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Occlusion-aware temporal frame interpolation
in a highly scalable video coding setting
dominic rüfenacht, reji mathew and david taubman

We recently proposed a bidirectional hierarchical anchoring (BIHA) of motion fields for highly scalable video coding. The BIHA
scheme employs piecewise-smooth motion fields, and uses breakpoints to signal motion discontinuities. In this paper, we show
how the fundamental building block of the BIHA scheme can be used to perform bidirectional, occlusion-aware temporal frame
interpolation (BOA-TFI). From a “parent” motion field between two reference frames, we use information about motion dis-
continuities to compose motion fields from both reference frames to the target frame; these then get inverted so that they can
be used to predict the target frame. During the motion inversion process, we compute a reliable occlusion mask, which is used
to guide the bidirectional motion-compensated prediction of the target frame. The scheme can be used in any state-of-the-art
codec, but is most beneficial if used in conjunction with a highly scalable video coder which employs piecewise-smooth motion
fields with motion discontinuities. We evaluate the proposed BOA-TFI scheme on a large variety of natural and challenging
computer-generated sequences, and our results compare favorably to state-of-the-art TFI methods.
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I . I NTRODUCT ION

The aim of temporal frame interpolation (TFI) is to insert
frames at the decoder that are not present at the encoder.
TFI is used in a variety of video coding applications, for
example to reduce ghosting artifacts andmotion blur in liq-
uid crystal displays [1], or in distributed video coding,where
temporally interpolated frames are used as side information
for the Wyner–Zyv decoding [2]. In scalable video coding,
where video can be decoded at different quality levels in
terms of spatial, bit-rate, and temporal resolution, TFI is
desirable when all information at a certain temporal level
is quantized to zero.

In current state-of-the-art codecs, motion fields are
coded using blocks; each pixel in the target frame is assigned
a vector pointing to the location in the reference frame
where the block it belongs to matches best according to
some error measure. This block motion does not in general
represent the “true” motion, but one which minimizes the
prediction error. It is therefore ill-suited to representmotion
in the vicinity of motion discontinuities, and cannot be
scaled to representmotion to intermediate frames. For these
reasons, good-performing TFI methods first (re-)estimate
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the motion between the two frames where a frame is to be
inserted, which is then used to interpolate the target frame.
Different frame interpolation (FI) methods have been pro-
posed, which differ in terms of type of motion estimation
(ME) performed, as well as where those motion fields are
anchored. Also, various strategies and texture optimizations
are applied to create the interpolated frame.

A large body of TFI algorithms use block motion fields,
which have comparatively low computational complex-
ity. In order to avoid blocking artifacts, various tech-
niques which smooth the interpolated frames are employed.
Choi et al. [3] use bilateral ME, and block artifacts are
reduced using an adaptive overlapped block motion com-
pensation based on the reliability of neighboring motion
vectors. Wang et al. [4] perform motion-compensated pre-
diction of the intermediate frame from both reference
frames independently, and then blend these predictions
together using a trilateral filter. Dikbas and Altunbasak
[5] use an adaptive interpolation between the forward and
backward warped frames. Their method has low compu-
tational complexity, but the implicit occlusion handling
can lead to severe visual distortions if disoccluded regions
become large. Jeong et al. [6] performmotion-compensated
FI using a multi-hypothesis ME. The best motion hypoth-
esis is selected by optimizing the cost function of a label-
ing problem. Pixels in the target frame are computed as
a weighted combination of several pixels from the refer-
ence frame. They show improved reconstruction quality, at
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the expense of a significant increase in computational com-
plexity. Veselov and Gilmutdinov [7] propose a hierarchical
bidirectional multi-stage ME algorithm. They partition the
target frame into non-overlapping, hierarchical blocks, and
approximate the “true” motion flow. Each pixel is blended
from multiple reference pixels. Zhang et al. [8] propose
a polynomial motion approximation model in order to
account for intensity changes across frames. Their method
can be applied to exiting TFI schemes and improve the
quality of interpolated frames at the expense of increased
memory and computational complexity.

To avoid artificial boundaries created by block motion
fields, Chin and Tsai [9] estimate a dense motion field, and
apply the motion to each pixel location. Simple heuristics
are used to handle holes and multiple mapped locations
in the upsampled frame. Several FI methods have been
proposed which try to detect occluded regions, and show
improved performances compared with methods without
occlusion handling. Kim et al. [10] use linearity checking
between the estimated forward and backward motion fields
to detect occluded regions. Cho et al. [11] use a bidirectional
ME scheme that is based on feature trajectory tracking,
which allows us to detect occluded regions.

In [12], we have shown how the bidirectional hierarchical
anchoring (BIHA) framework naturally lends itself to TFI
when all information at a certain temporal level is quan-
tized to zero. The present paper represents an extension of
this earlier conference paper. A key distinguishing feature of
the proposed bidirectional, occlusion-aware temporal frame
interpolation (BOA-TFI) framework is that the interpola-
tion process is driven entirely by piecewise-smooth motion
estimates that are anchored at reference frames and con-
sidered to represent physical motion. Motion estimated at
reference frames is mapped to target frames where it is
used to directly infer regions of occlusion and disocclusion.
Motion discontinuities at reference frames are explicitly dis-
covered and play a key role in the motion mapping process.
We do not use block motion, as it is ultimately not reflective
of the underlying physical reality. We also avoid the use of
non-physical averaging processes such as overlapped block
motion compensation (OBMC), as employed in most state-
of-the-art schemes; such approaches can rarely be justified
asmodeling an underlying physical process, and often result
in oversmooth interpolated frames.

