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Ensemble based speaker recognition using
unsupervised data selection
chien-lin huang1, jia-ching wang1 and bin ma2

This paper presents an ensemble-based speaker recognition using unsupervised data selection. Ensemble learning is a type
of machine learning that applies a combination of several weak learners to achieve an improved performance than a single
learner. A speech utterance is divided into several subsets based on its acoustic characteristics using unsupervised data selection
methods. The ensemble classifiers are then trained with these non-overlapping subsets of speech data to improve the recognition
accuracy. This new approach has two advantages. First, without any auxiliary information, we use ensemble classifiers based
on unsupervised data selection to make use of different acoustic characteristics of speech data. Second, in ensemble classifiers,
we apply the divide-and-conquer strategy to avoid a local optimization in the training of a single classifier. Our experiments
on the 2010 and 2008 NIST Speaker Recognition Evaluation datasets show that using ensemble classifiers yields a significant
performance gain.

Keywords: Speaker recognition, Ensemble classifier, Unsupervised data selection

Received 19 May 2015; accepted 12 April 2016

I . I NTRODUCT ION

Nowadays, the demand continues to increase for speaker
recognition technology in such applications as telephony,
security, and communication. For example, the application
of voice mining is used to monitor the communications,
which is popularly adopted by intelligence agencies, govern-
ment and law Enforcement. Speaker recognition is a kind
of biometric verification such as fingerprint, iris, and face
recognition. The major components of speaker recogni-
tion, which finds the identity information of a speaker from
speech signals, include feature analysis, statisticalmodeling,
and verification decision.

Most speaker recognition systems use cepstrum-based
features such asMel-frequency cepstral coefficients (MFCC)
[1] or perceptual linear prediction [2] cepstral coefficients,
which provide an estimate of short-term energy as a
function of frequency. Gaussian mixture model (GMM)
has been commonly applied for statistical modeling in
speaker recognition applications with speaker adaptation
techniques. To solve speaker data sparseness and channel
mismatch problems,maximum a posteriori (MAP) has been
widely used to adapt the speaker model from the universal
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background model (UBM) [3]. To compensate the chan-
nel and session effects, eigenchannel is applied in speaker
recognition [4]. Recently, i-vector technique is proposed to
estimate total variability for speaker adaptation [5].

Different from speech recognition with HMM mod-
eling [6], the common speaker recognition methods are
based on GMM framework. The advantage of the GMM-
based approach is that speaker recognition can be per-
formed in a completely text-independent manner [7] and
all speech frames without any transcription and segmen-
tation are used to estimate speaker information and build
GMMs. However, one disadvantage of such a GMM mod-
eling approach is that the acoustic variability of phonetic
events is not taken into account during comparisons with
different speakers [7]. To solve this problem, many previous
studies focused on using specific constrained groups of data
to improve the speaker recognition performance.

A) Related works in ensemble-based speaker
recognition
The generalization ability of an ensemble could be signif-
icantly better than that of a single learner. Zhang et al.
intended to improve the performance of the speaker recog-
nition system by introducing a novel method combin-
ing optimizing annular region-weighted distance k-nearest
neighbor with BagWithProb ensemble learning schemes
[8]. In the DataBoost-UP algorithm, the data (i-vectors)
is synthesized using the utterance partitioning technique
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instead of random generation of attribute values in themin-
imum and maximum interval. Both the minority (target
speaker) and majority (background speakers) classes are
oversampled to prevent overemphasis on the hard instances
of the minority class. The DataBoost-UP is used to create
an ensemble of SVM classifiers [9]. Sturim et al. presented
text-constrained Gaussian mixture models to close the gap
between text-dependent and text-independent speaker ver-
ification. Speech is segmented into acoustic units such as
words or phones, and thenGMM–UBMverifiers are trained
and tested using only speech from constrained groups of
units [10]. Park and Hazen proposed speaker identification
using domain-dependent automatic speech recognition
(ASR) to provide phonetic segmentation. A combination of
classifiers is used to reduce identification errors [7]. Baker
et al. studiedGMMmodeling usingmultilingual broad pho-
netics to construct syllabic events and segmentations for
speaker verification [11]. Bocklet and Shriberg described
a speaker recognition approach using syllable-level con-
straints for cepstral frame selection. Complementary infor-
mation and improvement can be found by combining eight
subsystems including syllable onsets, syllable nucleii, syl-
lable codas, syllables following pauses, one-syllable words,
and three other kinds of syllables [12]. Sanchez et al. stud-
ied the performances between constraint-dependent and
constraint-independent approaches for training UBMs and
joint factor analysis. They explored unit-based constraints,
which are regions constrained by specific syllables, phones,
or sub-phone regions [13]. In addition, unsupervised clus-
tering was applied to speaker recognition to compensate
the domain mismatch between training, enrollment, and
testing data in [14]. Attempts of ensemble of speaker recog-
nition systems have been made in [15].

