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Boundary operation of 2D non-separable
oversampled lapped transforms
kosuke furuya1, shintaro hara2, kenta seino1 and shogo muramatsu3

This paper proposes a boundary operation technique of two-dimensional (2D) non-separable oversampled lapped transforms
(NSOLT). The proposed technique is based on a lattice structure consisting of the 2D separable block discrete cosine transform
and non-separable redundant support-extension processes. The atoms are allowed to be anisotropic with the oversampled, sym-
metric, real-valued, compact-supported, and overlapped property. First, the blockwise implementation is developed so that the
atoms can be locally controlled. The local control of atoms is shown to maintain perfect reconstruction. This property leads an
atom termination (AT) technique as a boundary operation. The technique overcomes the drawback of NSOLT that the popular
symmetric extension method is invalid. Through some experimental results with iterative hard thresholding, the significance of
AT is verified.
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I . I NTRODUCT ION

Filter banks and transforms are essential components of sig-
nal processing and there are a wide variety of applications
such as compression, communication, denoising, restora-
tion and feature extraction [1–4]. For example, discrete
cosine transform (DCT) and discrete wavelet transform
(DWT) are popularly used in image and video process-
ing. DCT is adopted by JPEG, MPEG-2, and MPEG4/AVC,
while DWT is adopted by JPEG2000 and used for digital
cinema [1, 2]. These transforms, however, have a disadvan-
tage in representing diagonal edges and textures due to the
separability. From this background, development of image
transforms involves non-separable construction for han-
dling such diagonal structures [5–7]. The oversampled (OS)
property is important as well as the non-separable prop-
erty. Let us assume a P -channel filter bank. We denote
the pth channel down- and upsampling factors as Mp .
Then the sampling ratio of the pth channel, Mp , is given
by Mp = | det(Mp)|. The total sum of the reciprocals of
{Mp}P−1

p=0 , that is,
∑P−1

p=0
1

Mp
is called redundancyR. When
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R = 1, the system is referred to as a critically sampled (CS)
filter bank. The other case, R > 1, is called an OS filter
bank.Advantage ofOSfilter bank is its high degree of design
freedom [5, 7–10]. There is infinite combination of analysis
and synthesis banks in the OS case, while a CS system has
unique combination.

Two simple ways are well known to construct OS fil-
ter banks from CS ones. One is a mixture construction of
multiple CS systems, and the other is an undecimated, or
shift-invariant construction, which is realized by removing
the downsamplers andupsamplers fromaCS system [10, 11].
The redundancy R is, however, restricted to be integer in
these approaches. In particular, the undecimated approach
tends to have high redundancy. Undecimated Haar trans-
form and Contourlets are known as OS systems. Undeci-
mated Haar transform satisfies OS, linear-phase (LP) and
paraunitary (PU) property, but does not have the non-
separable property. On the other hand, Contourlets can
satisfy the non-separable and OS property. However, simul-
taneous realization of the LP and PU property is restrictive
due to the structure [9]. In general, the higher the redun-
dancy is, the larger the computation andmemory consump-
tion become. From the fact, lower redundancy is requested
while maintaining preferable properties for image process-
ing. The authors have proposed two-dimensional (2D) non-
separable oversampled lapped transforms (NSOLTs) as a
new transform [12]. The transform is non-separable and
can simultaneously satisfy the OS, compact-supported, LP,
tight-frame, symmetric, real-valued, and overlapped prop-
erty. NSOLTs are also equippedwith no-DC-leakage option.
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The redundancy can be controlled flexibly by the num-
ber of channels P and the sampling ratio M. NSOLTs
with redundancy less than two were shown to be supe-
rior or comparable with the undecimated Haar wavelet
transform in terms of image restoration performance [12,
13]. It is also possible to apply a learning-based dictio-
nary design [14]. NSOLTs are verified to have comparable
or superior sparse representation performance to Sparse
K-SVD [15].