This motion centric approach is well adapted to scalable
compression schemes [13], because it allows the motion to
be understood as part of a transform that is applied to the
frame data; the proposed TFI scheme can then be under-
stood as the inverse transform that would result if high
temporal frequency details were omitted. We expect that
this property will be valuable in enabling seemless integra-
tion of video decoding and interpolation processes in the
future. In the interest of conciseness, however, this paper
focuses only on the TFI problem, leaving the interesting
connection with compression to other works.

The motion centric approach means that we do not use
texture information (pixel values) as part of the detailed rea-
soning for the FI process. Frame texture information is used

only to derive the piecewise-smooth motion representation
itself. Recently, there have been various proposals from the
computer vision community on how suchmotion fields can
be estimated. Xu et al. [14] propose a motion detail pre-
serving optical flow algorithm (MDP), which encourages
sharp discontinuities in the motion field. Wulff and Black
[15] propose a layeredmotionmodel, which is able to obtain
piecewise-smooth motion fields with sharp discontinuities
on sequences that are heavily affected bymotion blur.While
currently limited to twomotion layers, this work shows a lot
of promise.

With respect to its conference version [12], in this
paper we report on improvements that have made the pro-
posed scheme more robust; we also give a much more
detailed description of the fundamental concepts of the pro-
posed TFI scheme. Furthermore, we provide a more exten-
sive experimental validation on a large variety of natural
sequences, as well as very challenging computer-generated
sequences, which turn out to be more difficult than most
common natural test sequences. Compared with the prior
art, the main differences of the proposed BOA-TFI scheme
are:

• High-quality disocclusionmasks are computed, which are
used to guide the bidirectional prediction of the inter-
polated frame – we switch to appropriate unidirectional
prediction in regions which are occluded in one reference
frame.

• Estimated motion field discontinuity information allows
us to reliably identify the foreground object in regions of
motion field folding (i.e., resolve double mappings).

• If used with our highly scalable video coding (HSVC)
scheme, motion fields which were estimated at the encod-
ing stage can be (re)used for FI, which significantly reduces
the computational complexity at the decoder. Addition-
ally, motion fields can be estimated on high-quality tex-
ture data at the encoder, as opposed to decoded frames
which might suffer from compression artifacts.

I I . OVERV IEW

Figure 1 gives an overview of the proposed TFI method,
where we used the notation introduced in Table 1. Inputs
to the method are the reference frames fa and fc , and the
(potentially estimated1) motion field between them, Ma→c .
The proposed scheme involves two types of operations on
motion fields: motion inference and motion field inversion.
Both these operations involve mapping a motion field from
one frame to another, which likely leads to double map-
pings (because of folding of the motion field), as well as
holes in regions that get disoccluded. Both doublemappings
and disoccluded regions are handled by reasoning about the
displacement of motion discontinuities.

A variety of ways can be employed to represent motion
discontinuities in the proposed framework. Because this

1We describe a way of estimating piecewise-smooth motion fields
suitable for this work in Section VII.
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Fig. 1. Overview of the proposed TFI method: The input to the scheme are a (potentially estimated) motion field Ma→c , as well as breakpoint fields estimated on
Ma→c for frame fa , and on Mc→e (only used to obtain breakpoints) for frame fc ; furthermore, the two reference frames fa and fc . In the first step, estimated
breakpoints at reference frames fa and fc (Ba and Bc ) are transferred to the target frame fb (Bb). Next, Ma→b is obtained by halving its parent motion field Ma→c .
Ma→c and Ma→b are then used to infer the motion field Mc→b . The last step consists of inverting Ma→b and Mc→b to obtain M̂b→a and M̂b→c . During the motion
inversion process, we compute disocclusion masks Ŝb→a and Ŝb→c , which are used to guide the bidirectional MCTFI process to temporally interpolate the frame
f̂b . Breakpoints are used to resolve double mappings and handle occluded regions during both the motion inference and inversion process.

Table 1. Table of notations used throughout the paper.

Notation Meaning

fa , fc Reference frames
fb Target frame (frame to be interpolated)
Mi→ j Motion field anchored at frame fi and pointing to frame f j

Bi Motion discontinuity information (represented using
breakpoints) anchored at frame fi

Si→ j Disocclusion mask anchored at frame fi ; its values are
non-zero only at locations that are not visible in frame f j

Â Used to denote an estimate of an entity A, e.g. M̂i→ j

denotes an estimated motion field

work comes out of a highly scalable video coder [13], we use
breakpoints to represent motion discontinuities [16]; break-
points are very useful in a scalable video coder because of
their high scalability attributes both in quality and resolu-
tion. See Section IV formore details on how breakpoints are
employed in this work to induce motion discontinuities.

The first step of the proposedmethod consists of warping
motion discontinuity information from reference frames fa
and fc , to the (non-existent) target frame fb . Next, we com-
pute an estimate M̂a→b of the motion field between frame
fa and the target frame fb by scaling the parentmotion field
Ma→c by a factor of 0.5. Next, we infer amotion field M̂c→b ,
which is anchored at frame fc and pointing backwards to
frame fb ; to infer M̂c→b , both its temporal parent motion
Ma→c , and its temporal sibling M̂a→b , are used.

The next step is to invert both M̂a→b and M̂c→b , so
that we obtain the two motion fields M̂b→a and M̂b→c ,

which are anchored at the target frame fb we want to inter-
polate. During this inversion process, we readily observe
regions of the motion that are getting disoccluded; such
regions are recorded in the disocclusion masks Ŝb→a and
Ŝb→c , and are used to guide the bidirectional, occlusion-
aware motion-compensated temporal frame interpolation
(MCTFI) process.

