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Adaptive feature truncation to address acoustic
mismatch in automatic recognition of children’s
speech
shweta ghai and rohit sinha

An algorithm for adaptive Mel frequency cepstral coefficients (MFCC) feature truncation is proposed to improve automatic
speech recognition (ASR) performance under acoustically mismatched conditions. Using the relationship found between MFCC
base feature truncation and degree of acoustic mismatch of speech signals with respect to recognition models, the proposed
algorithm performs utterance-specific MFCC feature truncation for test signals to address their acoustic mismatch in con-
text of ASR. The proposed technique, without any prior knowledge about the speaker of the test utterance, gives 38 (on a
connected-digit recognition task) and 36 (on a continuous speech recognition task) relative improvement over baseline in ASR
performance for children’s speech onmodels trained on adult speech, which is also found to be additive to improvements obtained
with vocal tract length normalization and/or constrained maximum likelihood linear regression. The generality and effective-
ness of the algorithm is also validated for automatic recognition of children’s and adults’ speech under matched and mismatched
conditions.
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I . I NTRODUCT ION

The automatic recognition of children’s speech under mis-
matched conditions, i.e. on models trained on adult speech,
is a well-known challenging problem due to differences
in speech of adult and child speakers. Many acoustic and
linguistic characteristics of speech such as pitch, formant
frequencies, average phone duration, speaking rate, pro-
nunciation, accent, and grammar have already been noted
to differ between adults and children [1, 2]. These differ-
ences result in degradation in automatic speech recognition
(ASR) performance on children’s speech undermismatched
conditions [3, 4]. Apart from this, ASR performance on
children’s speech is significantly inferior to that for adults
under matched conditions [1, 5–7]. This is attributed to the
higher inter- and intra-speaker acoustic variability in chil-
dren’s speech relative to adults’ speech [2]. Various model
adaptation and speaker normalization techniques reported
in the literature for addressing speaker differences have been
investigated for improving ASR performance on children’s
speech. The foremost include vocal tract length normal-
ization (VTLN) [8, 9] speaker adaptation techniques such
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as maximum a posteriori and maximum likelihood lin-
ear regression (MLLR) adaptations [8], constrained MLLR
(CMLLR) adaptation [8, 10], speaker adaptive training
(SAT) [10], constrained MLLR-based speaker normaliza-
tion [11], and their combinations [8]. Significant improve-
ments have been reported inASR performance on children’s
speech under mismatched conditions using each of these
speaker adaptation methods.

It is already known that children’s speech has higher fun-
damental frequency and formant frequencies in compari-
son with those of adult speech [2]. A few studies have found
improvement inASRperformance on children’s speechwith
reduction of pitch of the signals using Mel frequency cep-
stral coefficients (MFCC) [12]. Improvement in ASR perfor-
mance for children’s speech using models trained on adult
speech with pitch normalization is further supported by the
results and observations already reported in the literature.
In [13], pitch-adaptive MFCC features have been shown to
improve adult ASR performance onmodels trained on adult
speech, particularly for female speakers, on large vocabu-
lary ASR tasks. Also, improvement in phone classification
performance has been obtained with pitch-dependent nor-
malization of the Mel cepstrum [14]. However, since in the
MFCC features the pitch information is not captured but
rather smoothed out by the filterbank, thus reducing the
speaker dependence, one would expect the performance to
be rather insensitive to pitch variations among speakers.
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Table 1. Details of the speech corpora used for automatic speech recognition experiments.

Speech corpus

TIDIGITS WSJCAM0 PFSTAR

Recognition task Connected-digit Continuous speech Continuous speech
Sampling freq. 8 kHz 8 kHz 8 kHz
Language American English British English British English
Data set ADtr ADts CHtr CHts1 CHts2 CAMtr CAMts PFtr PFts
Purpose Training Testing Training Testing Testing Training Testing Training Testing
Speaker type Adults Adults Children Children Children Adults Adults Children Children
No. of speakers 197 81 64 101 49 92 20 122 60
No. of words 35 566 10 813 14 725 25 525 10 800 132 778 5320 24 208 5067
Data (in h) 5.3 1.6 2.5 4.4 1.9 15.5 0.6 4.8 1.1
Language model Equi-probable Wordnet 5 k word bigram 1.5 k word bigram

Motivated by the results presented in [12], in our previous
work [15] we studied the effect of pitch variations onMFCC
features. Based on the analysis in that study, the degrada-
tion in ASR performance for children’s speech on models
trained on adult speech is attributed to the increase in vari-
ance in the higher dimensions of the MFCC feature space
for children’s speech due to higher pitch, while the variances
of the lower dimensions were comparable with respect to
those for adult speech. Although some studies in the litera-
ture have reported that higher-order MFCCs correlate with
speech source information in general [16], the degree and
nature of selective impact of pitch on the higher dimen-
sions of MFCC feature vectors, as seen in multi-mixture
hidden Markov model (HMM)-based speech recognition
models, has not been explicitly demonstrated in the lit-
erature. Therefore, in this paper, we conduct a detailed
experimental analysis illustrating the behavior of different
coefficients of MFCC features with respect to the multi-
mixture multi-state ASR model distributions, before and
after explicit pitch normalization of speech signals.

In addition, an automatic algorithm for utterance-
specificMFCC feature truncation is also proposed that does
not require any prior knowledge about the test utterance
being spoken by an adult or a child speaker for improv-
ing ASR for children’s speech on acoustically mismatched
models. In order to verify the generality of the proposed
algorithm, the recognition results are evaluated for both
children’s and adults’ test data on matched as well as mis-
matched ASR models. The effectiveness of the proposed
algorithm is validated in combinationwith the already exist-
ing speaker normalization techniques such as VTLN and
CMLLR as well.

I I . MATER IAL AND METHODS

The ASR experiments are conducted on a connected-digit
recognition task and a continuous speech recognition task
in this work.