Managing the boundary is one of important issues in
the image-processing applications, in order to reduce the
boundary distortion. Note that the symmetric extension
method is no longer applicable to NSOLTs unless the four-
fold symmetry is imposed on every atom [16–18]. Although
the periodic extension (PE)method can take the place of the
symmetric extensionmethod, it has drawbacks of wrapping
effects and global memory access requirement at the bor-
der. We adopt a different approach for NSOLTs. In [19, 20],
we have proposed a basis termination (BT) technique for
non-separable CS lapped transforms, where the numbers
of symmetric and anti-symmetric channels are restricted
to be the same as each other. In this paper, we extend the
BT technique for NSOLTs, i.e. the OS case, and propose a
new technique which can deal withmore general configura-
tion. We refer to the proposed method as atom termination
(AT) since NSOLTs are OS and the term “basis” is no longer
appropriate.

The proposed technique is shown to serve variability
of atoms block by block without any violation to the per-
fect reconstruction. It is also shown that a special selection
of the lattice parameters breaks off an overlapping rela-
tion between neighboring blocks locally. By applying this
property at the border, we can realize the AT.

This paper is an extended version of the conference
paper [21]. The performance evaluation is revised to use the
iterative hard thresholding (IHT) algorithm [22, 23] in order
to decrease the influence of selection of a dual analysis dic-
tionary. This paper is organized as follows: in Section II, as
a preliminary, the lattice structure of 2D NSOLT is briefly
reviewed. Section III derives the blockwise implementation
technique for the lattice structure and the boundary oper-
ation with AT. Then, Section IV verifies the significance of
the proposedmethod through experimental results with the
IHT for some standard images, followed by conclusions in
Section V.

I I . REV I EW OF 2D NSOLT

NSOLT is a lattice structure realization of 2D non-separable
oversampled linear-phase perfect reconstruction filter bank
(NS-OSLPPRFB). Let us review the lattice structure of
NSOLT.

First, we summarize some symbols and notations used
throughout this paper. My and Mx are reserved for dec-
imation factors in the vertical and horizontal directions,
respectively. The total decimation factor is given by M =
My × Mx . As a preliminary, we define a P × P butterfly

matrix B(m)
P as

B(m)
P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

(
Im Im

Im −Im

)
, m = P

2
,

1√
2

⎛
⎜⎝Im O Im

O
√

2IP−2m O

Im O −Im

⎞
⎟⎠ , m <

P

2
,

(1)
where �M/2� ≤ m ≤ �P/2�.�·� and �·� are the ceiling
function and the floor function, respectively.

Through out this paper, symbols O and Im are reserved
for the null and m × m identity matrix, respectively,
where subscript m is omitted unless it is significant. A
product of sequential matrices is denoted by �N

n=1An =
ANAN−1AN−2 · · · A2A1.

A) Lattice structure of 2D NSOLT
In the article [7], we showed a method to construct mul-
tidimensional non-separable linear-phase paraunitary filter
banks (NS-LPPUFBs) with a lattice structure, and then,
in [24], Gan and Ma showed the reduced parameteriza-
tion. NSOLT is an extension of [7] to the OS case and can
simultaneously hold the OS, compact-support, symmetric,
real-valued, and overlapped property. It can also satisfy the
PU property and realize a Parseval tight-frame. NSOLT is
categorized into two types as:

• Type-I : ps = pa ,
• Type-II : ps �= pa ,

where ps and pa denote the numbers of symmetric and
antisymmetric atoms, respectively.