I I I . B ID IRECT IONAL H IERARCH ICAL
ANCHOR ING OF MOT ION F IELDS

All current state-of-the-art video codecs anchor motion
fields at the target frames. In [17], we proposed to anchor
motion fields at the reference frames instead. In this paper,
we demonstrate how the underlying methods of construct-
ing motion fields are highly suited for FI, and can lead to
a geometrically consistent bidirectional prediction of the
interpolated target frames. Perhaps surprisingly, these inter-
polated frames can have higher quality than those produced
by state-of-the-art TFI schemes. Figure 2 shows the two
different ways of anchoring motion fields.

Let us assume that all odd frames ( fb and fd in Fig. 2)
are not present at the encoder, and we want to interpolate
them at the decoder. In that case, Ma→c is the only motion
field present at the decoder that can (potentially) be useful
to interpolate frame fb . In current state-of-the-art codecs,
Ma→c is a block-based prediction field that minimizes the
prediction residual, and is not reflective of “true motion”.
As a result, Ma→c cannot be scaled to point to the inter-
mediate frame fb , and hence has to be (re)estimated at the
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(a) (b) BIHA

Fig. 2. (a) Traditional anchoring of motion fields in the target frames and (b) bidirectional hierarchical anchoring (BIHA) of motion fields at reference frames.

(a) (b)

Fig. 3. A rectangle moves from left to right, with accelerated motion. (a) shows the true location of the rectangle (green), and (b) the predicted position of the
rectangle under constant motion assumption. Note that because the inferred motion (orange dashed line) follows the scaled motion (blue dotted), the two motion
fields M̂a→b and M̂c→b are geometrically consistent.

decoder. In our scalable video coding scheme, we closely
model “true” motion fields, which can be scaled and hence
readily be used to perform FI at the decoder.

With a “true” motion field Ma→c , one can readily com-
pute a scaled version that points to the intermediate frame
fb , as M̂a→b = αMa→c (typicallyα = 0.5). In order to serve
as prediction reference to interpolate frame fb , we need to
invert M̂a→b . We present how motion fields are inverted
for this work in Section V.A. Around the moving object
boundaries, there will be regions that get disoccluded (e.g.,
uncovered) from frame fa to fb ; such regions cannot be pre-
dicted from fa . It is highly likely that such regions are visible
in frame fc , that is whywe are interested in obtaining Mc→b .

One could be tempted to estimate Mc→a , and then com-
pute Mc→b as a scaled version of Mc→a . We avoid this
strategy for two main reasons:

(i) In a highly scalable video coder, this would be redundant
information.

(ii) It is very likely that Ma→c �= (Mc→a)
−1, in particular

around the moving objects. Hence, their scaled versions
will not be geometrically consistent in frame fb .

We instead infer M̂c→b , anchored at frame fc , from the
forward pointing motion field Ma→c and its scaled version
M̂a→b , as follows:

M̂c→b = M̂a→b ◦ (Ma→c)
−1, (1)

where ◦ denotes the composition operator. The fact that
Mc→b is completely defined by Ma→c and Ma→b has the
key advantage that Mc→b always “follows” Ma→b , such that
the twomotion fields involved in the prediction of frame fb

are geometrically consistent. This highly desirable property
is illustrated in Fig. 3. In practice, what this means is that
the predicted target frame will be significantly less blurred
and contain less ghosting than traditional TFI approaches;

for examples, the reader is referred to Fig. 11. We remind
the reader that a key principle in this work is to avoid aver-
aging techniques (such as OBMC) that do not correspond to
physical motion.

I V . H I ERARCH ICAL WARP ING OF
MOT ION F IELD D ISCONT INU IT I ES

One key distinguishing feature of the proposed scheme is
the use ofmotion discontinuity information to reason about
scene geometry; it is used during the inversion of motion
fields to resolve double mappings in regions of motion field
folding (see Section V.A), as well as to extrapolate motion
in disoccluded regions during the motion field inference
process to obtain M̂c→b (see Section V.B). As this work
builds upon an HSVC framework, we use a highly scal-
able way of coding discontinuities using breakpoints2, where
they are used to modify the behavior of the discrete wavelet
transform (DWT) in the vicinity of (motion) discontinu-
ities. In essence, the presence and precision of breakpoints
in the hierarchical representation is determined in a rate-
distortion optimized way; the interested reader is referred
[16] for a much more detailed description of the technical
details on the estimation of breakpoints. In the following,we
give a brief summary of how breakpoints are used to induce
motion discontinuities. We then present how breakpoints
can be transferred from reference frames to the target frame
we want to interpolate.

2In a scalable video coding framework, the piecewise-smooth motion
fields are constructed by the discontinuities and smooth data. For concise-
ness, we leave the interesting connection between scalable video compres-
sion and TFI for future work.
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A) Inducing motion discontinuities from
breakpoints
This section presents how motion discontinuity informa-
tion can be induced from an existing breakpoint field; for a
comprehensive description of how breakpoints used in this
work are estimated, we refer the interested reader to [16].
Breakpoints lie on grid arcs, and can be connected to form
discontinuity line segments. They are organized in a hierar-
chical manner, such that breakpoints at finer spatial levels
can be induced from coarser levels. We use Fig. 4 to guide
the description.