A) Database
For experiments on a connected-digit recognition task,
speech data for both adults and children are taken from

the TIDIGITS corpus [17]. For experiments on a contin-
uous speech recognition task, speech data for adults are
taken from the WSJCAM0 Cambridge Read News corpus
[18], while speech data for children are taken from the PFS-
TAR British English corpus [19]. The average pitch of all
speech signals is estimated using the ESPS tool available
in the Wavesurfer software package [20]. All speech data
are resampled to 8 kHz in order to study the impact of our
proposed algorithm under constrained data conditions like
telephone quality speech. The details of the speech corpora
are given in Table 1. To build a schildren’s connected-digit
recognition system, the “CHts1” data set, which contains all
child speech data of TIDIGITS corpus, is split into two data
sets “CHtr” (training set) and “CHts2” (test set). In order
to have significant sample size while maintaining coverage
across all age groups and gender in both training and test
data sets, CHtr and CHts2 data sets are constructed such
that they are disjoint in terms of speech data but not in terms
of speakers. Out of total 101 speakers in CHts1 set, speech
data from 52 speakers between 6 and 13 years of age are
solely assigned to CHtr data set, while data from 37 speakers
between the age group of 8 and 13 years are uniquely fed into
CHts2 data set. However, speech data from remaining 12
speakers (three speakers each from 6–7 years, 8–9 years, 12–
13 years and 14–15 years age groups) are distributed equally
between CHtr and CHts2 data sets such that both data sets
have some speech data from each of those 12 speakers. The
different age groups of the child test sets are given in Tables 2
and 3.

B) Speech analysis method
Spectral analysis is carried out using a Hamming window of
length 25ms, frame rate of 100Hz and pre-emphasis factor

Table 2. Division of different age groups of the child test set “CHts1”’
used in the connected-digit recognition task.

Age group (years)

6–7 8–9 10–11 12–13 14–15

No. of speakers 8 31 42 17 3
(Males/females) (5/3) (12/19) (27/15) (5/12) (1/2)
No. of utterances 615 2386 3231 1309 231
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Table 3. Division of different age groups of the child test set “PFts”
used in the continuous speech recognition task.

Age group (years)

4–5 6–7 8–9 10–11 12–13

No. of speakers 1 12 16 28 3
(Males/females) (1/0) (5/7) (5/11) (18/10) (3/0)
No. of utterances 2 20 45 58 4

of 0.97. The 13-dimensional (13-D) MFCC base feature
vector (C0 to C12) is computed using a 21-channel filter-
bank using the HTK Toolkit [21]. In addition to the base
features, their first- and second-order derivatives, computed
over a span of five frames, are also appended to create a
39-D feature vector that is referred to as the “default”MFCC
features. Cepstral mean subtraction is also applied to all
features.

C) Recognition systems
The ASR systems used for the experimental evaluations
for both the connected-digit recognition and the continu-
ous speech recognition tasks are developed using the HTK
Toolkit [21]. The word error rate (WER) is used to evaluate
the speech recognition performance.

1) Connected-digit recognition task
For experiments on the connected-digit recognition task,
the recognizer is developed following the setup described in
[22]. The 11 digits (0–9 andOH) aremodeled as whole-word
HMMs using 16 states per word. Each state is a mixture of
five diagonal-covariance Gaussian distributions with sim-
ple left-to-right moves without any skips over the states.
A three-state model with six diagonal-covariance compo-
nents is used for modeling silence. A single-state model
with six diagonal-covariance components (allowing skip)
is used for the short-pause model tied to the center state
of the silence model. The adults’ connected-digit recog-
nition system is trained using “ADtr” and tested against
“CHts1” and “ADts”. The children’s connected-digit recog-
nition system is trained using “CHtr” and tested against
“CHts2” and “ADts”. For sake of comparison of ASR perfor-
mances obtained for same child test set on models trained
on “ADtr” and “CHtr” data sets, the adults’ connected-
digit recognition system is tested against “CHts2” as well.
The baseline recognition performances (in WER) for adult
and child test sets on the adults’ connected-digit recognizer
and the children’s connected-digit recognizer are given in
Table 4.

2) Continuous speech recognition task
The continuous speech recognition system is developed
using cross-word tri-phone acoustic models along with
decision-tree-based state tying as given by the HTK Toolkit
[21]. The tri-phone models have three states with eight
diagonal-covariance components for each state. A three-
state model with 16 diagonal-covariance components is

Table 4. Baseline ASR performances (in WER) for adult and child test sets
on models trained on adult and child speech for both connected-digit and

continuous speech recognition tasks.

Test set
Baseline performance (WER)

Training
Recognition task data set ADts CHts1 CHts2 CAMts PFts

Connected-digit ADtr 0.43 11.37 9.19 – –
CHtr 13.28 – 1.01 – –

Continuous speech CAMtr – – – 9.92 56.34
PFtr – – – 68.36 12.41

used for modeling silence, and a short-pause model (allow-
ing skip) is constructed with all states tied to the silence
model. Each component is modeled by a Gaussian density
function. The adults’ continuous speech recognition system
is trained using “CAMtr” resulting in 2499 tied states after
state tying, while the children’s continuous speech recog-
nition system is trained using “PFtr”. To evaluate the ASR
performance of the continuous speech recognizers on adult
speech and child speech, “CAMts” and “PFts” data sets are
used, respectively.

The standard WSJ0 5000-word closed non-verbalized
vocabulary set and the standard MIT Lincoln Labs 5k Wall
Street Journal bigram language model are used for recogni-
tion of “CAMts” with no out-of-vocabulary (OOV) words.
For “PFts”, a 1500-word non-verbalized vocabulary set and
a 1.5k bigram language model trained using the transcripts
of “PFtr” such that “PFts” has perplexity of 1.02 OOV are
used. The pronunciations for all words are obtained from
the British English Example Pronunciation (BEEP) dictio-
nary [18]. The baseline recognition performances (inWER)
for adult and child test sets on the adults’ continuous speech
recognition system, and the children’s continuous speech
recognizer are also given in Table 4.

The recognition performance for child test set (9.19
WER on connected-digit recognition task and 56.34WER
on continuous speech recognition task) is far worse than
that obtained for adult test set (0.43 WER on connected-
digit recognition task and 9.92 WER on continuous
speech recognition task) on recognizers trained on adult
speech. This is attributed to the large acoustic mismatch
between the adult training and the child test sets and to
the loss of spectral information for children’s narrowband-
filtered speech. The poor ASR performance for children’s
speech onmatched acoustic models trained on child speech
as well (1.01 WER on connected-digit recognition task
and 12.41WER on continuous speech recognition task) in
comparison with that for adults’ speech onmatchedmodels
trained on adult speech (0.43 WER on connected-digit
recognition task and 9.92 WER on continuous speech
recognition task) can be attributed to greater inter-speaker
variability among children than adults.

The trend observed in the ASR performances obtained
from the above data sets and experimental setups is consis-
tent with that already reported in the literatures [9, 23].
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I I I . ANALYS IS

A) Effect of pitch on lower- and higher-order
MFCC distributions
The effect of pitch differences between training and test
data on the MFCC feature distribution is explored in a
connected-digit recognition task to assess the impact of
acoustic mismatch on recognition performance. The dig-
its whose recognitionmodels and features are most affected
by the pitch mismatch are identified by determining the
frequency of substitution, deletion, and insertion errors
across different digit models from the ASR performances of
“CHts1” on models trained with “ADtr”.