1) Type-I NSOLT
Figure 1(a) shows an example of Type-INSOLT lattice struc-
ture. When the number of channels P is even, it is possi-
ble to set ps = pa = P/2. The polyphase matrix of Type-I
NSOLT has the following product form:

E(z) =
Ny∏

ny=1

{R{y}
ny

Q(zy)}
Nx∏

nx=1

{R{x}
nx

Q(zx)}R0E0, (2)

where

Q(zd) = B(P/2)
P

(
Ips O
O z−1

d Ipa

)
B(P/2)

P ,

R{d}
n =

(
Ips O
O U{d}

n

)
,

where U{d}
n ∈ R

pa×pa is an arbitrary non-singular matrix.
We adopt the initial matrix defined by the product of the
matrix representation of 2D DCT E0 ∈ R

M×M and

R0 =
(

W0 O
O U0

)⎛⎜⎜⎝
I�M/2� O

O O
O I�M/2�
O O

⎞
⎟⎟⎠ ∈ R

P×M , (3)
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(a)

(b)

Fig. 1. Types I and II lattice structure of analysis NSOLT, where E0 denotes symmetric orthonormal transformmatrix directly given by 2-DDCT, andW0,U0,U
{d}
n ,

U{d}
� and W{d}

� are arbitrary invertible matrices. Nd is the order of the polyphase matrix in the direction d ∈ {y, x}, and d(z) is the delay chain determined by the
downsampling factorM = diag(My , Mx ). (a) Example of Type-I NSOLT. (#Channels P = 6, Sampling factor M = 4)], (b) Example of Type II NSOLT. (#Channels
P = 7, Sampling factor M = 4, ps > pa ).

where W0 ∈ R
ps ×ps and U0 ∈ R

pa×pa are arbitrary non-
singularmatrices. Thematrices {R{d}

n Q(zd)} realize the sup-
port extension of atoms, i.e., overlapping of atoms.

2) Type-II NSOLT
Figure 1(b) shows an example of Type-II NSOLT lattice
structure. Type-II NSOLT is given when ps �= pa . We here
consider only the case ps > pa with even Ny and even Nx .
The polyphase matrix E(z) of Type-II is represented by the
following product form:

E(z) =
Ny/2∏
�y=1

{
R{y}

E �y
QE (zy)R

{y}
O�y

QO (zy)
}

×
Nx/2∏
�x=1

{
R{x}

E �x
QE (zx)R

{x}
O�x

QO (zx)
}

R0E0, (4)

where

QE (zd) = B(pa )

P

(
IP−pa O

O z−1
d Ipa

)
B

(pa)

P ,

QO (zd) = B(pa )

P

(
Ipa O
O z−1

d IP−pa

)
B

(pa)

P ,

R{d}
E � =

(
W{d}

� O
O Ipa

)
, R{d}

O� =
(

Ips O
O U{d}

�

)
.

W{d}
� ∈ R

ps ×ps and U{d}
� ∈ R

pa×pa are arbitrary invertible
matrices. We adopt the initial matrix defined by the prod-
uct of the 2D DCT E0 ∈ R

M×M and R0 ∈ R
P×M in (3). The

matrices
{
R{d}

E �Q{d}
E �R{d}

O�Q
{d}
O�

}
realize the support extension

of atoms.

B) Lattice structure with advance shifters
In the spatial domain, advance shifters are allowed as well
as delay shifters. For the later discussion, we consider mod-
ifying Q(zd) and QE (zd) in each type of NSOLT by intro-
ducing the advance shifters.

1) Type-I NSOLT
Let us define

Q(zd) = zdQ(zd) = B(P/2)
P

(
zdIps O

O Ipa

)
B(P/2)

P .

Then, we can rewrite (2) for even Ny and Nx as

E(z) = z
− Ny

2
y z

− Nx
2

x

Ny/2∏
ny=1

{
R{y}

2ny
Q(zy)R

{y}
2ny−1Q(zy)

}

×
Nx/2∏
nx=1

{
R{x}

2nx
Q(zx)R

{x}
2nx−1Q(zx)

}
R0E0. (5)

Figure 1(a) shows the lattice structure which corresponds
to (5), where we omit to illustrate delays z

−Ny/2
y and z−Nx/2

x

since they are less significant later. Note that the operation
with Q(zd) is realized by the combination of the following
matrices:

B(P/2)
P = 1√

2

(
IP/2 IP/2

IP/2 −IP/2

)
,

�(zd) =
(

Ips O
O z−1

d Ipa

)
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as Q(zd) = B(P/2)
P �(zd)B

(P/2)
P . Then, the operation with

Q(zd) is realized by B(P/2)
P and

�(zd) =
(

zdIps O
O Ipa

)

as Q(zd) = B(P/2)
P �(zd)B

(P/2)
P .