A breakpoint field at spatial level η consists of cells of size
2η × 2η pixels; these cells are the fundamental unit used to
induce discontinuities. A cell consists of four perimeter arcs
(cyan lines in Fig. 4), as well as two root arcs (gray lines
in Fig. 4). The significance of root arcs is that they do not
exist at coarser levels in the pyramid. Each arc can be occu-
pied by at most one breakpoint. If a cell contains exactly
two perimeter breakpoints, and the root arcs at this level
have no explicitly coded breaks, connecting the two perime-
ter breaks allows breakpoints to be induced onto the root

Fig. 4. Scalable geometry representation: Two breakpoints on the perimeter of
the same cell can induce discontinuity information onto the root arcs (purple
crosses). If the root arc contains a vertex (red cross), the inducing is stopped.

arcs. To avoid confusion, we use the term vertices to iden-
tify the explicitly coded breaks. What this means then is
that spatial induction transfers discontinuity information
recursively from coarser level vertices to finer levels in the
hierarchy, except where such transfer would be in conflict
with finer level vertices.

B) Temporal breakpoint induction
For TFI, motion discontinuity information is not available
for frame fb . In this work, we transfer such discontinuity
information from the reference frames to the target frame
using a hierarchical extension of the breakpoint warping
scheme proposed in [18]. The underlying idea of mapping
breakpoints from reference to target frames is the fact that
motion discontinuities travel with the foreground object.
Because the presence of a breakpoint necessarily implies
that the motion on either side of it is significantly different,
the aim is to identify the foreground motion by performing
a breakpoint compatibility check between the two refer-
ence frames fa and fc , and then to warp compatible line
segments to the target frame by halving the identified fore-
ground motion. Figure 5 illustrates the three main steps
of the proposed hierarchical temporal breakpoint induction
method:

(i) Breakpoint compatibility check to find compatible (i.e.,
foreground) motion to assign to discontinuity line seg-
ments.

(ii) Warping of compatible line segments under constant
motion assumption to the target frame, where they are
intersected with grid arcs and stored as breakpoints
(temporal induction).

(iii) Upsampling of breakpoints to the next finer spatial res-
olution (spatial induction).

In cases where a warped line segment intersects an arc
that already contains a spatially induced breakpoint, the
temporally induced breakpoint always overwrites the spa-
tially induced one.

Fig. 5. Spatio-temporal induction of breakpoints. Going from coarse to fine spatial resolution, the proposed temporal induction process consists of three steps at
each resolution level η: (1) Assessment of temporal compatibility of line segments induced by breakpoints between two coarse-level frames fa and fc ; (2) Warping
of compatible line segments to fb ; (3) Spatial induction of all breakpoints to the next finer spatial resolution η − 1. For better visualization, root arcs are not shown
in this figure.
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(a)

(b)

Fig. 6. Illustration of the proposed CAW procedure. These figures show color–
coded motion fields. (a) The reference motion field is partitioned into triangles;
(b) each such triangle is then mapped from the reference to the target frame,
where each integer location gets assigned the corresponding affine motion.
In regions that get disoccluded, triangles stretch without changing orienta-
tion (e.g., the green triangle), and the affine model assigns a interpolated value
between the foreground and background motion, without leaving any hole.

The advantage of this hierarchical extension is that the
temporal inducing constraints are tightest at the finest spa-
tial resolution; spatially induced discontinuity information
from coarser spatial levels can help completing discontinu-
ity information in regions that are not compatible at finer
spatial resolutions.

V . MOT ION F IELD OPERAT IONS

In this section, we present twomotion field operations that
are used in the proposedTFImethod, and showhowmotion
discontinuity information is used to solve key problems
current TFI methods suffer from, namely the handling of
double mappings, as well as occluded regions.

A) Inversion of motion fields
Most TFI methods map either pixels or whole blocks
from reference to target frames, which creates a variety of
unwanted artifacts such as holes within objects because the
adjacent blocks have differentmotion assigned. Also, even if
ground truth motion were used, a simple mapping can lead
to holes in the target frame if the object is expanding.

To avoid these problems, we employ piecewise-smooth
motion, and employ a cellular affine warping (CAW) pro-
cedure first proposed in [18] to warp motion fields from
one frame to another. We use Fig. 6 to guide the descrip-
tion of the CAWprocedure. In the current implementation,
the reference motion field is partitioned into triangles of
size 1 × 1 pixel, so that there are approximately twice as

(a)

(b)

Fig. 7. Resolving of double mappings in the mapped motion field by reason-
ing about motion discontinuities (represented as red dashed lines around the
scepter). The key idea in identifying the foreground motion is that the motion
discontinuities travel with the foreground object.

many triangles as there are pixels in the frame.3 The warped
motion field is guaranteed to have no holes (in disoccluded
regions). On the leading side of moving objects, one is
likely to observe double mappings during the motion field
warping process. In the following,we explain how such dou-
ble mappings can be resolved using motion discontinuity
information.

1) Identifying foreground motion in
double-mapped regions
As explained in the previous section, as the CAWprocedure
maps triangles from reference to target frames, in regions
of folding, multiple triangles map to the same location x j in
the target frame f j . In other words, there are two locations
xi ,1 and xi ,2 in fi , which are mapped by Mi→ j to the same
location. In this section, we show howmotion discontinuity
information can be used to locally reason about foreground
moving objects. We use Fig. 7 to guide the description. We
denote the line segment that connects xi ,1 and xi ,2 in the
reference frame fi as l ; this line has to intersect with (at
least) one motion discontinuity, denoted as B in the figure.
In the example, the scepter is lifted and moves on top of
the snow in the background. Let B− denote the location
on l which is on the same side as xi ,1; similarly, let B+

denote the location on l that is on the side of xi ,2. Because
themotion discontinuitymoves with the foreground object,
either y j ,B− = Mi→ j (B−) or y j ,B+ = Mi→ j (B+) will map
very closely to amotion discontinuity in the target frame f j ;
this is the foreground motion we register. In the example in
the figure, y j ,B− gets mapped onto motion discontinuities;
therefore, M̂a→b(x i ,1) gets recorded as foreground motion

3Clearly, this procedure can be made much more efficient by increas-
ing the triangle size in regions of smooth motion.
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at location x j where the double mapping occurred (e.g.,
M̂b→a(x j ) = −M̂a→b(x i ,1)).