Explicit pitch normalization of each child test signal is
performedwith respect to the pitch distribution of the adult
training data set using a maximum likelihood (ML) grid
search approach. To carry out the ML grid search, the pitch
of each child test signal is first transformed to seven differ-
ent pitch values ranging from 70 to 250Hz in steps of 30Hz
using the pitch synchronous time scaling method [24]. This
range of transformed pitch values was chosen based on the
fact that the adult training data has a pitch distribution from
70 to 250Hz. Given the various pitch-transformed versions
within the specified range, the optimal value p̂, to which the
pitch of each signal is to be transformed to, is estimated as:

p̂ = arg max
p

Pr
(
X p

i |λ, Wi
)

, (1)

where X p
i is the feature for the i th utterance with pitch

transformed to p, λ is the speech recognition model, and
Wi is the transcription of the i th utterance.Wi is determined
by initial recognition pass using original feature (i.e. with-
out pitch transformation). TheML search is then performed
over the original speech signal and its corresponding seven
different pitch-transformed versions.

The recognition performances (in WER) obtained for
CHts1 test set onmodels trained on ADtr using default 13-D
baseMFCC featureswith andwithout explicit pitch normal-
ization of child speech and that using truncated 4-D base
MFCC features are 11.37 WER, 9.64 WER, and 5.21
WER. For recognition, the base MFCC features are also
appended with their corresponding first- and second-order
derivatives. The frequency of substitution, deletion, and
insertion errors in these ASR outputs are given in Table 5.
It is shown that explicit pitch normalization results in sub-
stantial reduction in the number of substitution errors, dele-
tion errors, and insertion errors. The deletion and insertion
errors are mainly governed by the differences in speech rate
in training and test data sets. Substitution errors are there-
fore used as the main criterion for evaluating performance.
About 35 reduction is obtained in the substitution errors,
which constitute 90 of total substitution errors in the orig-
inal ASR system output on children’s speech, while about
40 reduction is obtained in the substitution errors, which
constitute 75 of total substitution errors in the original
ASR system output on children’s speech, after pitch normal-
ization. The underlined numbers highlight examples from

the top 10 highest occurring substitution errors (together
constituting 67 of total substitution errors) in the original
ASR system output obtained using default MFCC features,
which were improved by more than 70 after pitch nor-
malization. All substitution errors were verified, but due
to space limitations analysis for only two of the under-
lined cases, which have the highest frequency in the original
ASR system output, i.e. original digit “FIVE” recognized as
“NINE” and original digit “OH” recognized as “TWO” is
shown.

The higher-order coefficients C11 and C12 are extracted
from the 13-D base MFCC feature vectors for 200 digit
“FIVE” utterances and 200 digit “NINE” utterances from
the original “ADtr” corpus. Similarly, the C11 and C12 coef-
ficients are also extracted for 200 digit “FIVE” utterances
from the original “CHts1” and 200 digit “FIVE” utterances
from the explicitly pitch-normalized “CHts1” corpus. The
distributions of the C11 and C12 coefficients extracted from
MFCC features of digit “FIVE” utterances from original
“ADtr” are shown in yellow, from original “CHts1” in blue,
from explicitly pitch normalized “CHts1” in magenta and of
digit “NINE” utterances from original “ADtr” are shown in
black in Fig. 1. For ease of comparison, distributions of the
C11 andC12 coefficients extracted for all these four different
data sets are shown in both subplots of Fig. 1. Themultivari-
ate Gaussian distributions estimated using the means and
variances of the corresponding coefficients and weighted
by the corresponding mixture weights for each mixture in
each state of the digit “FIVE” and digit “NINE” recognition
models trained on “ADtr” are then computed and are also
shown in gray scale in Fig. 1. These distributions are simi-
larly obtained for the lower-order coefficients C1 and C2 for
the same digit utterances and recognitionmodels, which are
shown in Fig. 2 using same color coding as given in Fig. 1.

Scatterplots given in black and yellow show the exam-
ples of perfect matching of distributions of MFCCs of adult
utterances for each of the two digits with the Gaussian dis-
tributions for the corresponding MFCCs of the respective
digit models shown in gray scale. As shown in Fig. 1, the
spread of the C11–C12 distribution for digit “FIVE” utter-
ances from the “CHts1” test set (given in blue) is significantly
reduced after explicit pitch normalization of the test set
(given in magenta), which explains the reduction in vari-
ance of those coefficients observed in [15]. TheC11–C12 dis-
tribution for digit “FIVE” utterances from the “CHts1” test
set is bettermapped for digit “FIVE” after explicit pitch nor-
malization of the test set. On the other hand, no significant
change is observed in the distribution for the lower-order
C1 and C2 coefficients after pitch normalization, as evident
in Fig. 2.

Similar observations hold for the C11–C12 and C1–C2

distributions of digit “OH” and digit “TWO” utterances
and recognition models shown in Figs 3 and 4, respectively.
These observations indicate that variations in the pitch of
the signals predominantly affect the higher-order MFCCs,
which typically carry less linguistically relevant informa-
tion. Differences in pitch between training and test speech
lead to patternmismatch between the higher-orderMFCCs,
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Table 5. Frequency of substitution, deletion, and insertion errors as resulting by evaluating the outputs of different ASR systems for “CHts1” on models
trained on “ADtr”.

Substitution errors������������Recognized
Original

/Oh/ /One/ /Two/ /Three/ /Four/ /Five/ /Six/ /Seven/ /Eight/ /Nine/ Insertion errors

/Oh/ Original – 6 14 34 78 40 12 79 281 9 75
Fo_normalized – 6 47 58 48 8 6 55 299 11 79
4-D base MFCC – 2 27 51 6 1 2 1 205 0 36

/One/ Original 4 – 0 3 112 3 1 76 2 4 12
Fo_normalized 6 – 1 1 69 0 0 17 1 3 7
4-D base MFCC 4 – 0 0 67 0 0 5 0 1 13

/Two/ Original 143 4 – 102 4 3 15 84 35 4 85
Fo_normalized 24 0 – 40 1 0 5 17 1 1 17
4-D base MFCC 9 0 – 26 0 0 0 0 3 0 16

/Three/ Original 1 2 4 – 0 0 0 0 2 2 6
Fo_normalized 0 4 3 – 1 0 0 0 1 2 2
4-D base MFCC 0 4 3 – 0 0 0 0 0 1 0

