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industrial technology advances

Spatio-temporal multidimensional collective
data analysis for providing comfortable living
anytime and anywhere
naonori ueda and futoshi naya

Machine learning is a promising technology for analyzing diverse types of big data. The Internet of Things era will feature the
collection of real-world information linked to time and space (location) from all sorts of sensors. In this paper, we discuss spatio-
temporalmultidimensional collective data analysis to create innovative services from such spatio-temporal data and describe the
core technologies for the analysis. We describe core technologies about smart data collection and spatio-temporal data analysis
and prediction as well as a novel approach for real-time, proactive navigation in crowded environments such as event spaces and
urban areas. Our challenge is to develop a real-time navigation system that enables movements of entire groups to be efficiently
guided without causing congestion by making near-future predictions of people flow.We show the effectiveness of our navigation
approach by computer simulation using artificial people-flow data.
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I . I NTRODUCT ION

Machine learning is a promising technology for analyzing
diverse types of big data. However, since a single core tech-
nology is insufficient for achieving innovative services that
exploit big data, a composite technology that combines key
technologies is essential. Furthermore, to conduct technol-
ogy trials in the field and uncover business needs, close
discussions are needed with specialists in applied fields.
Against this background, the Machine Learning and Data
Science Center (MLC) was established in April 2013 at NTT
Laboratories as an inter-laboratory collaborative organiza-
tion focused on big data analysis [1].

It has been more than a decade since the concept of
“big data” was first proposed. Unfortunately, definitions of
big data and its analysis were unclear from the start. In
time, though, advances in sensor technologies will enable
the use of sensors in all sorts of fields including social
infrastructure, medicine and healthcare, transportation,
and agriculture. An environment is currently evolving in
which massive amounts of data can be collected and ana-
lyzed in real time: the birth of a concept called the Internet
of Things (IoT). Through IoT the true nature of big data is
finally being revealed.
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As envisioned by MLC, the research and development
visions for big data analysis technologies in the IoT era are
shown in Fig. 1. From this perspective, regression analy-
sis, which is representative of conventional data analysis,
aims to describe objective variables using multiple explana-
tory variables. That is, it has an analysis technology for
determining whether an objective variable (e.g. sales) can
be expressed as a function of explanatory variables (fac-
tors). In the IoT era, however, there is a need for technology
that can extract latent information spanning heterogeneous
multidimensional datasets that cannot be discovered by
individually analyzing different sets of data. To this end,
we developed a technique called “multidimensional data
analysis” that enables multiple heterogeneous sets of data
to be simultaneously analyzed whose usefulness has been
demonstrated through actual field trials [2–4].

With the improvement of sensing technology and the
rapid spread of smartphone applications and IoT devices,
various big data on car and object movements, human
behavior, and environmental changes can be measured and
collected everywhere in real time. By making moving enti-
ties such as people, cars, and things function as sensors,
we can efficiently collect a variety of fine-grained data col-
lection of real-world information linked to time and space
(location) from many kinds of sensors. This type of infor-
mation is called “spatio-temporal data”. In this paper, we
also describe our trials that collected and detected city-wide
events by government vehicles in Fujisawa city, Kanagawa,
Japan as mobile environmental sensors [5–8].
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Fig. 1. Core technologies for era of big data and Internet of Things.

Referring to Fig. 1, time-series analysis models the tem-
poral interaction or cause-and-effect relationship among
data, but spatio-temporal analysis constructs models that
also consider the spatial dynamics among data. To analyze
the spatio-temporal behavior of people and things and pre-
dict when, where, and what in real time, we established a
research theme called “spatio-temporal multidimensional
collective data analysis”. This form of analysis addresses
time and space along multidimensional axes and uses past
data from a certain period of time to learn about themutual
relationships between time and space with respect to the
“flow” of people, things, information, etc.

The global trend of urbanization has increased the con-
centration of people in metropolitan regions [9]. This trend
will intensify congestion at mass events as well. Pedestrians
often get lost in unfamiliar urban environments or in large,
indoor spaces. Even if people are familiar with their sur-
roundings, they will likely have difficulty evacuating during
emergencies. During Japan’s most recent natural disaster,
2011’s Great East Japan Earthquake, many people could not
return to their homes due to heavy congestion caused by
damage to the infrastructure of highways and train lines.
In such situations, either outdoors or indoors, guidance on
demand must be provided that is individually tailored to
human needs.