2) Obtaining a disocclusion mask
The inversion of Mi→ j allows us to readily observe regions
that get disoccluded in the target frame; we record this
valuable information in a disocclusionmask S j→i as follows:

S j→i (x) =
{

1 x disoccluded,
0 otherwise.

(2)

In the proposed bidirectional prediction setup, we obtain
two such disocclusion masks anchored at the target frame
fb : one during the inversion of Ma→b , which we denote
Sb→a , and the other Sb→c , obtained during the inversion of
Mc→b . They are used to generate the interpolated frame as
explained in Section VI.

B) Motion field inference
As shown in equation (1), the backward pointing motion
field M̂c→b , anchored at frame fc , is inferred from the for-
ward pointing motion field Ma→c and its scaled version
M̂a→b . As mentioned earlier, one advantage of this oper-
ation is that M̂a→b and M̂c→b are geometrically consistent,
meaning that the interpolated target frame will contain
much less ghosting artifacts.

Both M̂a→b and M̂c→b should reflect “true” motion with
sharp discontinuities. In particular, M̂c→b is most useful
in regions which are not visible in frame fa (e.g., disoc-
cluded). Part of the motion field inference process involves
the inversion of the motion field Ma→c ; during this pro-
cess, we readily observe regions that are not visible in fa .
The CAW procedure assigns a linear interpolation between
background and foregroundmotion to disoccluded regions;
in order to be most useful, however, motion in disoccluded
regions of M̂c→b should be extrapolated from the triangle
vertices falling on one side of the motion discontinuities. In
the following, we describe this procedure in more detail.

1) Motion extrapolation in disoccluded
triangles
The aim of the motion inference process is to obtain a
motion field M̂c→b , anchored at frame fc , and pointing to
fb , which is as close to a “real” motion field as possible. In
the absence of new motion appearing in regions that get
disoccluded between frames fa and fc , a good estimate for
the motion is to extrapolate the motion of the triangle ver-
tices up tomotion discontinuity boundaries. Formost of the
disoccluded triangle, this means that backgroundmotion is
extrapolated; only a small (if any) part of the triangle falls
onto the foreground object. We use Fig. 8 to explain the
details of the proposed motion extrapolation technique.

Whenever a triangle is stretching as it is mapped from
a reference to a target frame, we expect it to intersect with
motion discontinuities in the target frame; this is because
some of its vertices belong to the background (possibly
in motion), and some belong to the foreground (moving)

(a) (b)

(c) (d)

Fig. 8. Closeup of the scene in Fig. 6, to illustrate themotion extrapolation tech-
nique applied in disoccluded regions. Panel (a) shows a triangle in the reference
frame fi , which straddles a motion discontinuity boundary. Panel (b) shows
the warped, stretched triangle in the target frame f j ; panel (c) introduces the
relevant notations used in the text to describe the motion extrapolation proce-
dure. Instead of linearly interpolating motion from foreground to background,
we instead extrapolate motion from the vertices to the motion discontinuity
boundary, represented by B1 and B2; this results in sharp boundaries, as exem-
plified in (d), where the blue dotted line corresponds to linearly interpolated
motion, and the green solid line corresponds to extrapolated motion.

object. In Fig. 8(c), D′
1 and D′

2 sit in the background,
whereas D′

3 belongs to the foreground. The warped trian-
gle has two edges that intersect withmotion discontinuities,
which we denote as e1 and e2. As mentioned before, instead
of interpolating a value transitioning from background (D′

1
in Fig. 8) to the foreground motion D′

3, we want to extrap-
olate the background motion up to the motion boundary,
and likewise extrapolate the foreground motion up to the
motion boundary. To clarify this, we show a 1D cut along
the e1, formed by connecting D′

1 and D′
3, of the horizon-

tal component (mvx) of the motion in Fig. 8(d); the dashed
blue line shows themotion assigned by theCAWprocedure,
and the green solid (staircase) shows the background and
foreground extrapolatedmotion. Irrespective of what object
(foreground or background) each of the three vertices of
the triangle belongs to, the motion extrapolation method
performs the same steps: The motion of D′

3 is extrapolated
in the triangle formed by D′

1, B1, and B2. The quadrilat-
eral (D′

1, D′
2, B1, B2) is broken up into two triangles (D′

1,
D′

2, B1) and (D′
2, B1, B2), and the motion of D′

1 and D′
2 is

extrapolated in the respective triangles.