All of the above work segmented and selected data
for more detailed speaker model construction based on
prosody, syllable, or phoneme analysis. Although these
approaches showed improvements in speaker recognition,
many shortcomings remain in them. For example, the qual-
ity of the feature frame selection is obviously influenced
by the accuracy of ASR or prosody estimation systems.
Furthermore, prior or auxiliary knowledge is required for
such constrain-based approaches as language information.
According to these reasons, we do not have experimental
comparisons. Although there is no comparison with the
existing work on the ensemble of speaker recognition, the
performance of the proposed method is consistently better
than the baseline.

B) Proposed framework
In this study, we propose an ensemble learning using unsu-
pervised data selection, which considers acoustic variability
in the model training, speaker enrollment and testing. The
speech data are segmented into several subsets of speech
frames without any auxiliary information or pre-processor
(ASR or prosody estimator systems) and then ensemble
classifiers are trained using these subsets in a divide-and-
conquer manner. The ensemble framework is similar to

Fig. 1. The pipeline of the proposed ensemble based speaker recognition using
unsupervised data selection.

neural networks or mixture of experts [16]. In such a way,
we can avoid the local optimization training when a single
conventional classifier is adopted.

Figure 1 shows the pipeline of the proposed ensemble-
based speaker recognition using unsupervised data selec-
tion. Basically, there are three elements before we do
ensemble training and testing. First, at the feature extrac-
tion stage, we aim at extracting discriminative and effective
acoustic features by applying long-term feature (LTF) anal-
ysis. Second, at the distance metric stage, we explore two
categories of distance metrics, including vector-based and
likelihood-based distancemetrics, tomeasure the similarity
between data. Finally, the clustering algorithm can be natu-
rally employed at the clustering stage. We conducted exper-
iments on the 2010 and 2008 NIST Speaker Recognition
Evaluation (SRE) datasets.

C) Outline of the paper
The rest of this paper is organized as follows. In Sections
II–IV, the pipeline of the proposed method, namely, feature
extraction, distance metric, and clustering for ensemble-
based speaker recognition, are described. In Section V, we
describe our experiment setup and protocol, and introduce
the performance evaluation metrics. We present the exper-
iment results as well as a discussion of the results in Section
VI. Finally, we conclude this work in Section VII.

I I . F EATURE EXTRACT ION

At the first stage of ensemble-based speaker recognition
pipeline is feature extraction. Feature extraction is an
important process to estimate a numerical representation
from speech samples and to characterize the speakers.Many
kinds of feature analysis have been proposed for speaker
recognition in previous studies. The conventional short-
term spectral features, such as MFCC, are useful acoustic
features for speaker recognition. Many efforts have been
devoted to improving the effectiveness of MFCC, such as
reducing the dimensionality, enhancing discriminative abil-
ity [17], and characterizing speakers with temporal fea-
tures [18]. Due to the importance of phase in human
speech, features are extracted by integrating MFCC and
phase information for speaker identification and verifica-
tion [19]. In deep neural network (DNN) speech recogni-
tion [20], experiments show the gain of DNN is almost
entirely attributed to DNN’s feature vectors that are con-
catenated from several consecutive speech frames within
a relatively long context window. In this study, we aim at
extracting discriminative and effective acoustic features for
speaker recognition, by applying LTF analysis to enhance
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Fig. 2. Illustration of speaker discriminative feature analysis using the mean of
short-term spectral features in a long-term window.

the discriminative capability of short-term spectral features
as shown in Fig. 2.