As one critical application of spatio-temporal collec-
tive data analysis, we describe our novel approach for
real-time and proactive navigation in such crowded envi-
ronments as event spaces and urban areas where many
people are simultaneouslymoving toward their destinations
[10, 11]. The ideal navigation system requires the following
characteristics:

• Navigation should be optimized not for individuals, but
for overall human navigation so that new congestion will
not be caused by independent individual navigations.

• Navigation should be performed in real time because
countermeasures must be facilitated based on the people-
flow changes frommoment to moment, depending on the
people-flow condition.

• Navigation should be proactive; it should be achieved
before congestion occurs by predicting near-future
people-flow conditions.

• Navigation should cope with the avoidance of congestion,
while also taking into account the intentions of individ-
uals as much as possible. That is, it must enable many
people to reach their destinations as quickly as possible.

Our challenge is to develop a real-time navigation system
that satisfies the above ideal navigation characteristics. In
this paper, we describe our navigation system and show its
effectiveness by computer simulation using artificial people-
flow data.

The rest of the paper is organized as follows. In Section
II, we describe our smart data collection system to detect
city-wide events. In Section III, we briefly explain our
machine learning technologies for spatio-temporalmultidi-
mensional collective data analysis. In Section IV, we explain
real-time, proactive navigation, which is a core technology
for providing comfortable living anytime and anywhere.

I I . SMART C ITY -W IDE DATA
COLLECT ION US ING
GOVERNMENT VEH ICLES

In the following, we describe our trials that collected and
detected city-wide events using government vehicles in
Fujisawa city as mobile environmental sensors.

A) City-wide data collection by sensorized
government vehicles
One of the most important concerns of citizens in urban
areas is the health impact of air pollution. TheWorldHealth
Organization estimates that 4.3 million deaths occur annu-
ally from exposure to indoor air pollution and 3.7 million
to outdoor pollution [12]. Although cities in developing
countries are generallymore polluted than first-world cities,
millions suffer worldwide from allergies to cedar pollen and
PM2.5 concentration. Accumulating fine-grained air quality
information and delivering it to the public are important to
assess urban air conditions to protect the health of citizens.
However, acquiring detailed air quality information is usu-
ally difficult both spatially and temporally because expen-
sive atmospheric observation stations are limited even in
city areas and the sampling rate frequency is as low as just
once as hour.

To cope with the above issue, we have been investigating
city-wide event detection technology using environmental
data collected by car-mounted sensors. We have installed
dozens of sensors on garbage trucks that operate daily all
over Fujisawa city [5, 6]. Figure 2 shows a sensorized garbage
truck and a block diagram. The truck is equipped with var-
ious environmental sensors, such as NO2, CO, O3, PM2.5,
pollen, temperature, humidity, luminance, UV, two types of
air contaminants, and a microphone for measuring ambi-
ent noise. These sensor data are sampled every few seconds
by the sensor type, and many sensors with global position-
ing system (GPS) geolocation information are transmitted
to a remote server by a mobile Internet connection service
every 30 s. Suchfine-grained environmental data help detect
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Fig. 2. Sensorized garbage truck and block diagram.

Fig. 3. Heat maps of NO2 and ambient noise levels of Fujisawa city.

spatio-temporal events inmore depth, e.g. the emergence of
air pollution hot spots and the generation of ambient noise.
Figure 3 shows the heat maps of NO2 and the ambient noise
levels of Fujisawa city by data collected from 1month. Some
parts of the main roads are noisier than other roads as well
as some particular hot spots.

Normally, for designing such a sensing system, the data
sampling intervals and communication frequencies are
fixed. However, these parameters for capturing changes in
sensor data with finer granularity are often unknown until
the data are collected and analyzed once. They also depend
on the service requirements from citizens and local munic-
ipalities. To address this, we developed a remote program
relocation function that allows us to remotely change the
program on the sensor nodes on demand. Detailed infor-
mation is available [6, 7].

B) Smart waste management
Another important issue in cities across the world is
waste management. Efficient waste management is essen-
tial for local municipalities to sustain stable waste collection

services in the future. Even though developing countries
are transitioning toward better waste management, they
have insufficient collection and inefficient waste disposal.
Since rapid population growth throughurbanization creates
a huge amount of solid waste, appropriate waste manage-
ment is required based on future population projections
for each region. To this end, we have been conducting
experiments to evaluate regional solid-waste production by
motion sensors mounted on garbage trucks [8].