V I . MOT ION -COMPENSATED TEMPO -
RAL FRAME INTERPOLAT ION

The last step is to interpolate the target frame f̂b . We use
WM̂i→ j

( f j ) to denote the warping process of frame f j to
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(a) (b)

(d) (e) (f)

(c)

Fig. 9. Example results for estimated motion on a natural sequence with reasonably complex motion. Panel (a) shows the motion field M̂a→c , estimated using [14]
with the default parameters; Panel (b) shows the breakpoint field (at the second coarsest spatial level for visualization), which was estimated on M̂a→c using the
breakpoint estimation method described in [16]. Panel (c) shows the union of the estimated disocclusion masks, where yellow and cyan indicate that the pixel is not
visible in the previous ( fa ) and future ( fc ) frame, respectively. Panels (d) and (e) show the inverted motion fields, anchored at the target frame fb , which together
with the disocclusion mask are used to obtain (f), the bidirectionally predicted target frame f̂b .

frame fi . The warping of frame f j to frame fi , evaluated at
location x, is then denoted as f j→i (x) = (WM̂i→ j

( f j ))(x).
Every pixel location f̂b(x) in fb is computed using M̂b→a

and M̂b→c , together with the estimated disocclusion maps
Sb→a and Sb→c , as:

f̂b(x) =
⎧⎨
⎩

Sb→a(x) fa→b(x) + Sb→c (x) fc→b(x)

κ(x)
κ(x) > 0,

0.5
(

fa→b(x) + fc→b(x)
)

κ(x) = 0,
(3)

where κ(x) = Sb→a(x) + Sb→c(x).
Regions in fb which are disoccluded in both of the

reference frames (i.e., κ(x) = 0), are predicted from both
reference frames equally, where the affine warping pro-
cess results in a stretching of the background texture
information.

V I I . EST IMAT ION OF P IECEWISE -
SMOOTH MOT ION F IELDS WITH
D ISCONT INU IT I ES

In the proposedwork, we require piecewise-smoothmotion
fields with sharp discontinuities at moving object bound-
aries. The estimation of such motion fields that are tai-
lored for the proposed scheme is a parallel, ongoing
stream of research. To show the applicability of the pro-
posed scheme on natural sequences, we need to estimate
motion fields that satisfy our requirements. We found that
Xu et al.’s [14] motion detail preserving (MDP) optical flow
algorithm provides motion fields of sufficient quality to
workwith our proposed framework; the parentmotion field
M̂a→c is estimated using the default parameters of their
implementation.

MDP uses an extended coarse-to-fine refinement frame-
work, which is able to recover motion details at each scale
by reducing the reliance of flow estimates that are prop-
agated from coarser scales. Large displacements are han-
dled by using sparse feature detection and matching, and
a dense nearest-neighbor patch matching algorithm is used
to handle small textureless regions which are likely missed
by the feature matching algorithm. Furthermore, an adap-
tive structure map which maintains motion discontinuity is
used in the optical flow regularization term.

Next, we run Mathew et al.’s [16] breakpoint estimation
scheme to estimate motion discontinuities on M̂a→c (see
Section IV). Figure 9 shows an example estimated motion
and breakpoint field. To show the applicability of the esti-
mated motion and breakpoint field on natural sequences,
we further show estimated disocclusion masks, inverted
motion fields, as well as temporally interpolated frame f̂b .

We note that in our wavelet-based highly scalable video
coder [13], the motion field estimation and the breakpoint
estimation is performed at the encoder; at the decoder,
only the motion field inversion and subsequent motion-
compensated prediction of the frame to be interpolated
have to be performed, which significantly reduces the com-
putational complexity of the proposed approach.

V I I I . EXPER IMENTAL EVALUAT ION
AND D ISCUSS ION

In our previous work [12], we have shown preliminary
results of the proposed BOA-TFI method on synthetic
sequences, and have highlighted the quality of the proposed
method in occluded regions. In this work, we significantly
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(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j) (k) (l)

Fig. 10. First frame of each of the natural sequences used in the experiments. All sequences are readily available on https://media.xiph.org/video/derf/.

enhance the evaluation of the proposed method both quali-
tatively and quantitatively on various high-resolutionnatural
sequences (Section VIII.A), and compare our performance
with two state-of-the-art TFI methods [6, 7].

One key distinguishing feature of the proposed method
is its ability to handle regions aroundmoving objects. Video
resolution has seen a significant increase in recent years,
while the frame-rate has not dramatically changed; what
this means is that the expected size of disoccluded regions
is larger, which makes appropriate handling of such regions
more important. By contrast, the handling of occluded
regions on low-resolution video (e.g., CIF and lower) is not
so important, since they tend to be small. On such low-
resolution sequences, our TFImethod performs similarly to
existing TFI methods, and sometimes even worse, because
we do not apply any smoothing to our interpolated frames.
In this paper, we want to highlight the importance of bet-
ter motion and interpolation methods for high-resolution
data; for this reason, all experiments are performed on
high-resolution video sequences.

Recently, the computer-generated animationmovie “Sin-
tel” has become very popular in the computer vision com-
munity because of its complexity and high correlation with
natural sequences [19]; in Section VIII.C, we further show
qualitative results of the proposedmotion inference scheme
on various scenes from the Sintel sequence, which con-
tain much larger amounts of disocclusions than the natural
sequences.

A) Results on natural sequences
In this section, we show the results obtained on common
test sequences; motion fields are estimated using the opti-
cal flow estimator proposed by Xu et al. [14], as detailed in
Section VII. We compare our results with two state-of-the-
art TFI methods: Jeong et al. [6] focus on a sophisticated
multi-hypothesis testing framework, where a lot of effort is
spent on texture optimization. Veselov and Gilmutdinov [7]
focus on estimating high-quality motion fields, which are
then used without any sophisticated texture optimization to
interpolate the target frame.

We selected 12 sets of various common high-resolution
test sequences with a large variety of motion and tex-
ture complexity; Fig. 10 shows the first frame of each
sequence. For each such sequence, we choose 11 adjacent

Table 2. Quantitative comparison of the proposed method with [6, 7]
on common natural test sequences. In parantheses (·), we show the

difference between the PSNR of the proposed BOA-TFI method and the
respective method we compare it with

(“−” means that the proposed BOA-TFI performs better, “+” means
worse performance).

