from DR program
should be shared by the utility company as well as TDP
customers so that both parties are rewarded by participat-
ing in TDP scheme. A practical method for benefit sharing
is proposed to guarantee the benefits of both parties. The
benefit-sharing method is implemented as a constraint of
the optimization problem.

Considering the revenue that utility company receives
from both FP and TDP users, the cost to utility company
can be expressed as follows:

C = C p(d̄ + d̃)− p̄T d̄ − p̃T d̃, (10)

where C p is the energy costs as defined in (3), d̄ �
(d̄1, . . . , d̄T )

T is the vector of aggregated demands from
FP users, d̃ � (d̃1, . . . , d̃T )

T is the vector of aggregated
demands from TDP users, p̄ = 1T p̄t is the FP vector, and
p̃ � ( p̃1, . . . , p̃T )

T is the TDP price vector. Considering the
demand elasticity, d̃ is a function of TDP price vector and
can be calculated by

d̃ = α [do + E(p̃ − p̄)] , (11)

wheredo � (do1, . . . , doT )
T is the vector of original demand

if all users are under FP scheme. Here it is assumed that
demand elasticity factors are measured at the FP, and
have been properly scaled according to equilibrium points
(dot , p̄), ∀t ∈ �. The aggregated demand from FP users is
simply given by

d̄ = (1 − α)do . (12)

Utility company offers monetary incentive to TDP cus-
tomers in the electricity bill in order to encourage the adop-
tion of TDP. One possible approach is to provide incentive
in the form of discount. To provide such an incentive, the
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following constraint can be applied on the TDP:

p̃T d̃

1d̃
≤ (1 − γ ) p̄, (13)

such that the customers under TDP can enjoy a certain
discount rate 0 < γ < 1 compared with FP.When high dis-
count rate is given, users under TDP scheme may receive
more monetary incentive from the utility company. Unfor-
tunately, as will be demonstrated in the simulations, this
incentive scheme considers only the benefit on the cus-
tomer side and hence the profit of utility company cannot
be guaranteed. To overcome this issue, we further propose a
dynamic incentive scheme that consider the benefits of TDP
to both utility company and electricity customers. Here the
benefit to utility company is defined as

Co − C, (14)

where Co is the cost to utility company without TDP
given by

Co = C p(do)− p̄T do. (15)

The benefit to the customers under TDP is the shrinkage in
their electricity bill if they change from FP scheme to TDP
scheme, and can be calculated as

p̄T d̃ − p̃T d̃. (16)

The optimization problem can now be formulated as

min
p̃

C, (17)

subject to

p
t
≤ p̃t ≤ pt , t = 1, . . . , T ; (18)

d̃t ≥ d̃t,min, t = 1, . . . , T ; (19)

p̃T d̃ < p̄T d̃; (20)

(Co − C) = β · (p̄T d̃ − p̃T d̃), (21)

where p
t
and pt in (18) are the lower and upper price

bounds to avoid extraneous results from the optimization
process, (19) are the operating restrictions that specify the
minimum demand (e.g., from critical loads) for each time
slot, (20) guarantees benefits for TDP customers, and (21)
is the constraint for dynamic incentive sharing such that
the benefit partition between utility company and TDP cus-
tomers is specified by the distribution factor β . Note that
the utility company can adjust the distribution factor β to
decide how the benefits from TDP are shared among the
utility company and TDP customers. For example, a smaller
β may be used during introduction of TDP scheme to give
more monetary incentive to TDP customers to encourage
adoption of TDP.

B) Deriving optimal solution for TDP
This optimization problem is a standard non-linear pro-
gramming (NLP) [29] problem. For the special case where
the demand elasticity factors are constants, and the energy
cost is a quadratic function, the above optimization problem
becomes a quadratically constrained quadratic program-
ming (QCQP) problem [30]. In the following, we present
an analysis and derivation of the optimal solution for the
TDP p̃.