2) Type-II NSOLT with ps > pa
Similarly, using the advance shifters, Type-II NSOLT is
realized by

QE (zd) = zdQE (zd) = B(pa )

P

(
zdIP−pa O

O Ipa

)
B(pa )

P .

Then, we can rewrite (4) for even Ny and Nx as

E(z) = z
− Ny

2
y z

− Nx
2

x

Ny/2∏
�y=1

{
R{y}

E �y
QE (zy)R

{y}
O�y

QO (zy)
}

×
Nx/2∏
�x=1

{
R{x}

E �x
QE (zx)R

{x}
O�x

QO (zx)
}

R0E0. (6)

Figure 1(b) illustrates the lattice structure for (6), where
we omit to draw the delays z

−Ny/2
y and z−Nx/2

x . Here, note
that QE (zd) is realized by the combination of the following
matrices:

B(pa )

P = 1√
2

⎛
⎝Ipa O Ipa

O
√

2IP−2pa O
Ipa O −Ipa

⎞
⎠ ,

�(zd) =
(

IP−pa O
O z−1

d Ipa

)

as QE (zd) = B(pa )

P �(zd)B
(pa )

P . In addition, QE (zd) is real-
ized by B(pa )

P and

�(zd) =
(

zdIP−pa O
O Ipa

)
,

that is, QE (zd) = 1
2 B(pa )

P �(zd)B
(pa )

P .

I I I . BOUNDARY OPERAT ION

In this section, we illustrate blockwise implementation of
NSOLT based on the lattice structure, and propose the
boundary operation for AT. Note that we describe them for
Type-II NSOLT mainly because the way of the primitive
block operations and the boundary operation for Type-
II NSOLT are different from the previous work in [19].
Thus, this is the main contribution of this work. In contrast,
these operations for Type-I NSOLT are almost the same
as [19] so that we omit to show the details of primitive block
operations and the boundary operation for Type-I NSOLT.

E0

E0E0

E0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Primitive block operations for Type-II NSOLT, where the white and
shaded regions mean operations for upper and lower half intermediate coef-
ficient vectors, respectively, where I in the center block is the identity matrix for
center intermediate coefficient. (a) E0, (b) R0, (c) B(pa )

P , (d) R{d}
O�, (e) R{d}

E � , (f)
�(zx), (g) �(zy), (h) �(zx), and (i) �(zy).

A) Primitive block operations
1) Type-I NSOLT
The primitive block operation for Type-I NSOLT is real-
ized using the operations in Fig. 2. These operations are
detailed in next paragraph section. Note that the center
block vanishes from the block operations for Type-INSOLT.

2) Type-II NSOLT with ps > pa
Figure 2 summarizes the primitive block operations
required for analyzing an image based on the product form
of (6), where 2 × 2 neighboring blocks are illustrated. Com-
bination of these primitive operations can implement the
analysis process, as in Fig. 1(b). Because the synthesis pro-
cess is realized through the inverse primitive operations in
reverse order, we omit to show the detail.

The first operation with delay chain d(z), downsampling
by factorM(= diag(My , Mx)), and the transform bymatrix
E0 in Fig. 1 are exactly the same as the 2D block DCT, which
is shown in Fig. 2(a). Note that operation (a) is adopted
to the block before inserting the center block coefficient.
After dividing the 2DDCT coefficients into two sets accord-
ing to the atom symmetry, that is, even or odd symmetry,
the transform with matrix R0 is applied as in Fig. 2(b),
where the white and shaded regions except the center block
show operations for intermediate coefficients analyzed by
the even- and odd-symmetric 2D DCT basis images.