We applied LTF analysis [21] as the feature extraction
based on the traditional MFCCs of a short-time spectral
analysis of 16ms. We extracted 36 MFCCs consisting of 12
coefficients in addition to the first and second derivatives.
Speech signals were divided into 18 sub-bands between 250
and 3500Hz using theMel-filter bank tomake spectral con-
tents that resemble those of telephone channels. LTF is used
to average several short-time spectral features in a long-time
window and capture the spectral statistics over a long period
of time. The overlapping long-termwindows are applied on
the short-term features, reducing short-termMFCC frames
J to LTF frames K , with K = (J − L)/Z + 1. L denotes
the size of the long-term window and Z is the step of the
long-term window shift. Since the mean of multiple short-
term spectral features is used, LTF can simultaneously take
account of short-term frequency characteristics and long-
term resolution. This transformation results in amore com-
pact feature vector for statisticalmodeling. According to the
previous study [21], the optimal values of L and Z were
4 and 2, respectively.

I I I . D I STANCE METR IC

The second stage of ensemble-based speaker recognition
pipeline is distance metric calculation. The distance metric
calculation of ensemble-based speaker recognition is simi-
lar to the speaker diarization scheme [22, 23]. The similarity
of between them is to search for homogeneous segments.
The differences between them are purposes. In speaker
diarization, speaker segmentation is applied to extract the
longest possible homogenous segments in a conversation.
In ensemble-based speaker recognition, the distance met-
ric calculation is used to measure similarity of short feature
frames in speech of a speaker. The distance metrics are
used for acoustic clustering of the speech data. We explore
twodistancemetrics, the vector-based and likelihood-based
distance metrics, to measure the similarity and construct
partitioning clusters for ensemble learning.

A) Vector-based distance metrics
In this study, we use the LTF to analysis acoustic char-
acteristics on the longer range. A feature frame can be
viewed as a data point in an n-dimensional vector space.
The data points with similar acoustic characteristics tend

to cluster together. Thus, Euclidean and Mahalanobis dis-
tance metrics are reasonable solutions for the clustering.
We applied Euclidean distance to measure the length of the
path connecting two feature vectors. The Euclidean distance
between vectors x and y in an n-dimensional space is given
by

d(x, y)E uc =
√∑n

i=1

∣∣xi − yi

∣∣2. (1)

The other common distance measure is the Mahalanobis
distance metric. The Mahalanobis distance metric consid-
ers correlations of data, and thus the similarity is estimated
by

d(x, y)Mah =
√

(x − y)TA−1(x − y), (2)

where A is the covariance matrix. In addition, the cosine
measure is a type of vector-based distance metric used to
estimate the similarity between vectors x and y as

d(x, y)Cos =
∑n

i=1 xi × yi√∑n
i=1 x

2
i ×

√∑n
i=1 y

2
i

, (3)

where n is the dimension of the feature vector. The cosine
distance is suitable to measure the similarity between the
data points with strong directional scattering patterns. For
instance, the cosine distance is popularly used on the appli-
cations of information retrieval [24, 25] and i-vector-based
speaker recognition [5].

B) Likelihood-based distance metric
Besides the vector-based distance metrics, we can also
use the likelihood estimation for the similarity measure.
We explore two likelihood-based similarity measures. One
is the log-likelihood distance metric. The other is delta-
Bayesian information criterion (BIC) estimation. We treat
each cluster as a Gaussian model λ = {u, �} in the log-
likelihood estimation. The log-likelihood score is estimated
by

log(L(x|λk)) = log

(
1

(2π)n/2|�k|n/2
e−1/2(x−uk)

T �−1
k (x−uk)

)
,

(4)
where L(x|λk) is the likelihood of acoustic feature x given
the model λk . The mean vector uk ∈ �n and the covari-
ance matrix�k ∈ �n are applied for each Gaussian; n is the
dimension of acoustic feature vector x and k is the label of
the cluster.