We consider the original optimization problem for the
case of quadratic cost function

Gt = atd
2 + btd + ct . (22)

An example of the quadratic cost function is defined in (32).
The Lagrange relaxation method is used to derive an easily
computable lower bound on the optimal value. After going
through a substantial amount of mathematical manipula-
tion, we first write the original problem (17)–(21) in the form
of QCQP problem as below:

min
p̃

p̃T QT
0 p̃ + qT

0 p̃ + r0

subject to

p̃T QT
i p̃ + qT

i p̃ + ri ≤ 0, i = 1, 2

− p̃T QT
2 p̃ − qT

2 p̃ − r2 ≤ 0,

p̃ ≤ pmax ,

p̃ ≥ p̂min,

(23)

with the following denotations:

Q0 = α2ET AE − αE,

Q1 = αE,

Q2 = α2ET AE − α(1 + β)E,

q0 = α[ET b − d0 + Ep̄],

q1 = α[d0 − Ep̄ − ET p̄],

q2 = α[b + (1 + β)(Ep̄ − ET p̄)− (1 + β)d0],

r0 = −α2p̄T ET AEp̄ + αbT [d0 − Ep̄],

r1 = −αp̄T [d0 + Ep̄],

r2 = −α2p̄T ET AEp̄ + α[bT − (1 + β)p̄
T
][d0 − Ep̄)]

+ (d̄T
t A + bT )d̄t . (24)

where A = Diag[a1, . . . aT ] is a diagonal matrix with
non-zero elements at , and b = [b1, . . . bT ]T . Note that
the second constraint in (23) is added to maintain the
equality in the constraint (21) of the original problem.
Moreover, in the last two constraints of (23), p̂min =
max(1T p

t
, E−1[1T d̃t,min/α − d0]), is the minimum con-

straint vector, and pmax = 1T p̄t is the maximum constraint
vector for the TDP.
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Next, we formulate the Lagrangian as follows:

L(p̃, λ,μ,ω) = p̃T QT
0 p̃ + qT

0 p̃ + r0

+
2∑

i=1

λi (p̃
T QT

i p̃ + qT
i p̃ + ri )

− λ3(p̃
T QT

2 p̃ + qT
2 p̃ + r2)

+ μT (p̃ − pmax)− ωT (p̃ − p̂min).

(25)

The vectors λ = [λ1 λ2 λ3]T , μ = [μ1 . . . μT ]T , ω =
[ω1 . . . ωT ]T are defined respectively for the Lagrange dual
variables λi , μi , and ωi .

To solve for the optimal TDP p̃, we then differentiate
L(p̃, λ,μ,ω) with respect to p̃, set ∇p̃L(p̃, λ,μ,ω) = 0. By
doing this, we arrive at the following closed form solution
for the optimal TDP:

p̃∗ = −1

2
U−1(λ)v(λ,μ,ω), (26)

where the U(λ) and v(λ,μ,ω) can be derived as

U(λ) = α2(1 + λ2 − λ3)E
T AE

+ [α(λ1 − 1)− (λ2 − λ3)(1 + β)]E. (27)

v(λ,μ,ω) = αET b + (λ2 − λ3)b

+ [α(λ1 − 1)− (λ2 − λ3)(1 + β)]d0

+ α[Ep̄ + λ1(Ep̄ − ET p̄)]

+ α(λ2 − λ3)(1 + β)(Ep̄ − ET p̄)

+ μ+ ω. (28)

Next, we proceed to solve for the Lagrange dual vari-
ables λi . By substituting the optimal TDP p̃∗ (26) into the
objective function of (23), we obtain the dual function as

g (λ) = −1

4
vT (λ,μ,ω)U−1(λ)v(λ,μ,ω)+ z(λ), (29)

where

z(λ) = α{bT − λ1p̄
T + (λ2 − λ3)[b

T − (1 + β)p̄T ]}
[d0 − Ep̄] − α2(1 + λ2 − λ3)p̄

T ET AEp̄

+ (λ2 − λ3)(d̄
T
t A + bT )d̄t . (30)

For given vectorsμ andω, we can form the dual problem
of (23) as follows:

max
λ
ψ + z(λ),

subject to
[

U(λ) v(λ,μ,ω)/2
v(λ,μ,ω)T/2 −ψ

]
≥ 0,

λi ≥ 0, i = 1, . . . , 3.

(31)

where theU(λ) and v(λ,μ,ω) have been derived in (27) and
(28), respectively.

The optimization in (31) is a semi-definite programming
(SDP) problem, which is also convex and easy to solve or
compute. It gives a lower bound on the optimal value of the
original problem. The optimal values for μ and ω can be
computedusing the standard subgradient algorithms [30] to
meet the maximum and minimum constraints of the price
variables.