In conventional waste management, the amount of solid
waste for a given area is summarized by weighing the total
waste delivered to incineration plants by garbage trucks
assigned to the region. In fact, one garbage truck collects
solid waste inmultiple separated areas to balance workloads
among multiple trucks. Therefore, estimating the weight of
regional waste is difficult based on the summarized weight;
it is roughly estimated based on human intuition, which
includes sizable error. From interviews with municipality
officials, we concluded that a method that accurately esti-
mates the amount of waste for each area is required for plan-
ning garbage collection schemes based on regional seasonal
variations in the amount of solid waste. This information
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Fig. 4. Acceleration measurement patterns and their spectrograms while collecting garbage, driving, and idling.

will enable municipalities to minutely estimate future solid-
waste amounts, thus increasing the efficiency of waste man-
agement. The regional garbage amount information is also
important to promote citizen awareness and reduce the
amount of waste.

To meet the above requirements, we proposed a method
for estimating the regional amounts of solid waste based on
the garbage collection duration in each area and the waste
weight measured at incineration plants. The garbage collec-
tion duration at garbage collection place in each house or
apartment building is estimated from the garbage truck’s
vibration that is caused when it scoops up garbage with
a rotating plate. We mounted motion sensors on garbage
trucks to measure and detect specific vibration patterns
when collecting garbage, driving, idling, and so on. Figure 4
shows examples of the acceleration sensor data of the hor-
izontal axis parallel to the truck’s traveling direction and
their spectrograms. Peak acceleration frequencies differ
depending on the situation of the garbage trucks.

We annotated the sensor data with labels based on
their situations by listening to the sounds recorded by
microphones attached to the garbage trucks. By applying
a standard supervised learning method, such as a support
vectormachine, to the extracted spectrogram features of the
accelerometer data, we can classify and spot temporal dura-
tions that correspond to garbage collection. The estimated
temporal durations of the garbage collection are recorded
with the truck’s locations from a GPS receiver. When the
garbage truck arrives at the incineration plant, the total
weight of its garbage is measured. We then calculate the
amount of solid waste by region by distributing the weight
from the operating duration of the rotating plate. Here we
assume that the operating duration of the rotating plate is
proportional to the amount of solid waste.

Figure 5 shows a screenshot of our regional garbage
amount visualization system. Its right side shows a map
that compares the estimated regional solid-waste collect-
ing spots for two different weeks. The color dots (orange,

blue, green) correspond to estimated garbage collection
spots by different operator companies and/or municipal-
ity sections. Currently, 60 of 100 garbage trucks are sen-
sorized. The bottom-left of Fig. 5 shows choropleth maps
of the total amount of solid waste summarized weekly by
town region. By accumulating long-term spatio-temporal
garbage amount data, we can analyze spatial and seasonal
tendencies along with census statistics of the city. Further-
more, by creating a system to provide feedback of the above
information, we can expect to quantitatively evaluate the
effectiveness of our approach for waste reduction.

I I I . SPAT IO -TEMPORAL
MULT ID IMENS IONAL DATA
ANALYS IS

In this section, we describe our two representative results
of spatio-temporalmultidimensional data analysis. The first
is a method for pattern discovery and missing value com-
pletion from spatio-temporal counting data. The second is
a method for estimating people flow from spatio-temporal
population data.

A) Spatio-temporal pattern discovery and
missing value completion
Various kinds of spatio-temporal data, such as traffic flow,
purchasing records, and weather data, are observed by sen-
sor monitoring systems in smart cities. These data are uti-
lized to understand the dynamics of a city’s human activities
and its environmental conditions [13].However, as the num-
ber of sensor nodes increases, it becomes humanly impos-
sible to check every dimension of these spatio-temporal
data. Current monitoring systems are not always stable and
often fail to observe data, because of problems with sen-
sor nodes and data transmission errors. Thus, in practice
we need to deal with missing values that are included in
spatio-temporal data.
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Fig. 5. Screenshot of regional garbage amount visualization system.

Non-negative tensor completion (NTC) [14], which was
proposed for missing value completion, is an extension
of non-negative tensor factorization (NTF) that simulta-
neously extracts latent factors from observed values and
infers the missing values. Tensor is a generalization of a
matrix that can represent a high-dimensional data array
without any loss of data attributes. NTF decomposes a
non-negative value tensor into sparse and reasonably inter-
pretable latent factors and is widely used for many applica-
tions [15]. However, the conventional NTC does not fully
utilize such spatio-temporal data properties as the orders
of time points and the topology of sensors, although these
structures should be utilized to regularize the latent factors.
To address this problem, we proposed a new NTC method
[4].