The other likelihood-based similarity measurement is
the BIC which can be used for speaker clustering [26].
The BIC value shows how well the data x fit the model λk

estimated by

B IC (λk) = log (L(x|λk)) − ε

2
δk log (nx), (5)

where ε is a design parameter, δk is the number of free
parameters in λk , and nx is the number of feature vectors
in x. The similarity between data x and y is given by
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the delta-BIC score. The delta-BIC score is widely used for
audio segmentation, model selection, and speaker cluster-
ing [27, 28]. Based on Gaussian assumption, the delta-BIC
score between x and y is estimated by

d(x, y)Delta = N log � − Nx log �x − Ny log �y − εP ,
(6)

where N = Nx + Ny is the total number of frames.�x and
� y represent the covariance matrices of x and y, respec-
tively.� is the covariancematrix of the aggregate of x and y.
P is a penalty factor given by

P = 1

2

(
n + 1

2
n(n + 1)

)
log N (7)

with different penalty factors, we can perform various
model selection criterions such as AIC and MDL [27].

I V . CLUSTER ING FOR ENSEMBLE
BASED SPEAKER RECOGN IT ION
SYSTEMS

The last stage of ensemble-based speaker recognition
pipeline is clustering. In this study, we investigate two clus-
tering algorithms for the unsupervised data selection and
the combination of ensemble classifiers.

A) Unsupervised clustering
The unsupervised data selection can be achieved in various
ways. We explore two data clustering algorithms based on
the partitioning and hierarchical techniques in this study.
One popular partitioning technique is the K -means cluster-
ing algorithm that partitions data into K clusters in which
each data belongs to the cluster with the nearest mean. The
K -means clustering algorithm aims to assign every speech
frames in a cluster to its respective acoustic characteris-
tics. For example, we can find that the gender information
is identified if we set the number of clusters is two. We
implement the K -means clustering algorithm with mul-
tiple random starting points and an iteratively optimized
objective function in this study.

Moreover, we explore the hierarchical technique to build
a hierarchy of clusters. There are two strategies for hier-
archical clustering. One is agglomerative and the other
is divisive. The agglomerative hierarchical clustering is a
bottom-up manner in which each observation starts on its
own cluster. Pairs of clusters are merged and move up the
hierarchy. The divisive hierarchical clustering is a top-down
manner in which all data start from one cluster. Splits are
performed recursively, and data move down the hierarchy.
We conducted the divisive hierarchical clustering in this
study. To compare with the K -means clustering algorithm,
the termination condition of the hierarchical method is
specified by the desired number of K clusters.

B) Data normalization and selection
With clustering algorithms, the feature warping [29] is per-
formed using clustered feature vectors. A transformation
function ϕ(.) is applied to convert features according to a
lookup table. A lookup table is devised so as to map a rank
order determined from the sorted cepstral feature elements
to a warped feature using the desired warping target dis-
tribution. The feature warping is a kind of normalization
process used to map a feature stream to a standard nor-
mal distribution. This process effectively Gaussianises the
distribution of selected feature vectors so as to better fit
to Gaussian assumptions in the model training and test-
ing. The similar technique such as histogram equalization
(HEQ) is commonly used in image processing and speech
recognition [30, 31].

For the training of ensemble clusters of the unsupervised
data selection, theUBM training dataset is utilized. The cre-
ated clusters are then used to split the following data into
subsets: UBM training, score normalization, speaker enroll-
ment, and testing. The ensemble-based speaker recognition
systems are trained and tested with the corresponding sub-
sets. Because the selection of number K may lead to a
data sparsity problem in the training and the testing of
speaker recognition, we study different numbers of K in our
experiments.

C) Combination of ensemble classifiers
Weusually consult several experts beforemaking an impor-
tant decision in daily life. Ensemble-based systems weigh
several opinions and combine them to reach a final deci-
sion instead of a single-expert system [32, 33]. Figure 3

Fig. 3. Testing procedure of ensemble classifiers using unsupervised data selec-
tion.
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illustrates the proposed ensemble classifiers for speaker
recognition based on the divide-and-conquer strategy. The
original speech data are segmented into several data subsets
from which ensemble-based speaker recognition systems
are trained and tested by non-overlapping segmentations.

We consider two factors for building the ensemble-based
speaker recognition. One is to cluster and select data based
on acoustic variability. The other is to combine the results
of ensemble classifiers. In this study, the frame counts (FCs)
of the subsets are used as the weights for a combination of
ensemble classifiers.With conventional GMM–UBMarchi-
tecture, the speaker recognition decision is based on the
log-likelihood ratio (LLR) between target speaker GMM
λS P K and UBM λU B M .