For more general cost function C p(d), the optimization
involves minimising the objective function, which can be
modeled as a polynomial over a set defined by the con-
straints which are polynomial inequalities. We can solve
such polynomial optimization problem by rewriting it into
the form of a QCQP programming problem using suit-
able change of variables [30]. For example, for any objective
function or constraint with a polynomial with the maxi-
mum degree term y2n, we can introduce a new variable u,
which is associated with the quadratic equality constraint
u = y2. The resulting QCQP programming problem can
then be solved using the above approach and solutions.

I V . CASE STUDY AND RESULTS
ANALYS IS

Thedynamic incentiveTDP schemedescribed in Section III
is implemented and simulation results are given in this
section. Results demonstrate the load shifting and load
shedding effects of the proposed dual-price system and its
capabilities in distributing benefits from TDP to both util-
ity company and end customers. The hourly initial demands
assumed in our study are given in Fig. 2, which are assumed
from electricity customers when they are under an FP of
$649.55/MWh, which is calculated by (3) using the aggre-
gated original load. We further allow TDP rates to fluctu-
ate between a lower bound of $194.87/MWh and a higher
bound of $1299.1/MWh over the time period as long as
they, collectively, satisfy the constraint on dynamic incen-
tive sharing.

In our simulation, we further assume that the energy pro-
curement cost of the utility company follows [31] Appendix
C.1, where a 10-Unit system is given. Based on this system,
the corresponding cost function is generated and shown
in Fig. 3. To simplify the problem, we use a quadratic cost
function obtained through least-squares curve fitting to
approximate the actual cost function, which is given as

Ĝ t = 21152 + 94.368d + 0.0661d2, (32)

where d is power demand in MWh. The quadratic cost
function is also shown in Fig. 3.

We use the coefficient of determination (R2) to evaluate
the accuracy of the quadratic function (32) in approximat-
ing the actual cost function. The coefficient of determina-
tion is calculated as

R2 = 1 −
∑

d(Gt − Ĝ t)∑
d(Gt − Ḡ t)

, (33)

whereGt is the actual cost data, Ḡ t is its expectation, and Ĝ t

is its approximation.When the value of R2 is close to 1, high
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approximation accuracy is presented. We found that Ĝ t

achieves an R2 of 0.9998 for d ∈ [0, 5545], which shows that
the quadric approximation given in (32) is highly accurate.

A) Case study
We start with the case where DR benefit is equally dis-
tributed between the utility company and the TDP cus-
tomers, which is guaranteed by the constraint β = 1 in the
optimization problem. In this case study, self- and cross-
time elasticity factors of electricity users are specified as
follows:

εtτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.5, mod (τ − t, 24) = 0
1
6 , mod (τ − t, 24) = 1
1
30 , mod (τ − t, 24) = 2, 3, 4, 22, 23
1
60 , mod (τ − t, 24) = 5, 6, 7, 19, 20, 21
1

150 , mod (τ − t, 24) = 8, 9, 10, 16, 17, 18
1

300 , mod (τ − t, 24) = 11, 12, 15

0, mod (τ − t, 24) = 13, 14.
(34)
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Fig. 4. TDP prices (β = 1).

Fig. 5. Aggregated electricity demand from all users under dual-price scheme
with dynamic incentive β = 1.

This elasticity matrix satisfies 1 · E ≺ 0, which indicates
the existence of load shedding. The effect of TDP on the
electricity market is measured by the total load, the peak
load, the peak-to-average ratio (PAR) of the aggregated load
curve, together with the benefit to utility company and
aggregate/individual TDP users.

We compare the cases when α equals to 0.2 and 0.7.
It can be seen that, when less users are involved in TDP
program, these TDP users can get more benefit from TDP
program. When more users participate into the TDP pro-
gram, less benefit will be awarded to individual customer.
Fig. 5 compared the aggregated load curves when α is 0.2
or 0.7 with the original demand. As can be seen from Fig. 5,
when less users participate into TDP scheme (α = 0.2), the
demand is in fact inelastic since the majority of electric-
ity users are still under FP, resulting less load shifting from
peak hours. The peak load is as high as 5842MWat T = 18
and the PAR is 1.46. When more users are involved into
TDP scheme (α = 0.7), more loads are shifted from peak
hours to non-peak hours. The peak load becomes 4544MW
at T = 18 and the PAR is 1.14. Clearly, the reduced peak
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Table 1. Market conditions with different participation (α) of TDP under dual-price scheme with dynamic
incentive β = 1.