As a discrepancy metric and spatio-temporal structures,
the generalized Kullback–Leibler (gKL) divergence was
employed as regularizers. We used a gKL that fits partic-
ularly well if the data are non-negative integer values. To
incorporate spatio-temporal structures, we introduced a
graph Laplacian-based regularizer and used it for inducing
latent factors to represent auxiliary structures. This modifi-
cation enabled us to extract more meaningful latent factors
than the conventional methods without considering spatio-
temporal structures. The formalization details are given in
Appendix. Moreover, we developed a computationally effi-
cient learning algorithm that only needs to solve linear
equations [4].

Figure 6(a) shows the total vehicle counts for 2 weeks,
and Fig. 6(b) shows them at each site of the automobile

traffic data provided by CityPulse collected in Aarhus, Den-
mark [16]. The horizontal and vertical axes in Fig. 6(a)
correspond to the times and the vehicle counts. Figure 6(a)
shows the daily periodicity of the vehicle counts, and we
identified a temporal continuity for them between two adja-
cent times. The arrows in Fig. 6(b) correspond to the start
and the end points of each monitoring site. The red and
blue arrows, respectively, correspond to the large and small
vehicle counts at the sites. From Fig. 7(b), we confirmed the
spatial continuity of the vehicle counts among neighboring
sites with similar directions.

Examples of extracted spatial and temporal factor seg-
ments from CityPulse of our proposed method and NTC
with the Euclid distance are shown in Fig. 7. By utilizing our
graph-based regularizer, our proposed method extracted
interpretable factors. With day and time mode factors, dif-
ferent temporal dynamics were extracted in Figs 7(a) and
7(b). With the site mode factors, different spatial flows of
vehicles were extracted in Figs 7(c), 7(d), and 7(e), show-
ing that factor 2 revealed a traffic pattern that occurred
on weekday mornings where vehicles were heading toward
downtown Aarhus.

The above result only reflects the count data, but the
method is extendable to multidimensional data. Figure 8
illustrates the conceptual idea for multidimensional cases.
Various kinds of input data are simultaneously analyzed to
find the latent structure over different kinds of observed
data. Such analysis is important in the sense that it can dis-
cover latent factors that could not have been obtained from
individual data.



6 naonori ueda and futoshi naya

Fig. 6. CityPulse dataset.

Fig. 7. Extracted latent factors for CityPulse dataset.

B) People-flow estimation from
spatio-temporal population data
Due to the prevalence of mobile phones and GPS devices,
spatio-temporal population data can now be obtained eas-
ily. For example, mobile spatial statistics [17] contain hourly

population figures in 500m grid squares in Japan’s urban
areas, calculated from mobile network operational data.
To effectively utilize population data, we estimate the peo-
ple flow from the data. Of course, if we could obtain the
tracking data of individuals, then we would not need to
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Fig. 8. Latent structure extraction by multidimensional complex data analysis.

Fig. 9. Spatio-temporal population data: (a) Tokyo on July 1, 2013 and (b) Osaka on August 8, 2013. Darker colors represent higher population densities in each grid
cell.

estimate the people flow. However, such privacy data are
often hard to obtain. Therefore, estimating people flow
only from population data is challenging. Estimated people
flows can be used for a wide variety of applications, which
include simulating people movements during a disaster,
detecting anomalous people movements, predicting future
spatial populations given the current spatial population, and
designing transportation systems.

The spatio-temporal population data we use as input are
the populations in each grid cell over the time shown in
Fig. 9. The spatio-temporal population data, which consist

of aggregated information about many individuals, are
aggregated to preserve privacy or because of the difficulty of
tracking individuals over time. For instance, mobile spatial
statistics [17] are preprocessed for privacy protection, and
no one can follow a particular user, which allows mobile
phone operating companies to publish population data that
are calculated based on information of about 60 million
mobile phone users. If the trajectories for each individual
are given, people flow can be estimated straightforwardly
by counting the number of people who move between
grid cells, that is, the transition population. However, with
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Fig. 10. Estimated people flows for each time-of-day cluster for Tokyo and Osaka data. Arrows denote a direction.

aggregated data, we can directly determine the size of the
transition population. This is why we call this “collective
data analysis”.

To overcome this problem of modeling individual
behavior given aggregated data, we proposed a mixture
of collective graphical models [18]. Our proposed model
assumes that individuals move by transition probabilities
that depend on their locations and time points. Since the
transition populations are not given, we treat them as hid-
den variables. The hidden transition populations are related
to the observed populations in each cell; the population in a
cell equals the sumof transition populations from it, and the
population in a cell in the next time point equals the sum of
the transition populations to it. By using these relations that
represent flow conservation as constraints, the hidden tran-
sition populations and transition probabilities are inferred
simultaneously.