� = 1

N

N∑
t=1

[log p(xt |λS P K ) − log p(xt |λU B M)], (8)

where N means the total frames. If the score exceeds thresh-
old� > θ , then the claimed speakerwill be accepted, or else
rejected. To exploit the ensemble classifiers in the GMM–
UBM architecture, the proposed LLR score �̃ considering
the FC is then estimated as follows:

�̃ = 1

N

K∑
k=1

nk(X)

× [
log pk(X|λS P Kk ) − log pk(X|λU B Mk )

]
, (9)

where nk(X) is the number of frames in classifier k and
satisfies

∑K
k=1 nk(X)/N = 1. In other words, the contribu-

tion of ensemble classifier k is zero if the FC nk(X) is zero.
Equations (8) and (9) indicate that LLR was calculated only
on the test data. xt in equation (8) and X in equation (9)
represent the test data. Given the test data X and subset k
GMM, we can estimate the likelihood, pk(X|λU B Mk ), and
then know nk(X). Base on the same idea, in the ensemble
method of i-vector, cosine scores of subsets are combined
with the average weighted sum which considering the FC.

V . EXPER IMENT PROTOCOL

The NIST SRE data were collected from different types of
channel as telephones and microphones. We evaluated the
system on the core condition of the 2010 NIST SRE in the
tel–tel condition (det5) [34]. In this section, we apply three
speaker recognition systems based on MAP, eigenchannel,
and i-vector for evaluating the proposed approach.

A) Baseline systems
The NIST SRE-2004, SRE-2005, and SRE-2006 one-side
data were used to train gender-dependent UBMs. The
speaker adaptation techniques are used to solve speaker
data sparseness and channel mismatch problems. MAP [3]
is a popular approach to adapt speaker model from UBM.
To further consider various channel factors, the eigenchan-
nel adaptation [4] provides a good solution for channel

mismatch. The eigenchannel assumes the means of the
speaker’s model are given by mS P K = mU B M + Uh, while
mU B M denotes the supervector of the concatenation of
UBM means, U is a rectangular low-rank matrix in which
the columns are the numbers of directions of channel vari-
ability, and h is a normally distributed random vector that is
learned from samples. The SRE-2004, SRE-2005, and SRE-
2006 data were used to derive the eigenchannel estimation.
The channel factor was set to 40 in this study.

The fast-scoring technique was applied by approximat-
ing likelihood values using the top fivemixture components
[35]. The outputs of MAP and eigenchannel systems were
normalized with ZT-norm to further compensate for the
nuisance effects, in which T-norm [36] is first applied and
then Z-norm [37] speaker models are tested by imposters’
speech utterances.With T-norm, the input test speech utter-
ance is evaluated against cohort models to obtain normal-
ization scores using mean and standard deviation. With
Z-norm, a speaker model is tested against imposter speech
utterances to obtain themean and standard deviation scores
of normalization. For run-time efficiency, Z-norm can be
estimated in an offline mode. In this study, 50 speakers are
randomly selected from theNIST SRE-2004, SRE-2005, and
SRE-2006 one-side data for Z-norm and non-overlapped 50
speakers for T-norm.

Furthermore, the i-vector system has become one of the
state-of-the-art techniques in speaker verification applica-
tions [5]. The i-vector estimation assumes the speaker and
channel-dependent GMM mean supervector is given by
mS P K = mU B M + Tw, while T is a rectangular low-rank
matrix representing R bases spanning subspacewith impor-
tant variability in the GMM mean supervector space, and
w is a normally distributed random vector of size R that
is learned from the samples. We termed the vector weight-
ing w as i-vector and selected the dimension R = 200 for
the speaker recognition evaluation. To minimize the effect
of within-speaker covariances, we applied the within-class
covariance normalization (WCCN) transform in i-vector
space to find the transformed vector ŵ = BTw. The trans-
formmatrix B is derived from the Cholesky decomposition
of W = BBT , where w is the within-speaker covariance
matrix estimated by