Figures 2(c)–(i) relate to the support extension of atoms.
Figure 2(c) shows the operation with B(pa )

P . This is noth-
ing but the butterfly calculation. Figure 2(d) illustrates the
transform corresponds to matrix R{d}

O� that processes only
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the lower half intermediate coefficients throughmatrixU{d}
� .

In Fig. 2(e), the matrix R{d}
E � is applied to the upper half

intermediate coefficients including the center block through
matrix W{d}

� . Operations �(zx) and �(zy) in Figs 2(f) and
(g) delay the lower half intermediate coefficients.�(zx) bor-
rows the coefficients from the left block. Similarly, �(zy)

shifts the left block coefficients from the upper block. Fig-
ures 2(h) and (i) illustrate the operations of �(zx) and
�(zy), which return the upper half coefficients to the left
and upper blocks, respectively. These primitive block oper-
ations are applied to every block in the order indicated
by (6).

Note that all of the operations illustrated in Figs 2(a)–
(e) are independent of the other blocks. Although the delay
and advance shift operations shown in Figs 2(f)–(i) depend
on the others, the relation is limited to the neighboring
blocks. Therefore, the non-singular matrices W0, U0, U{d}

� ,
and W{d}

� can vary block by block without any violation to
the perfect reconstruction of the whole system.

B) Boundary operation
The boundary treatment should be taken into account for
some image analysis–synthesis systems since it can cause
distortion at boundary for the image processing appli-
cations. Unfortunately, the popular symmetric extension
approach is not available for NSOLT unless the fourfold
symmetry is satisfied.

As a solution, we propose to terminate the depen-
dence between neighboring blocks by shrinking the sup-
port region of atoms. In Type-I NSOLT, AT can be
realized by locally making the support extension stages
{R2nd Q(zd)R

{d}
2nd−1Q(zd)} null order, i.e., independent of zd .

This purpose is achieved if we can cancel the delay and
advance shifters out locally and make the support exten-
sion invalid. In Type-II NSOLT, it can be realized bymaking
{R{d}

E� QE (zd)R
{d}
O�QO (zd)} null order local. Let us show how

to realize the AT process in each type of NSOLT.

1) Type-I NSOLT
AT for Type-I NSOLT can be realized by locally setting
U{d}

2n−1 = −I as follows:

Q(zd)R
{d}
2n−1Q(zd)

= B(P/2)
P

(
zdIps O

O Ipa

)
B(P/2)

P

×
(

I O
O U{d}

n

)
B(P/2)

P

(
Ips O
O z−1

d Ipa

)
B(P/2)

P

= 1

4

(
(zd + 1)I (zd − 1)I
(zd − 1)I (zd + 1)I

)

×
(

I O
O −I

)(
(1 + z−1

d )I (1 − z−1
d )I

(1 − z−1
d )I (1 − z−1

d )I

)

= 1

4

(
(zd + 1)I (1 − zd)I
(zd − 1)I −(zd + 1)I

)

×
(

(1 + z−1
d )I (1 − z−1

d )I
(1 − z−1

d )I (1 − z−1
d )I

)

=
(

I O
O −I

)
, (7)

where

B(P/2)
P = 1√

2

(
I I
I −I

)
,

R{d}
n =

(
Ips O
O U{d}

n

)
.

Equation (7) shows that the Type-I NSOLT can cancel the
overlapping property of atoms. If the horizontal parameter
matrices U{x}

2n−1 for all n in a block set to −I, the relation of
the current block to the left block is terminated. In addition,
the vertical parameter matrices U{y}

2n−1 for all n in a block to
−I terminates the relation of the current block to the upper
block. This relation is equivalent to the BT in [19] because
the number of upper and lower half intermediate coeffi-
cients are ps = pa = P

2 . From this fact, for Type-I NSOLT,
the AT procedure becomes almost the same as the BT pro-
cedure. Thus, we omit to show the detailed derivation of AT
for Type-I NSOLT.

AT for Type-II NSOLT is, however, different from the
Type-I case. The difference appears in the implementation
of Figs 4(c) and (g) for coefficient shift processes. In the case
of Type-I NSOLT, these processes are applied to only upper
and lower half intermediate coefficients except for the center
block.