The proposed model can handle people-flow changes
over time by segmenting time-of-day points into multiple
clusters, where different clusters have different transition
probabilities. For our task that models people flow, incor-
porating time information is crucial. For example, people
move from the suburbs to the city center for work in the
morning, return to the suburbs in the evening after work,
and rarely travel in the middle of the night. The proposed
model is an extension of collective graphical models [19, 20]
for handling changes over time. Since it does not use tra-
jectory information, when we have enough population data
that approximate the actual population distribution, we can
estimate the people flow.

We evaluated the proposed method using real-world
spatio-temporal population datasets obtained in Tokyo and
Osaka (Fig. 9). In all of the datasets, the grid cells are square,
and the neighbors are the surrounding eight cells and the

cell itself. Figure 10 shows people flows estimated by the pro-
posedmethod.With the Tokyo data, frommidnight to 6:00,
the flows are sparse, which is reasonable since most people
are sleeping. From8:30 to 11:00, peoplemove to the center of
Tokyo from the suburbs for work. Flows continue to the city
center from 14:30 to 15:00. From 18:30 to 23:00, flows from
the city center to the suburbs were estimated since at that
time people are returning home from their offices. With the
Osaka data, similar temporal flow patterns were extracted.
We also evaluated the prediction of errors for people flows
that was averaged over all the time points and found that our
proposed method outperformed the conventional related
methods [18].

Although our results are encouraging, our framework
can be improved in a number of ways. For example, we
should incorporate the spatial correlation of flows using
location-dependent mixture models. Moreover, we want
to extend the proposed model to include information
about the day of the week and study its effectiveness
with different grid sizes, time intervals, and neighborhood
settings.

I V . REAL -T IME AND PROACT IVE
NAV IGAT ION BASED ON SPAT IO -
TEMPORAL PRED ICT IONS

A) Spatio-temporal predictions
To achieve the proactive navigation mentioned in Section
I, our approach detects future congestion with a spatio-
temporal statistical method that predicts people flow. The
people flow (or velocity) can be used to measure congestion
by extrapolating velocities to determine where congestion
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Fig. 11. Processing flow for future prediction.

will occur in the near future. We assume that a set of trajec-
tories is observed in the current time slots by a positioning
sensor such as GPS. The positioning trajectory data are sim-
ple time series of coordinate values with which we construct
spatio-temporal data. The observed spatio-temporal data
are usually very sparse, and the ratio of the number of obser-
vations to the time stamps over a certain time interval is
minute for each region. Therefore, we need to interpolate
velocities that are not observed over time.

More specifically, for each region we interpolate and
extrapolate eight-directional velocities during a certain time
interval. Interpolationmeans an estimation of the unknown
past velocities, while extrapolation means the prediction of
near-future velocities. For this purpose, we first employed
a spatio-temporal statistical approach based on the kriging
approach, which is commonly utilized in fields like geology
and climatology [21] and is equivalent to Gaussian pro-
cess prediction in machine learning. As for extrapolation,
we also compare the kriging approach with the representa-
tive time-series analysis, which is the vector auto-regression
(VAR) model [10]. In our experiment, the kriging approach
slightly outperformed VAR [22].

However, we found that these methods are inadequate
for cases where people flows rapidly change because the
observed values are assumed to be second-order station-
ary random variables in the conventional methods. That is,
the mean and the variance of the observed values should
be constant, which is unreasonable for actual people-flow
data. To solve this problem, we developed a new method
based on amachine learning approach. A set of kernel func-
tions is trained using observed people-flow data for each
time step for the spatial interpolation, and then the trained
time-series kernel parameters are used for extrapolation.

Figure 11 shows the processing flow for our spatio-
temporal predictions. Figure 11(a) shows an example of
observed statistics such as people counts. In practice, since
observation locations are limited and often sparse in spatio-
temporal domains, we performed interpolation using the

above spatio-temporal kriging approach to obtain dense
statistics (Fig. 11(b)). Then we estimated a kernel regres-
sion function over the near-past time domain by fitting a set
of kernel functions to each of the near-past dense statistics
(Fig. 11(c)). Since we used a radial basis function as a kernel
function, the obtained regression function is a mixture of
radial basis functions.

Once we have the time-consecutive kernel functions, we
estimate the near-future kernel parameters from the near-
past kernel parameters by linear regression. We found that
kernel parameter prediction is more robust and accurate
than the direct prediction of statistics because the kernel
function is smoother than the statistics themselves. Since
the kernel function is continuous, we can also estimate the
statistics for any places.