W = 1

S

S∑
s=1

Ns∑
i=1

(xs
i − us )(xs

i − us )
T us = 1

Ns

Ns∑
i=1

xs
i ,

(10)
where S is the number of speakers, each having Ns i-vectors.
Switchboard II, SRE-2004, SRE-2005, and SRE-2006 data
were used to derive the estimation of T. WCCN was esti-
mated only on SRE-2004, SRE-2005, and SRE-2006 data.
In addition, we apply the simple technique of normaliz-
ing i-vector to the unit length by capturing their directions,
w̄ = ŵ/

∥∥ŵ∥∥.
As we discussed earlier, the speech data were divided into

several subsets using unsupervised data selection. Table 1
summarized the dataset (or parameters) used for ensemble
classifiers based on different evaluation systems.
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Table 1. Data (or parameters) used for ensemble classifiers
based on different evaluation systems.

Data\system MAP Eigenchannel i-vector

UBM X X X
Enrollment X X X
Testing data X X X
ZT-norm X X
U X
T X
WCCN X

B) Performance evaluation
Two types of errors, false acceptance and false rejection,
can occur in speaker verification. Equal error rate (EER)
reports the system performance when the false acceptance
PFalseAlarm|NonTarget and false rejection rates PMiss |Target are
equal. The minimum Detection Cost Function (DCF) is
a weighed sum of miss detection and false alarm rates as
defined in NIST SRE-2010 [33], and shown as follows:

DC F = CMiss × PMiss |Target × PTarget

+ CF alse Alarm × PF alse Alarm|NonTarget

× (1 − PTarget), (11)

whereCMiss = 10,CFalseAlarm = 0.001, and PTarget = 1were
defined in SRE-2010. The speaker verification results were
reported in terms of 1000×DCF for SRE-2010 in this study.
The following results were given on the EER and the mini-
mum DCF point.

V I . RESULTS AND ANALYS IS

We evaluated the robustness of the ensemble classifiers
using unsupervised data selection from several viewpoints.
LTF4 was used for all the experiments, which is with four
long-term windows.

A) Unsupervised data selection
To determine the effect of unsupervised data selection and
the ensemble classifiers, we first compared K -means (K)
and hierarchical (H) clustering algorithms based on Maha-
lanobis distance metric, and weighting schemes using equal
weighting (EW) and FCs. The summarized results were
shown in Table 2. Four subsets (k = 4) were used for the
ensemble classifiers with MAP and ZT-norm. The mixture
number of UBMs was 256. The baseline system was trained
and tested with all data, which means it is the conventional
single classifier. The results showed that the K -means clus-
tering algorithm outperformed the hierarchical and base-
line systems. The combination of ensemble classifiers with
a weighting scheme of FCs was better than EW.

Base onK -means clustering algorithm and a weighting
scheme of FCs, we conducted ensemble systems using dif-
ferent similarity metrics to compare with the baseline sys-
tem. We explored five similarity measures, log-likelihood

Table 2. Results of ensemble classifiers using different clustering and
weighting schemes on MAP and ZT-norm systems on NIST SRE-2010.

Male Female All

Systems EER () 1000xDCF EER () 1000xDCF EER () 1000xDCF

Baseline 9.97 0.75 12.68 0.91 10.81 0.85
H+EW 10.76 0.93 11.83 0.77 11.46 0.95
H+FC 10.48 0.92 11.43 0.78 10.87 0.94
K+EW 9.35 0.64 10.99 0.76 10.03 0.75
K+FC 9.08 0.63 10.42 0.74 9.89 0.72

Table 3. Results of ensemble classifiers using different distance
metrics on MAP and ZT-norm systems on NIST SRE-2010.

Male Female All

Distance EER
metrics () 1000xDCF EER () 1000xDCF EER () 1000xDCF

Baseline 9.97 0.75 12.68 0.91 10.81 0.85
Likelihood 10.76 0.90 11.55 0.81 11.16 0.90
Cosine 8.78 0.68 9.89 0.80 9.40 0.78
Euclidean 10.48 0.90 11.55 0.82 11.02 0.91
Mahalanobis 9.08 0.63 10.42 0.74 9.89 0.72
Delta-BIC 10.48 0.70 12.39 0.86 11.30 0.84

measure, delta-BIC measure, cosine measure, Euclidean,
and Mahalanobis distance measure, to construct parti-
tioning clusters. The summarized results were shown in
Table 3. We found that ensemble-based speaker recog-
nition showed improvements with suitable data selection
scheme, such as cosine and Mahalanobis distance metrics.
Since we conventionally focus on minimizing DCF score,
the best performance was shown on the Mahalanobis dis-
tancemetric. Comparing the baseline system, the ensemble-
based speaker recognition contributed to 8.51 relative EER
reduction from 10.81 to 9.89, and 15.29 relativeDCF reduc-
tion from 0.85 to 0.72.