/Four/ Original 1 11 1 0 – 1 0 6 0 0 11
Fo_normalized 4 9 3 0 – 0 0 3 0 0 10
4-D base MFCC 9 10 0 0 – 0 0 1 0 0 3

/Five/ Original 14 5 1 1 14 – 1 66 7 11 61
Fo_normalized 28 6 6 2 39 – 5 91 13 12 96
4-D base MFCC 31 3 1 0 85 – 1 6 4 2 7

/Six/ Original 0 0 9 0 0 1 – 1 0 0 4
Fo_normalized 2 0 8 0 0 0 – 0 0 0 3
4-D base MFCC 3 0 7 3 0 0 – 0 2 0 18

/Seven/ Original 7 0 2 7 0 1 0 – 0 0 1
Fo_normalized 11 0 4 9 0 0 1 – 0 0 3
4-D base MFCC 10 0 20 7 0 1 2 – 0 0 3

/Eight/ Original 38 10 35 144 2 1 58 52 – 1 19
Fo_normalized 31 4 72 143 0 0 49 29 – 0 27
4-D base MFCC 17 3 42 96 0 0 24 8 – 1 29

/Nine/ Original 180 27 1 4 5 278 0 17 11 – 49
Fo_normalized 123 25 11 4 3 64 0 21 8 – 26
4-D base MFCC 127 43 15 14 0 74 0 7 15 – 21

Deletion errors Original 69 25 19 44 23 23 32 82 57 10 –
Fo_normalized 40 14 29 20 6 4 3 15 27 8
4-D base MFCC 25 3 15 12 4 0 0 0 10 2

The ASR performances are computed on outputs of ASR systems making use of different set of features including: 13-D base MFCC features of children’s
original and explicitly pitch normalized test signals and 4-D baseMFCC features of children’s original test signals. For recognition, the baseMFCC features
are also appended with their corresponding first- and second-order derivatives. The bold numbers highlight examples from the top 10 highest occurring
substitution errors (together constituting 67 of total substitution errors) in the original ASR system output obtained using default MFCC features, which
were improved by more than 70 after using 4-D base MFCC features, while the underlined numbers highlight examples, which were improved by more
than 70 after pitch normalization.

(a) (b)

Fig. 1. Scatter plots showing distributions of C11 and C12 coefficients of digit
“FIVE” utterances from (a) original “CHts1” (in blue) along with Gaussian dis-
tributions (in gray scale) of those coefficients in digit “NINE” models trained
with “ADtr”, and (b) explicitly pitch normalized “CHts1” (inmagenta) alongwith
Gaussian distributions (in gray scale) of those coefficients in digit “FIVE” mod-
els trained with “ADtr”. The spread of the C11–C12 distribution for digit “FIVE”
utterances from “CHts1” test set is significantly reduced and is better mapped
for digit “FIVE” models after explicit pitch normalization of the test set.

(a) (b)

Fig. 2. Scatter plots showing distributions of C1 and C2 coefficients of digit
“FIVE” utterances from (a) original “CHts1” (in blue) along with Gaussian dis-
tributions (in gray scale) of those coefficients in digit “NINE” models trained
with “ADtr”, and (b) explicitly pitch normalized “CHts1” (inmagenta) alongwith
Gaussian distributions (in gray scale) of those coefficients in digit “FIVE” mod-
els trained with “ADtr”. No significant change is observed in the distribution
of lower-order C1 and C2 coefficients for digit “FIVE” utterances from “CHts1”
test set after pitch normalization.
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(a) (b)

Fig. 3. Scatter plots showing distributions of C11 and C12 coefficients of digit
“OH” utterances from (a) original “CHts1” (in blue) along with Gaussian dis-
tributions (in gray scale) of those coefficients in digit “TWO” models trained
with “ADtr”, and (b) explicitly pitch normalized “CHts1” (inmagenta) alongwith
Gaussian distributions (in gray scale) of those coefficients in digit “OH”models
trained with “ADtr”. The spread of the C11–C12 distribution for digit “OH”
utterances from “CHts1” test set is significantly reduced and is better mapped
for digit “OH” models after explicit pitch normalization of the test set.

(a) (b)

Fig. 4. Scatter plots showing distributions of C1 and C2 coefficients of digit
“OH” utterances from (a) original “CHts1” (in blue) along with Gaussian dis-
tributions (in gray scale) of those coefficients in digit “TWO” models trained
with “ADtr”, and (b) explicitly pitch normalized “CHts1” (in magenta) along
with Gaussian distributions (in gray scale) of those coefficients in digit “OH”
models trained with “ADtr”. No significant change is observed in the distri-
bution of lower-order C1 and C2 coefficients for digit “OH” utterances from
“CHts1” test set after pitch normalization.

resulting in poor ASR performance undermismatched con-
ditions.

B) Effect of higher-order MFCCs on Mel
spectrum
To better comprehend the impact of higher-order MFCCs
on the MFCC feature representation, the spectra corre-
sponding to MFCC features of different feature lengths are
illustrated. The plots of the smooth spectra corresponding
to various truncated base feature lengths including C0 for
the stable portion of vowel /iy/ with average pitch value
300Hz along with its linear discrete Fourier transform
(DFT) spectrum are shown in Fig. 5. The frequency of the
first two pitch harmonics in the linear DFT spectrum in
Fig. 5(b) exactly matches that of the two harmonics in the
lower-frequency region of the smoothed. Mel spectrum in
Fig. 5(a) in case of default MFCC base feature length.

Truncation in quefrency domain is equivalent to con-
volving the spectral envelope of the MFCC filterbank
with the spectrum of the truncation window in frequency
domain. As the degree of truncation increases, the band-
width of the truncation window spectrum increases result-
ing in greater smoothening of the pitch harmonics and the
spectral peaks (formants) in the spectrum. Therefore, with

increasing cepstral feature truncation, the two harmonics in
the lower-frequency region of the smoothed Mel spectrum
in Fig. 5(a) are getting smoothed out.

Thus, excluding higher-order MFCCs for speech recog-
nition under mismatched conditions is hypothesized to
reduce the gross acoustic mismatch between training and
test data by minimizing the effect of pitch differences, VTL
differences (one of the foremost source of acoustic mis-
match between adult and child speech [25]) and any other
sources of speaker-specific acousticmismatchwhich induce
rapidly varying changes in spectra.