2) Type-II NSOLT
Type-II NSOLT AT can be realized by locally setting for
U{d}

� = −I as follows:

QE (zd)R
{d}
O�QO (zd)

= B(pa )

P

(
zdIP−pa O

O Ipa

)
B(pa )

P ×
(

Ipa O
O U{d}

�

)

B(pa )

P

(
Ipa O
O z−1

d IP−pa

)
B(pa )

P

= 1

4

⎛
⎝(zd + 1)Ipa O (1 − zd)Ipa

O 2zdIP−pa O
(zd − 1)Ipa O −(zd + 1)Ipa

⎞
⎠

×
⎛
⎝(1 + z−1

d )Ipa O (1 − z−1
d )Ipa

O 2zdIP−pa O
(1 − z−1

d )Ipa O (1 + z−1
d )Ipa

⎞
⎠

=
(

IP−pa O
O −Ipa

)
, (8)

where

B(pa )

P = 1√
2

⎛
⎝Ipa O Ipa

O
√

2IP−2m O
Ipa O −Ipa

⎞
⎠ ,

R{d}
O� =

(
Ipa O
O U{d}

�

)
.
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Fig. 3. Boundary operationwithAT, where the shaded area denotes the original
support region of a given image. The blocks including ‘|’, ‘−’ and ‘+’ denote
termination blocks in the horizontal, vertical, and both directions, respectively.

From (8), Type-II NSOLT can also control the overlap-
ping property of atoms. It is noticed that the relation in
(8) reduces the number of overlapping blocks in direction
d ∈ {y, x}. If the horizontal parameter matrices U{x}

� for all
� in a block set to −I, the relation of the current block to
the left block is terminated. In addition, the vertical param-
eter matrices U{y}

� for all � in a block to −I terminates the
relation of the current block to the upper block.

Figure 3 illustrates the termination block position, where
the blocks including ‘|’, ‘−’ and ‘+’ denote the termination
blocks in the horizontal, vertical, and both directions.
Around the original picture, any value can be assumed

since they have no influence on the essential transform
coefficients.

Figure 4 illustrates the local AT procedure in the block-
wise operation for Type-II NSOLT, where succeeding three
blocks are denoted. Note that the discussion holds for
both the horizontal and vertical directions. In Fig. 4(a),
ub and vb denote upper and lower intermediate coeffi-
cients, where b means the relative position from the cur-
rent block. As well, the cb in the center block contains
a part of upper half intermediate coefficients vector. The
next step is the butterfly operation with B(pa )

P for ub and
vb block by block in Fig. 4(b), where wb = ub + vb and
xb = ub − vb . The butterfly operations are not adopted
to cb . Then, each lower vector xb and the center block
cb are moved to next block as shown in Fig. 4(c). After
the operation Fig. 4(c), the butterfly operation is applied
to vectors ub and vb again as in Fig. 4(d). In Fig. 4(e),
the transform with U{d}

� is applied to each lower vector,
where we set U{d}

� = −I for the block of interest in the
thick frame. After the butterfly operation in Fig. 4(f), each
upper vector is advanced to the previous block, as shown
in Fig. 4(g), and the butterfly operation is applied to as in
Fig 4(h).

Note that the left block of the vertical dashed line in
Fig. 4(h) is independent of the coefficients for b ≥ 0. Simi-
larly, the right block is independent of the coefficients for
b < 0. These facts imply that these blocks have no rela-
tion to each other. That is, the atoms are terminated at the
vertical dashed line without any violation to the perfect
reconstruction.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 4. AT flow of the blockwise operations corresponding to (8), where succeeding three blocks are exemplified. (a) Intermediate coefficients of each blocks. (b)
Operation withB(m)

P . (c) Operation with�(zx ). (d) Operation withB(m)
P . (e) Operation withR{d}

O�. (f) Operation withB(m)
P . (g) Operation with�(zx). (h) Operation

withB(m)
P . These operations from (a) to (h) are applied alphabetical order, whereU = U{d}

� . In (e), the thick frame shows that the block towhich parameterU{d}
� = −I

is applied. The vertical dashed line in (g) and (h) denotes the separation of dependence between the blocks. For convenience, we omit to show the details in the
right block in (h). Note that cb in center block is operation of inserting zero in Fig. 1.