We evaluated the conversational telephone English
speech of the SRE-2008 core task based on the optimized
setting obtained from the SRE-2010 data using version 3
of the NIST SRE-2008 answer keys. Four subsets were
used for the ensemble classifiers with MAP and ZT-norm.
The mixture number of UBMs was 256. We had the same
improvements shown in Table 4. Comparing with the base-
line system, the ensemble-based speaker recognition using
the Mahalanobis distance metric contributed to 11.52 rel-
ative EER reduction from 7.55 to 6.68, and 16.87 relative

Table 4. Results of ensemble classifiers using different distance
metrics on MAP and ZT-norm systems on NIST SRE-2008.

Male Female All

Distance EER EER EER
metrics () 100xDCF () 100xDCF () 100xDCF

Baseline 7.03 2.95 7.79 3.50 7.55 3.32
Cosine 7.17 2.78 7.60 3.48 7.45 3.25
Mahalanobis 6.13 2.42 7.08 2.91 6.68 2.76
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DCF reduction from 3.32 to 2.76 on the SRE-2008 data.
Motivated by the advanced channel and speaker adapta-
tion techniques, we further extend the proposed ensemble-
based speaker recognition to eigenchannel and i-vector
approaches.

B) Ensemble-based eigenchannel systems
Experiment results of the ensemble-based eigenchannel
system with ZT-norm are shown in Fig. 4. We conducted
experiments on four different numbers of UBM mixtures
including 128, 256, 512, and 1024with four subsets. Four sub-
sets were used for ensemble classifiers with theMahalanobis
distance metric. In Fig. 4, the blue and dashed line showed
the eigenchannel approach. The red and solid line showed
the proposed ensemble classifiers with the eigenchannel
adaptation.

Compared with results shown in Table 2, large gains
were obtained using the eigenchannel technique. Eigen-
channel with ZT-norm showed the effect of good chan-
nel compensation and score normalization. Our proposed
ensemble-based approach can be further used for improv-
ing the overall performance. Basically, we can found that the
DCF score decreased when the number of UBM mixture
increased. In Fig. 4, UBM with 256 mixtures achieved the
lowest DCF scores.

We achieved 19.64 relative DCF reduction from 0.56
to 0.45 (or 16.67 relative DCF reduction from 0.54 to
0.45) using the ensemble-based eigenchannel system with
the UBMs of 256 mixtures. To further explore the relations
between the number of mixture in UBM and the number of
data subsets in ensemble, we conducted experiments with
five different numbers of data subsets (2, 4, 8, 16, and 32)
on four different numbers of UBM mixtures (128, 256, 512,
and 1024) shown in Fig. 5. Due to data sparsity, a smaller
number of subsets in the ensemble should be applied if a
larger size of UBM mixtures is adopted. As a result, we can
find that UBM of 128 mixtures with eight subsets, UBM of
256 and 512 mixtures with four subsets, and UBM of 1024
mixtures with two subsets achieved the lowest DCF scores.
The best performance was located on UBM of 256 mixtures

Number of Mixture in UBM

D
C

F

0.42

0.45

0.48

0.51

0.54

0.57

0.60

eigenchannel
+ ensemble

0.47

0.45

0.52

0.56

0.57
0.56

0.55

0.54

Fig. 4. DCF curves of eigenchannel with ZT-norm systems with different
numbers of UBMmixtures on NIST SRE-2010.

Number of Subsets in Ensemble

D
C

F

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
UBM 128
UBM 256
UBM 512
UBM 1024

Fig. 5. DCF curves of eigenchannel with ZT-norm systems with different
numbers of UBMmixtures and data subsets on NIST SRE-2010.

with four subsets. Based on these best setting, we further
applied ensemble classifiers on the i-vector-based speaker
recognition system in the following experiments.