I V . EXPER IMENTAL RESULTS AND
D ISCUSS ION

A) Effect of MFCC feature truncation on ASR
performance
In order to study the extent of acoustic mismatch cap-
tured by higher-order MFCCs, the effect of exclusion of
the higher-order coefficients from the MFCC feature vec-
tor is tested by truncating the MFCC base features for the
children’s test data from 13 (C0-C12) down to 3 (C0-C2) in
steps of 1. For recognition, the various truncated MFCC
base features are augmented with their corresponding first-
and second-order derivatives. The resulting feature set is
then decoded usingASRmodels of the same dimensionality
extracted from the baseline 39-D models. The recognition
performance for “CHts1” for different dimensions of the
truncated test features on corresponding models trained
on “ADtr” with matching feature dimensions are given in
Table 6. The table also shows the pitch group-wise breakup
of performances corresponding to each of the truncations.
The recognition performance for “CHts1” improves consis-
tently with feature truncation. The best relative improve-
ment of about 54 is obtained over the baseline for “CHts1”
with 4-D base MFCC features. The age group-wise breakup
of this best recognition performance obtained for “CHts1”
using 4-D base MFCC features is given in Table 7.

This improvement in ASR performance with feature
truncation beyond the default feature length is an outcome
of consistent reduction in all three categories of recogni-
tion errors as given in Table 5. The bold numbers in Table 5
highlight examples from the top 10 highest occurring sub-
stitution errors (together constituting 67 of total substitu-
tion errors) in the original ASR system output on children’s
speech obtained using default MFCC features, which are
improved by more than 70 after using 4-D base MFCC
features.

To validate the improvement in performance with
increasing MFCC feature truncation on a continuous
speech recognition task, the recognition performance for
“PFts” is evaluated on the corresponding models trained
on “CAMtr” with matching feature dimensions, as given in
Table 8. When the higher-order MFCCs are excluded from
the feature vector, improvement is obtained in recognition
performance on a continuous speech recognition task as
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Fig. 5. Plots of (a) smoothed spectra corresponding to the base MFCC features of different dimensions along with corresponding. (b) Linear DFT spectrum for a
frame of vowel /iy/ having the average pitch value of 300Hz.

Table 6. Performance of “CHts1” on models trained with “ADtr” for
various truncations of the base MFCC features along with its pitch

group-wise breakup.

WER ()

All F0 250 Hz ≤
MFCC base values F0 < 250Hz F0 < 300Hz F0 ≥ 300Hz
feature length (7772) (5224) (2346) (202)

Default (C0–C12) 11.37 6.54 17.47 39.03
C0–C11 11.20 6.81 16.80 35.81
C0–C10 11.38 7.35 16.55 33.58
C0–C9 10.71 7.03 15.38 31.60
C0–C8 9.03 6.03 13.00 25.29
C0–C7 7.80 5.35 10.77 23.30
C0–C6 6.77 4.72 9.42 18.09
C0–C5 6.21 4.25 8.62 18.09
C0–C4 6.03 4.55 7.93 14.25
C0–C3 5.21 4.20 6.33 12.64
C0–C2 5.47 4.51 6.34 14.75

The truncated base MFCC features are also appended with their corre-
sponding first- and second-order derivatives for recognition. The quantity
in bracket gives the number of utterances corresponding to that pitch
group. The bold numbers highlight the best performances obtained for
each pitch group by increasing the truncation of the base MFCC feature
beyond the default length of 13 up to 3.

well. The best relative improvement of about 38 is obtained
over the baseline for “PFts” with 6-D base MFCC fea-
tures. The age group-wise breakup of this best recognition
performance obtained for “PFts” using 6-D base MFCC

Table 7. Age group-wise breakup of the best recognition performance
obtained for “CHts1” on models trained with “ADtr” using 4-D base

MFCC features.

WER ()
Age group (years)

MFCC base All 6–7 8–9 10–11 12–13 14–15
feature length (7772) (615) (2386) (3231) (1309) (231)

Default (C0–C12) 11.37 23.40 19.46 7.00 3.72 0.26
C0–C3 5.21 8.28 8.48 3.71 2.21 1.05

The truncated base MFCC features are also appended with their corre-
sponding first- and second-order derivatives for recognition. The quan-
tity in bracket gives the number of utterances corresponding to that age
group.

features, given in Table 9, shows consistent improvements
across all age groups.

These results verify our hypothesis that a large degree
of degradation in ASR performance on children’s speech
under the mismatched conditions is mainly caused by the
acoustically mismatched information present in the higher-
order coefficients of the MFCC feature vector.

B) Relation between MFCC feature truncation
and acoustic mismatch
Although truncating MFCC base features beyond the
default length of 13 helps in reducing the gross acoustic mis-
match between the child test set and the models trained
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Table 8. Performance of “PFts” on models trained with “CAMtr” for
various truncations of the base MFCC features along with its pitch

group-wise breakup.

WER ()

All F0 250Hz ≤
MFCC base values F0 < 250Hz F0 < 300Hz F0 ≥ 300Hz
feature length (7772) (5224) (2346) (202)

Default (C0–C12) 56.34 33.05 77.25 102.69
C0–C11 52.10 31.23 69.20 101.71
C0–C10 48.39 27.89 66.19 92.18
C0–C9 44.72 25.61 61.35 85.33
C0–C8 42.19 23.37 59.28 78.73
C0–C7 39.89 22.30 54.59 80.20
C0–C6 39.02 21.69 54.05 76.04
C0–C5 35.13 19.45 48.03 72.13
C0–C4 38.25 22.34 51.83 73.35
C0–C3 41.50 26.63 54.05 75.06
C0–C2 40.62 27.55 51.97 68.46

The truncated base MFCC features are also appended with their corre-
sponding first- and second-order derivatives for recognition. The quantity
in bracket gives the number of utterances corresponding to that pitch
group. The bold numbers highlight the best performances obtained for each
pitch group by increasing the truncation of the base MFCC feature beyond
the default length of 13 up to 3. The numbers indicate that greater truncation
is chosen for signals of higher pitch group.

Table 9. Age group-wise breakup of the best recognition performance
obtained for “PFts” on models trained with “CAMtr” using 6-D base

MFCC features.

WER ()
Age group (years)

MFCC base All 4–5 6–7 8–9 10–11 12–13
feature length (129) (2) (20) (45) (58) (4)

Default (C0–C12) 56.34 249.33 107.35 77.51 20.79 58.64
C0–C5 35.13 244.00 81.55 39.13 10.50 53.40

The truncated base MFCC features are also appended with their corre-
sponding first- and second-order derivatives for recognition. The quan-
tity in bracket gives the number of utterances corresponding to that age
group.

on adult speech, for each test signal the degree of acous-
tic mismatch with respect to the models would be differ-
ent. Therefore, we investigate the correspondence between
MFCC feature length and degree of acoustic mismatch in
speech recognition.