Veselov and
Sequence Frames Jeong et al. [6] Gilmutdinov [7] BOA-TFI

Cactus 007–025 33.15 (−0.52) 31.28 (−2.39) 33.68
Kimono 001–019 33.92 (+0.68) 33.39 (+0.14) 33.25
Kimono 175–193 39.94 (−0.83) 40.14 (−0.63) 40.77
Rushhour 049–067 35.16 (+0.52) 34.91 (+0.27) 34.64
Shields 101–119 35.90 (−0.16) 35.06 (−0.99) 36.05
Shields 385–403 33.87 (−3.91) 35.55 (−2.22) 37.77
Stockholm 261–279 36.58 (−1.26) 37.09 (−0.75) 37.84
Park 139–157 38.26 (−0.98) 38.81 (−0.43) 39.24
Parkrun 145–163 30.62 (−1.20) 30.95 (−0.87) 31.82
Station2 021–039 40.05 (−1.79) 40.91 (−0.93) 41.84
Mobcal 361–379 29.13 (−8.59) 34.75 (−2.98) 37.73
Terrace 139–157 33.27 (−4.36) 34.20 (−3.43) 37.63
Average – 34.99 (−1.87) 35.59 (−1.27) 36.85

Bold indicates the best performance for a given sequence.

even numbered frames, and interpolate the odd numbered
frames in between them; this results in 10 interpolated
frames per sequence. Table 2 presents the per sequence
results, averaged over the 10 frames.

While reporting average peak signal-to-noise ratio
(PSNR) values provides a compact way of summarizing
the performance of the tested methods, we note that this
measure only makes sense in regions where there is no
acceleration between the two reference frames. Ultimately,
it is the perceived visual quality that is important.We there-
fore provide qualitative results for some of the sequences
in Fig. 11. First off, both TFI methods chosen for compar-
ison are able to provide high-quality interpolated frames, in
particular in regions inside moving objects (i.e., away from
moving object boundaries). The differences in PSNR values
and visual quality are governed by two major factors:

1) How regions of global motion are
interpolated
Block-based methods usually employ a variant of OBMC,
which tends to oversmooth the interpolated frames, result-
ing in significant blurring of the overall texture. In Fig. 11,

https://media.xiph.org/video/derf/
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 11. Qualitative comparison of TFI on natural sequences. The first row shows the full frame. The second to last row show crops of the ground truth, proposed
BOA-TFI, Jeong et al. [6] and Veselov and Gilmutdinov [7], respectively.

this can be seen in highly textured regions such as the run-
ning man with the umbrella in the first column, as well as
the text on the card of the Cactus sequence in the second
row.

2) How regions around moving objects are
handled
Regions around moving objects are only visible from one
reference frame, and hence should only be predicted from
the frame they are visible. This can only be achieved if such
regions are detected. The quality of the proposed occlu-
sion handling can be appreciated in various crops shown,
but is most visible in the “Parkrun” sequence, as well as the
“Cactus” sequence, where the “10” (cyan crop) is properly
interpolated by our method.

In the current implementation of the proposed method,
we do not perform any texture optimization. In regions
which are highly affected by motion blur, such as the tiger
in the “Cactus” sequence, this can create artificial high fre-
quencies. A similar observation is also noted for the “Rush-
hour” sequence, which is highly affected by motion blur
and atmospheric blur. For the first frames of the “Kimono”
sequence, the optical flow estimator has problems on the
right side of the woman, and mistakenly associates back-
ground pixels to the foreground object.While hardly visible,
this results in a significant PSNR drop.

We plan to address the above-mentioned problems in
future work by selectively smoothing the prediction in
regions where there is a transition from uni- to bidirec-
tional prediction; such regions can easily be identified by
the presence of motion discontinuities.
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Table 3. Average per-frame processing time (in sec) on all the frames
tested in Section VIII.A, split up in ME and FI, as well as total time. We

further provide the CPU and amount of RAM of the machines the
results were obtained.

CPU RAM
Method Language (GHz) (GB) ME FI Total

Jeong et al. [6] C 2.8 8 410.2 498.9 909.1
Veselov and

Gilmutdinov [7]
Matlab 2.6 8 32.4 2.1 34.5

BOA-TFI C 3.2 8 355.4 8.2 363.6

B) Processing times
In this section, we report on the processing times of the
proposed TFI method, and compare it with [6, 7]. It
is important to note that none of the methods is opti-
mized for time, and the timings were obtained on different
machines. Table 3 shows the relevant specifications of the
testing machines, as well as the average per-frame process-
ing time. As mentioned before, we use [14] to estimate
motion fields, and the contribution of this work is how
such motion and estimated motion discontinuity informa-
tion can be used to improve the FI process. For this reason,
we split up the processing times for the ME part and the FI
part.

One can see that most of the processing time in the pro-
posed BOA-TFI method is spent on estimating the motion,
which is currently done using [14]. Veselov and Gilmutdi-
nov [7] is about 10 times faster than the proposed method,
while our BOA-TFI is around three times faster than Jeong
et al. [6].

We are working on anME scheme that is tailored for the
proposed method, which should make the ME both faster
and more suited for the BOA-TFI scheme. Furthermore, in
existing video codecs, the motion has to be (re-)estimated
at the decoder for TFI purposes. This is in stark contrast to
an HSVC scheme such as the one proposed in [13], which
employs estimated “physical” motion, which does not have
to be (re-)estimated at the decoder for TFI purposes; this sig-
nificantly reduces the processing time of the proposed TFI
framework.