Fig. 5. Design example of Type-II NSOLT, where the impulse responses are shown in the top, and frequency amplitude responses are shown in the bottom, where
P = pa + ps = 7, My = Mx = 2(M = 4), and Ny = Nx = 4.
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I V . EXPER IMENTAL RESULT

Let us verify the significance of the proposed AT technique.
Different from [21], the IHT algorithm was adopted in this
experiment. In this experiment, we use filters of three dif-
ferent extent, where polyphase order (Ny , Nx) are set to
(2, 2), (4, 4) and (6, 6). Figure 5 shows an example set

(a) (b)

(c) (d)

Fig. 6. Original images of size 128 × 128, 8-bit grayscale. (a) lena, (b) goldhill,
(c) barbara, and (d) baboon.

Table 1. Experimental settings of IHT with NSOLT.

Downsampl. M 2 × 2
#Channels P 7
Polyphase order (2, 2), (4, 4), (6, 6)
#Transform Coefs. 500

of impulse responses and frequency amplitude responses
designed using the method in [12]. Figure 6 shows original
images in this experiment. We apply each image to NSOLT
with PE and AT. Parameter setting of NSOLT is shown in
Table 1. Figure 7 shows eight examples of the terminated
atom sets and one normal atom set. It is observed that the
region of support is properly controlled through the local
termination process. These atoms are no longer symmet-
ric at the border. However, they keep the PR property and
prevent the wrapping effect caused by the PE method.

Figure 8 shows a part of experimental results of IHT
with NSOLT of polyphase (Ny , Nx) = (4, 4). The original
picture is given in Figs 8(a)–(c) show the reconstruction
results of PE and AT, respectively. From Fig. 8, it is observed
that the PE method occurs wrapping effect at the right and
bottom boundary, while the AT method, does not. Table 2
shows peak signal-to-noise ratio (PSNR) for NSOLT of dif-
ferent polyphase order. From Table 2, NSOLTwith AT gives
a higher PSNR than that with PE in each case.

(a) (b) (c)

Fig. 8. A part of experimental result with IHT in the case of (Ny , Nx ) = (4, 4).
(a) Original. (b) NSOLT with PE (PSNR: 26.80 [dB]). (c) NSOLT with AT
(PSNR: 28.12 (dB)). In this experiment, six-level hierarchical 2D wavelet con-
struction was adopted and the number of transform coefficients in IHT was set
to 500.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Examples of terminated atom sets and the original normal atom set, where the contrast of each atom is enhanced in order to clarify the region of support.
(a) Top left. (b) Top. (c) Top right. (d) Left. (e) Normal. (f) Right. (g) Bottom left. (h) Bottom. (i) Bottom right.
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Table 2. Experimental result of PSNR (dB) with PE and AT.

Polyphase
order Images PE AT

Lena 26.26 27.20
Goldhill 27.29 27.52

(2, 2) Barbara 21.50 21.74
Baboon 21.01 21.14
Lena 26.80 28.12
Goldhill 27.31 27.80

(4, 4) Barbara 21.71 22.02
Baboon 21.17 21.32
Lena 26.63 28.35
Goldhill 27.26 27.90

(6, 6) Barbara 21.77 22.10
Baboon 21.25 21.53

V . CONCLUS ION

In this work, we proposed a blockwise implementation of
2DNSOLTs and a boundary operation technique. This tech-
nique was shown to serve local variability of atoms without
any violation of the perfect reconstruction. The blockwise
implementation is effective for the image processing appli-
cation since it allows us to control the region of support
locally and leads an AT to prevent distortion at image
boundary. Through experiments with IHT, we verified the
significance of the proposed AT.
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