Due to reduction in the dimensionality of feature vec-
tors, the likelihoods of test features increase monotonically
with increasing truncation. Thus, the ML criterion cannot
be simply used to determine the appropriate truncation for
a test feature without using appropriate penalties. Since we
have hypothesized that increased MFCC feature truncation
reduces the acoustic mismatch mainly due to pitch differ-
ences and differences in formant frequencies, we explore the
appropriate MFCC base feature truncations for the test sig-
nals based on their average pitch values and their optimal
VTLN warp factors on default MFCC features.

The speech signals of child test sets are divided into dif-
ferent groups based on their average pitch values. The pitch
group-wise performances of “CHts1” and “PFts” for differ-
ent dimensions of the truncated test features on correspond-
ing models trained on adult speech with matching feature
dimensions are also given in Tables 6 and 8. On both tasks,
the best ASR performances correspond to the same MFCC
base feature truncation for different pitch groups. There-
fore, pitch cannot be used for determining the appropriate
MFCC feature truncation for a signal. Although the acous-
tic mismatch due to pitch differences is also addressed by
increased MFCC feature truncation, it is not large enough
to quantify the gross acoustic mismatch of the signals with
respect to the models.

Among the various other sources of acoustic mismatch,
the VTL differences are the foremost source of mismatch.
VTLN provides an easy quantification of the acoustic mis-
match in terms of the frequency warp factor. To investigate
appropriate MFCC base feature truncations for children
test signals, we now explore optimal VTLN warp factors.
The VTLN warp factors for all speech signals of both
child test sets are estimated on an utterance-by-utterance
basis with respect to the corresponding 39-D baseline mod-
els trained on adult speech by carrying out a ML grid
search among 13 frequency warp factors (α) ranging from
0.88–1.12 in steps of 0.02 as described in [26]. This range
of VTLN warp factors is chosen in order to study the
relation between degree of MFCC feature truncation and
acoustic mismatch (as quantified by VTLN warp factors)
in speech recognition of child speech on models trained
on adult speech with the default feature and recognition
model settings that are typically used for recognition of
adult speech under matched conditions. Piece-wise linear
frequency warping of the filterbank, as supported in the
HTK Toolkit [21], is used. The optimal warp factor α̂, is
estimated as:

α̂ = arg max
α

Pr
(
Xα

i |λ, Wi
)

, (2)

where Xα
i is the frequency warped feature for the i th utter-

ance. λ is the speech recognition model, and Wi is the
transcription of the i th utterance. Wi is determined by
the initial recognition pass. Both test sets are then divided
into different groups based on their optimal VTLN warp
factors.

The VTLN warp factor-wise recognition performances
of “PFts” are given in Table 10. There are not sufficient num-
bers of signals corresponding to each of the values of the
VTLN warp factor in the child test sets. The recognition
performances for “CAMts” are therefore also evaluated on
models trained on “CAMtr” as given in Table 11.

While the ASR performance improves consistently with
increased MFCC feature truncation for “PFts”, there is a
slight improvement over baseline with increased MFCC
feature truncation up to the MFCC base feature length
of 12 for “CAMts”. The reduced feature truncation and
small improvement for “CAMts” is attributed to the smaller
degree of gross acoustic mismatch for adult test set with
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Table 10. Performance of “PFts” on models trained on “CAMtr” for various truncations of the base MFCC features along with their VTLN warp
factor-wise breakup.

WER ()
VTLN warp factor values

MFCC base All 0.88 0.90 0.92 0.94 0.96 0.98 1.06 1.08
feature length (129) (91) (24) (7) (1) (2) (2) (1) (1)

Default (C0–C12) 56.34 64.07 40.97 26.32 25.00 8.42 94.44 42.86 5.13
C0–C11 52.10 58.70 38.95 23.08 25.00 10.53 93.52 42.86 5.13
C0–C10 48.39 54.76 34.21 22.67 25.00 8.42 93.52 42.86 5.13
C0–C9 44.72 50.21 31.48 22.67 25.00 9.47 98.15 28.57 5.13
C0–C8 42.19 47.27 28.96 22.27 25.00 8.42 99.07 30.95 5.13
C0–C7 39.89 44.87 28.15 16.60 25.00 8.42 90.74 26.19 5.13
C0–C6 39.02 43.99 27.35 16.19 13.64 8.42 93.52 21.43 5.13
C0–C5 35.13 39.56 23.71 14.98 13.64 9.47 88.89 26.19 2.56
C0–C4 38.25 42.25 29.26 16.60 22.73 9.47 90.74 23.81 2.56
C0–C3 41.50 45.62 35.22 15.38 9.09 12.63 86.11 21.43 2.56
C0–C2 40.62 44.22 33.70 21.05 9.09 25.26 82.41 16.67 0.00

The truncated base MFCC features are also appended with their corresponding first- and second-order derivatives for recognition. The quantity in
bracket gives the number of utterances corresponding to that VTLN warp factor. The bold numbers highlight the best performances obtained for
each group of signals corresponding to different VTLN warp factors by increasing the base MFCC feature truncation beyond default. The numbers
indicate that greater truncation is chosen for signals having greater VTL differences.

Table 11. Performance of “CAMts” on models trained on “CAMtr” for various MFCC base feature truncations along with their VTLN warp
factor-wise breakup.

WER ()
VTLN warp factor values

MFCC base All 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.12
feature length (314) (8) (14) (39) (79) (70) (13) (46) (8) (33) (4)

Default (C0–C12) 9.92 6.31 8.87 13.76 8.12 9.82 13.71 13.93 4.93 5.01 9.76
C0–C11 9.76 6.31 7.39 13.30 7.89 9.42 13.31 14.55 4.93 5.18 9.76
C0–C10 10.28 4.50 8.37 13.15 8.82 10.06 11.69 14.68 10.56 5.87 9.76
C0–C9 9.92 5.41 7.88 12.54 9.13 9.19 11.69 14.55 4.23 6.22 9.76
C0–C8 10.60 5.41 9.36 13.46 9.82 9.50 12.90 15.68 5.63 6.56 4.88
C0–C7 11.02 5.41 10.84 13.91 10.21 10.30 12.10 15.81 6.34 6.56 7.32
C0–C6 11.86 5.41 9.85 15.29 10.90 11.66 12.10 17.31 6.34 6.56 7.32
C0–C5 12.95 7.21 12.81 16.97 11.60 12.38 13.71 18.70 4.23 7.94 9.76
C0–C4 15.08 7.21 15.76 18.96 13.77 14.54 14.11 22.08 9.86 8.64 7.32
C0–C3 21.52 13.51 24.14 27.68 20.42 20.69 16.94 28.23 13.38 14.51 17.07
C0–C2 29.15 24.32 33.99 37.77 27.38 27.16 25.00 37.39 16.90 21.42 14.63