Utility/Agg. TDP Ind. TDP
α Total load (MW) Peak load (MW) PAR user benefit ($) user benefit ($) TDPavg ($/MWh)

0 96000 6282 1.57 0 0 649.55
0.1 95965 6073 1.52 325830 3.26 615.49
0.2 95943 5842 1.46 558158 2.79 620.39
0.3 95954 5544 1.39 723975 2.41 624.37
0.4 95983 5283 1.32 860526 2.15 627.13
0.5 96001 5037 1.26 975252 1.95 629.23
0.6 96011 4795 1.20 1067144 1.78 631.03
0.7 96021 4544 1.14 1136824 1.62 632.64
0.8 96028 4294 1.07 1185288 1.48 634.12
0.9 96037 4124 1.03 1214074 1.35 635.51
1 96051 4087 1.02 1230892 1.23 636.74

demand and improved load profilewhenmore users partici-
pate into the TDP schemewill help to improve the reliability
of the power grid.

The TDP price signals obtained from the optimization
problem with dynamic incentive scheme β = 1 are illus-
trated in Fig. 4. It can be seen in both cases (α = 0.2 and
0.7), two price peaks are presented, which correspond to the
peak load periods as shown in Fig. 2. In particular, when
the level of TDP user participation is low (α = 0.2), more
dramatic changing TDP is required in order to encour-
age load shifting from peak hours to non-peak hours. In
this case, the TDP price signals closely resemble a sim-
ple ToU rate design that charges end users a higher rate
during peak hours. The dynamic of TDP is reduced when
more users participate into the TDP scheme, and the elastic-
ity of electricity demand is improved (α = 0.7). This result
implies a DR program with a simple ToU design may be
as effective as TDP at a market with a low DR penetration,
while more sophisticated TDPwith hourly varying electric-
ity price is relevant only when the grid is sufficiently elastic,
i.e., there are sufficient number of DR customers existing in
the power system.

Table 1 further shows the comparison under different
level of TDP participations when α varies from 0 to 1 with a
step size of 0.1. Results clearly demonstrate that increased
participation of TDP reduces the peak load and PAR of
aggregated load curve, and increases utility and aggregate
TDP consumers’ benefits. However, the individual TDP
user’s benefit, which is the benefit measured as price per
MW for an individual TDP user, decreases with increas-
ing α. Note here the numbers for individual TDP user’s
benefit are calculated by assuming that the total number
of consumers under the dual-price scheme is 1 million.
The average TDP that the customer pays is calculated as a
weighted average of the TDP vector by the actual load, i.e.,
TDPavg (d̃) where

TDPavg (d)
�= p̃T d

1T d
. (35)

Note thatwhenTDP is enabled, i.e.,α > 0,TDPavg is always
smaller than the flat rate which is $649.55/MWh.

B) Benefit sharing
It is interesting to compare the results, especially the ben-
efits to utility company and customers, with those when a
fixed discount rate as defined in (13) is given to the TDP
customers. To this end, we repeated the simulation after
replacing the constraint (20) with (13) and the results are
compared with those for the dynamic incentive scheme in
Fig. 6. It can be seen that in such a case, the profit of utility
company cannot be guaranteed.When γ = 4%, i.e., 4% dis-
count rate is given to the TDP customers, the profit of utility
company may drop when more customers participate into
the TDP program, and could even become negative, which
is not desirable from the utility company’s point of view.
On the other hand, under the same simulation conditions,
dynamic incentive scheme guarantees the profit of utility
company, which could be a more favorable results for the
utility company to promote the TDP program to its poten-
tial customers. This is evident from Fig. 6, which shows
that the revenue to utility company in fact, increases when
more users participate into the TDP scheme even when
TDP users share the same benefit as the utility company.

The total benefit gained from DR largely depends on the
participation rate of TDP α, and the elasticity matrix E of
that particular group of customers which reflects their capa-
bility for load rescheduling in response to price. In a fixed-
discount benefit-sharing scheme, it is non-trivial to define
the discount rate as a function of the α and E such that eco-
nomic benefits to both utility company and customers are
guaranteed. Instead, the proposed benefit-sharing scheme
presents a practical and reasonable way to distribute the
gains fromDRbetween different parties and guarantees that
both parties have positive profit, and is also controllable by
changing the value of β .