Since this approach does not assume a second-order
stationary condition, it can provide more accurate extrapo-
lation results.We applied ourmethod to the population data
collected in an actual event venue (about 110m× 360m),
which more than 20 000 people visit per day. The popula-
tion data were collected once a minute by 24 Wi-Fi1 access
points installed in the venue. The prediction performance
comparison between an existing method (Gaussian pro-
cess) and the proposedmethod is shown in Fig. 12. The pro-
posed method obtained better prediction results, especially
for the 20 and 30min predictions.

B) Learning multi-agent simulation
We examined the effectiveness of our spatio-temporal pre-
dictionmethod using actual people-flow data. By exploiting
our method, we can predict the near-future congestion risk
just fromnear-past, people-flowobservations. The next step
is designing an optimal navigation plan for a group of peo-
ple to avoid such congestion risks in real time. To tackle this
problem, we have been developing a learning multi-agent

1Wi-Fi is a registered trademark of Wi-Fi Alliance.
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Fig. 12. Prediction performance comparison and heat map of people-flow prediction.

simulation (MAS). Starting with real-space information on
people or vehicles collected from real-time observations,
we input this information online into a simulation envi-
ronment in cyber space, model its spatio-temporal features,
instantaneously predict the immediate congestion risk, and
pre-emptively and optimally navigate the crowd to avoid
that risk.

MAS is a widely used technique for modeling the indi-
vidual behavior of such autonomous entities (=agents) as
people, cars, and animals by modeling their micro interac-
tions with the surrounding environment and analyzing and
predicting macro phenomena that develop from the inter-
actions among multiple agents and their interactions with
their environment. Analytical techniques using MAS have
been widely investigated in fields called complex systems,
where such overall macro behaviors as social activities,
brain activities, and weather phenomena cannot be broken
down into the behavior of the individual elements of people
with which society is comprised, neurons that constitute the
neural networks in the brain, and molecules and atoms in
the atmosphere. These techniques are recently being used
in sensor networks, smart grids, and intelligent transport
systems as well as in evacuation guidance simulations for
disaster countermeasures.

As an example, consider a navigation scene of tens of
thousands of spectators exiting a stadium. In this case, the
individual spectators are agents who are leaving the sta-
dium from their current locations and moving toward their
train station destinations. In the movement of spectators, a

commonly usedmodel considers the average walking speed
(e.g. 4 km/h) related to such attributes of individual specta-
tors as age and gender aswell as the attenuation of that walk-
ing speed in proportion to the congestion conditions (crowd
density). Crowd control manuals [23] state that overtaking
becomes difficult and walking speed begins to decrease at a
crowd density of 1.2 persons/m2 and that movement grinds
to a halt at 4 persons/m2. Crowd density is also called the
“service level” [24], and the road width, space, and flow rate
can be secured in pedestrian lanes that maintain a certain
service level for satisfying safety standards.

In conventional analysis methods using MAS, it is com-
mon to manually design such parameters as walking speed
and navigation plans (including pedestrian routes and flow
rate) by conducting simulations to evaluate their effects in
advance. Such methods have been applied when actually
implementing crowd control (Fig. 13(a)). However, these
parameters and navigation plans are limited to a few pre-
determined combinations and do not necessarily match the
observation results of actual person movement or naviga-
tion operations.

Today, however, where IoT and sensing technologies are
rapidly advancing, local people-flow and congestion condi-
tions in the real world can be measured in real time using
a variety of positioning means, such as surveillance cam-
eras, GPSs, Wi-Fi, and beacons. With this in mind, NTT
laboratories continue to develop a learning-MAS system
that transfers events in the real world, such as people flow
observed in real time to a simulation environment in cyber
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Fig. 13. Differences between conventional and learning MAS.

Fig. 14. Example of immediate congestion risk prediction.

space, automatically learns modeled parameters based on
observations, and predicts the spatio-temporal develop-
ment of events (Fig. 13 (b)). Data assimilation [25] technique
can be applied to learn agent model parameters such as
probability distribution of crowd walking speed based on
people-flow observations. The aim here is to establish a
technology based on a learning-MAS to predict immediate
congestion risks, automatically derive an optimal naviga-
tion plan online at any time to avoid them, and support
navigation by security guards and police.