The truncated test features also include their first- and second-order derivatives. The quantity in bracket gives the number of utterances corresponding
to that VTLN warp factor. The bold numbers highlight the best performances obtained for each group of signals corresponding to different VTLN
warp factors by increasing the base MFCC feature truncation beyond default. The numbers indicate slight improvement over baseline with increased
MFCC feature truncation only up to MFCC base feature length of 12 due to smaller degree of gross acoustic mismatch between the test and training
data set.

respect to the models trained on adult speech unlike the
data set “PFts”. However, for both child and adult test
data sets, different truncations of MFCC base features are
required for signals with different degrees of VTL dif-
ferences. Greater truncation is chosen for signals having
greater VTL differences. Child speech has greater acous-
tic mismatch with respect to ASR models trained on adult
speech. As a result, larger improvements are obtained in
speech recognition performance on children’s speech, while
no significant change is obtained for adults’ speech using
increased MFCC feature truncation.

Thus, increasing MFCC feature truncation helps to
improve ASR performance under mismatched conditions
by efficiently reducing significant gross acoustic mismatch
between the test signals and the training set.

C) Proposed algorithm for adaptive MFCC
feature truncation for ASR
Wehave already found that the appropriateMFCC base fea-
ture truncation increases as the degree of acousticmismatch
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increases between the test speech and the speech recogni-
tion models. Under matched and mismatched conditions,
however, on the whole, less MFCC feature truncation is
required for matched test speech, while greater truncation
is required for mismatched test data. In order to automate
the procedure of determining the appropriate MFCC fea-
ture truncation for a test signal, the test speech must first be
categorized as matched or mismatched.

The frequency spectrum of child speech may require
compression by a frequency warp factor of as low as 0.88
relative to adult speech. On the other hand, the frequency
spectrum of adult speech would often need expansion by
a frequency warp factor of as high as 1.12 relative to child
speech. Thus, to categorize the test signal as belonging to a
child speaker or an adult speaker, we compare the log likeli-
hood for the test signal using the default MFCC feature set
and the feature sets corresponding to different VTLN warp
factors.
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A
pp

ro
pr

ia
te

 L
en

gt
h 

of
 M

F
C

C
 B

as
e 

F
ea

tu
re

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 6. Graph showing the relation proposed between appropriate length of
MFCC base feature and VTLN warp factor for both adult and child test signals.

On models trained on adult speech, if the likelihood is
greater for the feature set corresponding to VTLNwarp fac-
tor of 0.88 than that corresponding to the default MFCC
features, the test signal is categorized as belonging to a child
speaker. However, on models trained on child speech, the
test signal is categorized as adult speech if its likelihood is
greater for the feature set corresponding to VTLNwarp fac-
tor of 1.12 than that corresponding to the default MFCC
features. For the sake of generality, based on the ASR per-
formances obtained for adult and child speech correspond-
ing to different VTLN warp factors using different MFCC
feature lengths, we propose a piece-wise linear model for
the relationship between MFCC base feature truncation for
both adult and child test signals and their acoustic mis-
match, as assessed by their VTLN warp factor (α̂), depicted
in Fig. 6.

Once the test signal is categorized as belonging to adult
or child, the appropriate MFCC base feature length is
determined using the optimal VTLN warp factor (α̂). The
flow diagram of the algorithm proposed for models trained
on adult speech or child speech is shown in Fig. 7.

The recognition performances for all test sets using the
proposed algorithm are given in Table 12. The numbers
given in brackets give the relative improvements obtained
using the proposed algorithm over the corresponding base-
line. Relative improvements of 38 (on a connected-digit
recognition task) and 36 (on a continuous speech recog-
nition task) are obtained for child test sets over baseline
that are close to the best performance improvements of
54 (on a connected-digit recognition task) and 38 (on
a continuous speech recognition task) obtained using the
sameMFCCbase feature length for all test signals. However,
when tested on the adult test set, no significant improve-
ment in performance is obtained comparedwith baseline on
themodels trained on adult speech. In fact, the performance

Fig. 7. Flow diagram of the proposed algorithm to determine the appropriate MFCC base feature length for test signal on models trained on adult speech (solid
lines) or models trained on child speech (in dashed lines).
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Table 12. Performances of test sets on recognition models trained with different training data sets using MFCC features derived using the proposed
algorithm referred to as “Proposed” for both connected-digit and continuous speech recognition task.

Test set
WER ()

ADts CHts1 CHts2 CAMts PFts
Training
data set Baseline Proposed Baseline Proposed Baseline Proposed Baseline Proposed Baseline Proposed

ADtr 0.43 0.53 11.37 7.09 – – – – – –
(-23) (38)

CHtr 13.28 8.70 – – 1.01 0.52 – – – –
(35) (49)

CAMtr – – – – – – 9.92 10.28 56.34 36.21
(-3.6) (36)

PFtr – – – – – – 68.36 61.43 12.41 8.62
(10) (31)

The numbers given in brackets give the relative improvements obtained using the proposed algorithm over their corresponding baselines.

of adult test sets on matched models show slight degrada-
tion using the proposed algorithm as indicated with nega-
tive numbers in brackets for two cases in Table 12.

However, their performance degradation, attributed to
smaller degree of gross acoustic mismatch between adult
training data and adult test data, is insignificant relative to
the degree of improvement that is obtained in the recogni-
tion performance for child test sets. Further, when tested
on models trained on child speech, the proposed algorithm
gives consistent improvements for both mismatched adult
test set and matched child test set on both digit and con-
tinuous speech recognition tasks. Relative improvements of
49 and 31 are obtained over baseline in ASR performances
on children’s speech. When the adult test set is evaluated
using models trained on child speech, relative improve-
ments of 35 and 10 are obtained over baseline on the digit
and continuous speech recognition tasks. However, greater
improvements are obtained for children’s speech than for
adults’ speech on models trained on child speech. Also, for
ASR of adults’ speech, the improvements obtained are less
than that for ASR of children’s speech under mismatched
conditions. This is because the variances for the observa-
tion densities of the phone models are greater for the poor
models trained on child speech than for the models trained
on adult speech [2, 8]. This means that the Gaussian densi-
ties aremore scattered and thus less separable in the acoustic
feature space for models trained on child speech.