As mentioned before, the focus of this paper is on the
motion inference process, which is part of the FI. Most
of the FI time is spent on mapping triangles from one
frame to another in order to change invert and infermotion
fields. In the current implementation, we map triangles of
size 1 × 1; in regions away from moving objects, where
motion is expected to be smooth, the triangle size could
be greatly increased without any significant loss in qual-
ity. Initial investigations on a small number of sequences
show that triangle merging can result in roughly 40–
50 times fewer triangles, and hence a significant drop
in the processing time can be expected. A much more
thorough investigation of the trade-off between larger
triangle size and interpolation quality is left for future
work.

C) Results on Sintel sequences
As mentioned earlier, the main focus of this work is on
themotion inference process which produces geometrically
consistent interpolated frames. For this to work, we need
piecewise-smooth motion fields with sharp boundaries at
moving object boundaries. The optical flow estimator we
currently use to generate the results in Section VIII.A ( [14])
is unidirectional, and hence has problems in finding the
“correct” object boundary on the side of moving objects
which do not have a correspondence; a parallel stream
of work on bidirectional ME schemes is likely to provide
further improved results.

To substantiate this claim and show what the proposed
scheme is capable of ifmotion fields better suited for ourTFI
method are employed, we turn our attention to the Sintel
sequence [19]; this computer-generated sequence is gain-
ing a lot of popularity in the computer vision community
because of its complexity. In order to show the performance
of the scheme with “better” motion, we look at the quality
of interpolated frames obtained using ground truth motion
fields. Since both methods we compare ourselves to in
SectionVIII.A cannotmake use of ground truthmotion, we
only show the results of our method, noting that any block-
ME scheme would be highly challenged by the complexity
of the underlying motion fields. Figure 12 shows sample
interpolated frames generated by the proposed BOA-TFI
method; full-resolution versions of the results, including
animated versions, can be found on the website dedicated
to this publication.4

The first column in the figure shows the (complex)
ground truth motion fields, containing a variety of types of
motion such as translation, rotation, zoom, and panning;
furthermore, the motion magnitudes are much larger than
on most natural sequences, resulting in larger regions of
disocclusion around moving objects, as visualized in the
second column of the figure. Because the ground truth
motion fields for the Sintel sequence are only between adja-
cent frames, the frame we interpolate does not exist in
the sequence, and hence we cannot compute a PSNR. As
mentioned before, what ultimately counts is the perceived
quality. One can see how the scheme is able to create high-
quality reconstructed frames. The crops in the third row
of Fig. 12 highlight difficult regions around moving object
boundaries, where our BOA-TFI scheme switches from
bidirectional to unidirectional prediction without smooth-
ing the texture.

It is worth highlighting that the current scheme does not
perform any texture optimization. In particular, the transi-
tion fromuni- to bidirectional prediction can cause artifacts
at the transition boundary if there are significant changes
in illumination between the two reference frames. This can
be observed in the right crop of the “Bandage 1” sequence
Fig. 12l, most visible in the upper left part; the part of the
wing which is brighter moves under the hand, and hence
is only predicted from the left reference frame. The wing is
significantly brighter in the left reference frame, and hence

4http://ivmp.unsw.edu.au/dominicr/atsip_boa_tfi.html

http://ivmp.unsw.edu.au/dominicr/atsip_boa_tfi.html
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(a) (b) (c)
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Fig. 12. TFI results on Sintel Sequence, which highlights the effectiveness of the proposed method to handle occluded regions. The first column shows the (color–
coded) ground truth motion fields between the two reference frames, which, together with the two reference frames (not shown), form the input to our method in
this experiment. The second column shows the union of the forward and backward disocclusion mask produced by the proposed BOA-TFI method, where yellow
pixels are locations that get disoccluded between the previous and the interpolated frame; similarly, cyan are locations that get disoccluded between the future
reference frame and the interpolated frame; red are regions that are not visible in either of the frames. The last column shows crops of the temporally interpolated
frames obtained by the proposed BOA-TFI method.
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the bidirectionally predicted part of the wing is darker than
the unidirectionally predicted part. We plan to address this
problem by looking into ways of optimizing the texture in
such regions, which are easily identified from the disoc-
clusion mask, and apply a selective filter in such transition
regions. Even without any texture optimizations, we show
that a good motion inference scheme is highly competitive
with state-of-the-art TFI methods.

I X . CONCLUS IONS AND FUTURE
WORK

This paper presents a TFI framework that creates geo-
metrically consistent interpolated frames; explicit handling
of occluded regions allows to resolve traditionally prob-
lematic regions around moving object boundaries. This
is made possible by using high-quality piecewise-smooth
motion fields, together with motion discontinuities at mov-
ing object boundaries. Motion discontinuities allow to rea-
son about where foreground objects move, and enables
to resolve double mappings, as well as assign reasonable
motion in disoccluded regions.

We evaluate themethod on a large set of natural and chal-
lenging computer-generated sequences, and our method
compares favorably to state-of-the-art TFI methods. While
the estimation and interpolation steps can be applied
directly to the output from any current video codec, the
proposed approach is especially beneficial if used in con-
junction with a highly scalable video coder that employs
the motion and breakpoint fields directly. In this case, the
proposed method can be understood as an extension of the
decoding algorithm, avoiding the need for (re)estimation of
motion.

Ongoing and future work includes the development of
a hierarchical ME scheme that is tailored to the proposed
motion inference scheme. Furthermore, we plan to look
into texture optimizations such as optical blur handling to
further improve the visual quality of the upsampled frames.
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