C) Automatic derivation of an optimal
navigation plan
An example of an immediate prediction of congestion risk
is shown in Fig. 14. First, people-flowdata are obtained from

real-time observations and input into a simulation envi-
ronment. The prediction process takes some of those data,
perhaps from the immediately preceding 15min, to simu-
late subsequent spatio-temporal behavior. In combination
with the spatio-temporal multidimensional collective data
analysis described above, the spatio-temporal congestion
risk in the immediate future in 5, 10, and 20min peri-
ods is predicted with high accuracy. In an example of the
flow of spectators moving toward a stadium from neighbor-
ing train stations, the process predicts that congestion will
occur 20min later, particularly around the stadium’s north
side entrance (Fig. 14).

The next step is to automatically generate navigation plan
candidates by computer to solve this congestion risk and
identify an optimal navigation plan (Fig. 15). In this exam-
ple, we assume that one navigation plan will temporarily
close one of the six stadium entrances and funnel spectators
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Fig. 15. Automatic generation of candidate navigation plans and searching for optimal plan.

toward other entrances (plan B in Fig. 15). However, the
number of possible combinations becomes onerous when
considering which entrances to close and when and for
how long to do so or whether to completely or partially
close a particular entrance. Among such huge numbers of
navigation plan candidates, this process efficiently prunes
and discards those that would have little effect on navi-
gation, those that cannot actually be put into operation
at the site, and those that may generate confusion, and
then it immediately searches for an optimal navigation
plan.

Various criteria can be addressed here for optimality,
such as the shortest time required for all spectators to enter
the stadium or the minimum time or area where conges-
tion causes delays. However, it is difficult to directly eval-
uate which navigation plan gives optimal criterion value,
and performing an exhaustive search of this massive search
space is unrealistic.

To solve this problem, we use a machine learning tech-
nique called Bayesian optimization that efficiently searches
for promising candidates from a small number of search
results to derive an optimal navigation plan. Each navi-
gation plan is represented by parameters such as which
entrance to close and when to bypass the crowd. From the
simulation results of navigation plan candidates after a cer-
tain time period (e.g. 5min), we can evaluate the number
of spectators arrived at the stadium by each plan. Maximiz-
ing the number of spectators arriving at the stadium after a
certain time period can be chosen as optimal criterion. By
applying Bayesian optimization, we can effectively search
promising parameter space to meet the criterion. In this
example, from the search results in Fig. 15, this technique
derives a navigation plan that closes two of the stadium
entrances at the 25 min point (Fig. 16). This plan can be pre-
sented to security personnel to help themnavigate incoming

Fig. 16. Automatically derived optimal plan.

spectators. Here we expect spectator behavior to generally
change due to such navigation, even though not all the spec-
tators will necessarily comply. Accordingly, our proposed
method incorporates continuous observations and repeats
a series of feedback loops that search for optimal naviga-
tion plans and performs actual crowd control when a new
congestion risk is predicted.

D) Examples of navigation application
The simulation comparison results for a scene with 80 000
spectators entering a stadium with and without optimal
navigation are shown in Fig. 17. Figure 17(a) shows the peo-
ple flow at 1 h and 20min after spectators begin to arrive
and head toward the stadium. For the case without naviga-
tion shown in the figure’s left, the concentration of nearby
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Fig. 17. Simulation results with optimal navigation plans for entering stadium.

train stations on the stadium’s north side causes conges-
tion at the entrances near those stations and waiting lines of
spectators on public roads who are stuck and cannot move
forward.

In contrast, for the case with navigation (shown in the
figure’s center), congestion at particular entrances is avoided
by blocking access to north-side entrances at key loca-
tions to minimize lines on public paths. With this nav-
igation plan, all spectators can arrive at the stadium in
about 2 h (Fig. 17(b), center). However, without navigation
(Fig. 17(b), left), time is needed to naturally untangle con-
gestion, and it took about another hour until all of the spec-
tators entered the stadium. Graphs are shown in which the
horizontal axis represents the time and the vertical axis rep-
resents the number of people in lines (Figs 17(a) and 17(b),
lower right). With navigation, the number of people wait-
ing is lowered. Therefore, reducing the number of people

waiting is critical, particularly for events held during sum-
mer’s heat. Our proposed method effectively addresses this
issue.

Next, we consider a scene of 80 000 spectators leav-
ing a stadium and heading toward nearby train stations.
We scrutinize a scenario where unexpected situations (e.g.
accidents) or those unforeseen in prior studies in conven-
tional navigation planning occur in rapid succession at four
locations within 20min after exiting begins (Fig. 18). We
assume that the flows of people walking toward and leav-
ing the stations become enmeshed, narrowing some roads,
for example, due to the arrival of emergency vehicles (loca-
tions A, B, and D) and closing a road (path closed) due to
an accident (location C).