Thus, the proposed algorithm is effective in reducing the
acoustic mismatch between child speech and adult speech,
without using any prior knowledge about the speaker of
the test utterance, and with the additional advantage of
reducedMFCC feature dimensions. Relative improvements
obtained using the proposed algorithm in all ASR perfor-
mances under acoustically mismatched conditions are close
to the best performances obtained with constant fixed fea-
ture truncation for all test signals.However, these significant
improvements in the recognition performances using the
proposed algorithm are obtained with an increase in the
execution time by a factor of 10 with respect to the default
HMM-based ASR algorithm.

D) Combining proposed algorithm with
VTLN and/or CMLLR
VTLN and CMLLR are the two effective techniques in
the literature that are used to reduce acoustic mismatch
between adult speech and child speech [8, 11]. Our pro-
posed algorithm for adaptive MFCC feature truncation
also addresses acoustic mismatch and has given signifi-
cant improvements in performance. It would be interest-
ing to explore whether the improvement obtained by our
proposed algorithm is additive to that obtained by VTLN
and/or CMLLR or not.

In these experiments, VTLN is performed on an
utterance-by-utterance basis on the test speech data. An
ML grid search procedure is used to carry out VTLN with
frequency warp factors ranging from 0.88 to 1.12 in steps
of 0.02 as described in Section IV-B. CMLLR is a feature
adaptation technique that estimates a set of linear transfor-
mations for the features. The effect of these transformations
is tomodify the feature vector so as to increase its likelihood
with respect to the given model. The transformationmatrix
used to give a new estimate of the adapted observation ô is
given by:

ô = Ao + b, (3)

where o is an n × 1 observation vector, A represents an
n × n transformation matrix, and b represents an n × 1
bias vector. The ML estimates of the affine transformations
for adaptation of the features are obtained using the EM
algorithm on adaptation data.

The recognition performances for “PFts” on models
trained on “CAMtr” using the default MFCC features and
the features derived using the proposed adaptive MFCC
feature truncation algorithm both with and without VTLN
are given in Table 13. Another 15 relative improvement is
obtained over the performance obtained using VTLN on
default MFCC features by carrying out VTLN with MFCC
features derived using the proposed adaptive truncation
algorithm. However, the relative improvement with VTLN
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Table 13. Performances of different test sets using the default MFCC features referred to as “Default” and MFCC features derived using the
proposed algorithm referred to as “Proposed” both with and without VTLN and/or CMLLR on recognition models trained with different training

data sets for continuous speech recognition task. Relative gain in ASR performance obtained with CMLLR over the respective baseline is
also given.

Training: “CAMtr” Test: “PFts” Training: “PFtr” Test: “PFts” Training: “PFtr” Test: “CAMts”

WER () WER () WER ()
Relative Relative Relative

Condition Baseline with CMLLR Gain () Baseline with CMLLR Gain () Baseline with CMLLR Gain ()

Default 56.34 38.25 32 12.41 10.22 18 68.36 64.92 5
Default + VTLN 26.78 18.63 30 9.06 7.99 12 50.58 42.67 16
Proposed 36.21 23.07 36 8.62 7.54 13 61.43 49.74 19
Proposed + VTLN 22.72 16.16 29 7.70 6.75 12 47.80 39.89 17

The bold numbers highlight the best performances obtained for each test set on recognitionmodels trained on different training data sets using the proposed
algorithm in conjunction with VTLN and CMLLR.

is reduced by 15 when the MFCC features derived using
the proposed algorithm are used. The ASR performances
for “PFts” on models trained on “CAMtr” using CMLLR on
the default MFCC features and the features derived using
the proposed adaptive truncation algorithm both with and
without VTLN are also given in Table 13.

CMLLR is performed for computing speaker-specific
transformations as supported in the HTK Toolkit [21]. A
relative gain of 40 is obtained in the recognition per-
formance using CMLLR on MFCC features derived using
the proposed algorithm over the performance obtained by
using CMLLR on the default. MFCC features. In relation to
the recognition performances obtained by combinedVTLN
and CMLLR, a relative improvement of 13 is obtained
using the proposed algorithm over that obtained using the
default MFCC features.

The additional improvements obtained for “PFts” using
the proposed algorithm over those obtained from VTLN
and/or CMLLR under mismatched conditions are further
validated for recognition of “PFts” and “CAMts” on mod-
els trained using “PFtr” as given in Table 13. A similar trend
to that obtained for “PFtr” on models trained on “CAMtr”
is observed in performance improvements for both “PFts”
and “CAMts” on models trained on “PFtr”. Relative gains of
15 for VTLN, 26 for CMLLR, and 16 for VTLN with
CMLLR are obtained in the ASR performance over baseline
for “PFts” usingMFCC features derived using the proposed
algorithm. Relative gains of 6 for VTLN, 23 for CMLLR,
and 7 for VTLN with CMLLR are obtained in the recog-
nition performance over baseline for “CAMts” usingMFCC
features derived using the proposed algorithm.

Thus, the improvement obtained using the proposed
adaptive MFCC feature truncation algorithm is additive
to those obtained with VTLN and/or CMLLR. This is
because the proposed algorithm is not constrained to use
linear transformations. By reducing the feature dimension
for both training and test sets at the same time, SAT is
implicitly incorporated in the proposed algorithm and thus
does not require the models to be explicitly adapted and
retrained.

V . CONCLUS IONS

Anovel technique has been developed to reduce the effect of
acousticmismatch between training and test speech onASR
performance. The higher-order MFCCs have been demon-
strated to be more affected by acoustic mismatch due to
pitch differences than lower-order MFCCs, causing degra-
dation in the ASR performance under mismatched con-
ditions. Based on the correspondence between the MFCC
base feature length and the degree of acoustic mismatch for
a speech signal, an adaptive algorithm has been proposed
for utterance-specific MFCC base feature truncation for
each test signal without prior knowledge about the speaker
of the test utterance. Using the proposed algorithm, sig-
nificant improvement is obtained in ASR performance on
children’s speech under mismatched conditions, with no
significant change in ASR performance on adults’ speech
under matched conditions on both connected-digit recog-
nition and continuous speech recognition tasks. Moreover,
these improvements are additive to performance improve-
ments obtained with the traditional VTLN and CMLLR
methods used to address acousticmismatch in ASR. Similar
improvements are also obtained on matched child speech
and mismatched adult speech with and without VTLN
and/or CMLLR.
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