Assuming quadratic generation cost andwith fixedE, the
benefit-sharing constraint (21) can actually be re-written in
the form of

β · M1 = α · M2 + M3, (36)

where M1, M2, and M3 are quadratic functions of p̃. There-
fore, α together with the upper and lower price bounds
for TDP determines a feasible range of β . Figure 7 shows
the benefits to utility and aggregate TDP customers under
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the proposed benefit-sharing scheme when α = 0.7 and β
varies from 0.01 to 100.

C) Observations
Beyond the specific case study in the previous subsection,
more observations are presented in details as below.

First of all, the scale of benefits brought by DR largely
depend on the elasticity matrix of the TDP users. Highly
price-responsive behavior leads to lower peak load, lower
PAR and higher benefit. This can be demonstrated by
Table 2 where other parameters fixed and the elasticity
matrix is multiplied by a scale factor from 0.2 to 1.8 and
compared with the original elasticity matrix as defined
in (34).

Secondly, the benefits come from both load shedding
and load shifting. As in Table 2, for no-shedding case, the
diagonal elements of E are set such that the row sums of E
become zero, i.e., 1 · E = 0. The benefits from load shifting
can be demonstrated by comparing the results of the no-
shedding case with the original E case. For the no-shifting
case, the non-diagonal elements of E are set to zero, i.e.,
εtτ = 0, ∀t 	= τ . An interesting observation is that when
there is no load-shifting, enabling load shedding may lead

to increase in the total consumption of load since customers
may consume more electricity during non-peak hours due
to lower electricity price.

Thirdly, customers could lose when changing from FP to
TDP if their loads are not price-responsive. Assume that the
aggregate elasticity matrix for existing TDP users is E and
one individual customer with a load vector d that has the
same shape as the average load profile D averaged from all
users, and a particular elasticity matrix E′. Consider a mar-
ket with α = 0.7 and β = 1, when the customer changed
from FP to TDP, the average electricity prices TDPavg (d′)
are calculated as in (35) under different elasticity matrices,
and the results are shown in Table 3. Given that the flat
rate is $649.55/MWh, the results show that an individual
TDP customer could lose if it has much lower elasticity val-
ues compared to other TDP customers. Note that here we
assume the load profile of the individual customer has the
same shape as the aggregated load profile and the results
may differ if it is otherwise.

Last but not least, we compare the proposed DR scheme
with the case where wholesale market clearing price (MCP)
is adopted directly as TDP to end customers, which is used
in [25]. In such case the average electricity price that a TDP
user pays is fixed at $639.74/MWhwith the elasticity matrix
as defined in (34). In Fig. 8, the benefits to utility company
and aggregate TDP users w.r.t. different α are compared
between the proposed TDP scheme (with β = 1) and using
wholesale MCP directly as TDP. Results show that the pro-
posed TDP brings more benefits to both utility company
and aggregate TDP users.

D) Green energy study
In recent years, green energy, which includes but not limited
to wind and solar power, becomes much popular in power
supply. Green energy provides a low-cost power resource,
which can be replenished constantly. However, the variabil-
ity and intermittency of green energy present challenges to
integrate green energy into the existing power grid. Tradi-
tional power generation has to replace green energy when
the availability of green energy is low. This may increase the
variation of load on traditional power generation, which is
not desirable.

As discussed in this paper, the proposed TDP scheme
can help to shift the demand in peak periods to non-peak
periods, which reduces the overall load in peak periods. In
this study, we will check the performance of proposed TDP
scheme under power grid integration with green energy
generation. Here, wind power is taken as an example. In
the simulation, we assume the grid system under evaluation
has an average wind energy penetration of 30. The daily
variation of wind energy generation as discussed in [32] is
adopted in this study.

The simulation comparison results are given in Fig. 9.
Three demand curves are presented: the original demand,
the demand under the proposed TDP for a traditional
power grid, and the demand under TDP for the integrated
grid with 30 wind energy penetration as discussed above.
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Table 2. Results with different elasticity matrices (α = 0.7 and β = 1).