C) Ensemble-based i-vector systems
The evaluation results of SRE-2010 were shown in Table 5
based on the i-vector system. The proposed ensemble-
based systems using unsupervised data selection outper-
formed the conventional i-vector approach. Comparing the
baseline system, the ensemble-based i-vector system con-
tributed to 9.36 relative EER reduction from 4.38 to 3.97,
and 5.26 relativeDCF reduction from 0.57 to 0.54 on the
SRE-2010 data. Experimental results of SRE-2008 data were
shown in Table 6. The experiment confirmed that ensem-
ble classifiers consistently improved the speaker recognition
performance. Since original speech data were segmented
into several data subsets according to acoustic characteris-
tics on training and testing, we were able to train and test a
more robust speaker recognition system.

Fusion of LTFs showed further improvement. We apply
the same kind of MFCC features with the different size of

Table 5. Results of I-Vector system with and without ensemble
classifiers on NIST SRE-2010.

Male Female All

Systems EER () 1000xDCF EER () 1000xDCF EER () 1000xDCF

i-vector 3.97 0.56 4.79 0.49 4.38 0.57
+Ensemble 3.68 0.53 4.23 0.50 3.97 0.54

Table 6. Results of i-vector system with and without ensemble
classifiers on NIST SRE-2008.

Male Female All

Systems EER () 100xDCF EER () 100xDCF EER () 100xDCF

EER () 100xDCF EER () 100xDCF EER () 100xDCF
i-vector 3.59 1.75 4.23 1.65 3.78 1.72
+Ensemble 3.44 1.74 3.54 1.63 3.54 1.69
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Table 7. fusion of ensemble based I-Vector system with LTFs on
NIST SRE-2010 and SRE-2008.

SRE-2010 SRE-2008

Systems EER () 1000xDCF EER () 100xDCF

Baseline 4.38 0.57 3.78 1.72
LTF4 3.97 0.54 3.54 1.69
LTF6 3.90 0.62 3.85 1.76
LTF8 4.24 0.65 3.72 1.85
Fusion 3.67 0.56 3.50 1.64

Fig. 6. DET curves showing improvements of conventional i-vector system,
ensemble-based system, fusion of LTF system on SRE-2010.

the long-term windows, L = 4, 6, 8 frames, namely LTF4,
LTF6, and LTF8 [16]. Table 7 showed the fusion results
of SRE-2010 and SRE-2008 considering features of LTF4,
LTF6, and LTF8. Fusion weights were selected as 0.5, 0.3,
and 0.2, respectively. The results showed that the fusion was
complementary. The evaluations of SRE-2010 were plotted
with the DET curves in Fig. 6. Regarding the i-vector sys-
tems, the scoring method used cosine similarity. We apply
LTF on i-vector estimation and i-vector is used for unsu-
pervised clustering. In addition, we used ensemble-based
system for fusion of LTFs.

V I I . CONCLUS ION

We studied the ensemble method using unsupervised data
selection for effective speaker recognition. Unlike previous
constrain approaches, we had no auxiliary information
requirement. The speech data were divided into several
subsets using K -means clustering algorithmwith theMaha-
lanobis distancemetric and the FCweighting scheme. There
are many clustering algorithms. In this study, we com-
pared K -means and HAC to discover the effect of clus-
tering algorithms and unsupervised data selection. With
the divide-and-conquer strategy, ensemble classifiers were
used to avoid the local optimization training on the single

classifier. We studied feature extraction techniques using
long-term and temporal information for effective speaker
recognition, and trained and evaluated the ensemble clas-
sifiers based on the selected data subsets. Using the LTF
and the ensemble method decreases the amount of data
for training, because the LTF provides the more compact
feature and the ensemble method divides data into sub-
sets. Three speaker recognition experiments based onMAP,
eigenchannel, and i-vector on the NIST SRE-2010 and SRE-
2008 datasets were conducted. Based on the experiment
results, we confirm that the ensemble classifiers with unsu-
pervised data selection consistently improve the speaker
recognition performance on different evaluation tasks and
systems.
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