Utility/Agg. TDP
Elasticity Total load (MW) Peak load (MW) PAR user benefit ($) TDPavg ($/MWh)

E · 0.2 96 021 5898 1.47 407 352 643.49
E · 0.4 96 032 5540 1.38 665 327 639.66
E · 0.6 96 040 5194 1.30 864 199 636.70
E · 0.8 96 036 4869 1.22 1 020 382 634.38
E 96 021 4544 1.14 1 136 824 632.64
E · 1.2 95 992 4231 1.06 1 214 870 631.48
E · 1.4 95 961 4107 1.03 1 256 509 630.84
E · 1.6 95 946 4083 1.02 1 275 262 630.56
E · 1.8 95 933 4069 1.02 1 279 421 630.49

No-shedding 96 000 4591 1.15 1 112 793 632.99
No-shifting 96 787 5900 1.46 188 291 646.78

Table 3. Average electricity price ($/MWh) for individual customer
with average load profile under TDP with different elasticity matrices

(FP $649.55/MWh).

Individual TDPavg Individual TDPavg

elasticity E′ ($/MWh) elasticity E′ ($/MWh)

0 709.85 E 632.64
E · 0.2 694.41 E · 1.2 617.20
E · 0.4 678.96 E · 1.4 601.77
E · 0.6 663.52 E · 1.6 586.33
E · 0.8 648.08 E · 1.8 570.90
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Fig. 8. Comparison of benefits to utility company and aggregate TDP users
between (1) the proposed TDP scheme and (2) using wholesale MCP directly
as TDP.

In both cases, the same generator parameters as in previ-
ous study are assumed. From these results, it can be seen
that the proposed TDP flattens the demand curve through
incentive price. In addition, with the introduced of low-cost
wind energy, less loads have been rescheduled to midnight
(time slots 0 ∼ 4). Instead, significant portions of those
loads are now scheduled to time slots 19 ∼ 21 and time slots
7 ∼ 12 when wind energy is abundant, which is a favor-
able to customers as it helps to shorten the waiting time for
re-scheduled loads.

An important issue of green energy recourses such as
wind or solar power is that they are not dispatchable, and
their availability may not be necessarily coincident with the
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Fig. 9. Comparison of loads under traditional power grid with proposed TDP
(α = 0.5 and β = 1) and green-energy integrated power grid with proposed
TDP.

Table 4. Comparison of loads in traditional power grid and
green-energy integrated power grid with and without proposed TDP

(α = 0.5, β = 1).

Total load (MW) Peak load (MW) PAR

Trad. grid wo TDP 96 000 6282 1.57
Trad. grid with TDP 96 001 5037 1.26
Int. grid wo TDP 96 000 5328 1.90
Int. grid with TDP 95 918 5130 1.28

demand. Therefore, the introduction of this type of energy
sources into a power grid may, in many cases, increases the
variance of the loads on traditional power generation. This
is undesired since the high variation of load presents sub-
stantial challenges to the traditional power generation. To
study this issue, we compare the PAR of the loads on tradi-
tional power generation under different scenarios as illus-
trated in Table 4. From these results, it can be seen that the
proposed TDP is effective in reducing the load variation on
traditional power generation. We tested with α = 0.5 and
β = 1. In the cases of no green energy integration, the intro-
duction of TDP helps to reduce the PAR from 1.57 to 1.26.
The reduction in PAR ismore significant whenwind energy
is present, where the PAR is reduced from 1.90 without TDP
to 1.28 with TDP. Note that the PAR in the latter case is
already very close to that of the best case under TDP when
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wind energy is not present (PAR = 1.26). These results con-
firm the effectiveness of the proposed TDP scheme in terms
of reduce the load variation in addition to its economic
benefits to both utility company and electricity users.

V . CONCLUS ION

In this paper, dual-price based DR program that consists of
both a conventional flat and regulated pricing scheme and a
voluntary TDP scheme, is investigated. The TDP price sig-
nals provide a control signal to guide the power consump-
tion toward more efficient operation of power grid, and
simultaneously an economic tool for distributing cost sav-
ing to both utility company and TDP users as an incentive
for them to adopt TDP scheme. An algorithm is proposed to
calculate the optimal TDP based on a pre-defined distribu-
tion factor that determines the benefit distribution between
utility company and TDP customers. We also present an
analysis and derived a closed-form solution for the TDP.
Simulation results show that the proposed method effec-
tively distributes the benefit from TDP program to the
utility company and TDP customers, so that they are both
benefited from actively participating into TDP program.
In addition, the results also show that the proposed TDP
scheme can reduce the load variation on the traditional
power generation, which helps tomaintain the grid stability.
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