The results of simulations that determined whether the
proposed method can derive an optimal navigation plan,
even under such unforeseen conditions, are shown in
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Fig. 18. What-if scenarios for exiting stadium.

Fig. 19. Simulation results with optimal navigation plans for exiting stadium.

Fig. 19. First, the simulation results are shown in Fig. 19(a)
20min after people begin exiting the stadium and after all
the accidents at the four locations have already occurred.
At this time, the flow of people is the same regardless
of the navigation, but a red congestion spot occurs due
to the effects of the path closure in the map’s upper
right.

Next, simulation results at 30min are shown in Fig. 19(b).
With navigation, the proposed method dissolved the con-
gestion by directing people to a detour to avoid the

congestion caused by the above road closure. The results
for the point 2 h later (Fig. 19(d)) indicate that all the
people arrived at their target stations. Without naviga-
tion, however, congestion occurs at various locations 1 h
and 20min later (Fig. 19(c)). Even 2 h later (Fig. 19(d)),
congestion remains a problem, and compared with the
navigation results, many people have to wait 30min or
longer. In this way, the proposed technology is not lim-
ited to the occurrence of accidents envisioned beforehand;
it can also predict immediate congestion for multiple and
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Fig. 20. NTT R&D solution for era of big data and Internet of Things.

ongoing occurrences of unforeseen situations and automat-
ically derive an optimal navigation plan at any time.

V . CONCLUS IONS

We briefly described the concept of spatio-temporal multi-
dimensional collective data analysis, which is NTT R&D’s
solution in the IoT era. We are developing innovative
spatio-temporal multidimensional collective data analy-
sis techniques that model the temporal relationships of
multidimensional data and predict future events. Spatio-
temporal multidimensional collective data analysis con-
siders four data elements (time, space, multidimensional,
and collective) for gaining insight into near-future events.
The collective element estimates the spatio-temporal flow
of people or traffic in cases where individuals cannot be
recognized, such as when counting the number of persons
or vehicles in a spatial mesh and only aggregated statisti-
cal data are available. This challenging research remains in
its infancy, and the real-time, proactive navigation of peo-
ple flow introduced in this paper is positioned as just one
application of the R&D vision described in Fig. 1. Looking
toward 2020, our R&Dwill continue to use spatio-temporal
multidimensional collective data analysis techniques and
real-time observation data to anticipate such near-future
events as congestion and implement proactive navigation
for congestion relief at large-scale event venues and stabi-
lize communication infrastructure. As shown in Fig. 20, we
atNTTwill continue to develop core technologies and intel-
ligent systems to provide comfortable living anytime and
anywhere.

APPENDIX: NON-NEGATIVE
TENSOR COMPLETION

Let X ∈ R
I1×···×IN+ denote the Nth order non-negative ten-

sor. Here In(n = 1, . . . , N) is the number of features in the
nthmode. An element and the entire set of elements inX are

represented as i = (i1, . . . , iN) and D, respectively. A mask
tensor is defined as, wheremi = 0 indicates that an element
is missing and mi = 1 indicates otherwise:

mi =
{

0 if xi is missing,
1 otherwise.

Let K be the number of the tensor factors. Factor matrix
A(n) of the nth mode whose columns consist of factor vec-
tors a(n)

k is defined as:

a(n)
k ∈ R

K
+ , A(n) = (a(n)

1 , . . . , a(n)
K ) ∈ R

In×K
+ . (1)

Let A = {a(n)
k |∀(n, k) denote a set of factor matrices. Let Z

be an estimation of X with set A. Then element zi of Z is
defined as a sum of latent factors:

zi =
K∑

k=1

a(1)
i1,ka(2)

i2,k . . . a(n)
iN ,k . (2)

Then a loss of the non-negative tensor completion (NTC) is
defined as a weighted sum of a divergence that indicates a
discrepancy between xi and zi :

f (A) =
∑
i∈D

mi d(xi ‖ zi ). (3)

A problem with NTC is to obtain minimizerA∗ of the loss
under a non-negative constraint:

A∗ = argmin
A

f (A) subject to a(n)
r ≥ 0 ∀(n, r ). (4)

Even though a family of divergences might be a candidate
divergence for NTC, the existing NTC employed only the
Euclid distance. The Euclid distance is known to be unsuit-
able for analyzing integer valued data. We thus employ
the generalized Kullback–Leibler (gKL) divergence as the
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divergence of the NTC given by

d(xi ‖ zi )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−xi log(zi ) + zi + const (if xi > 0 and
zi > 0),

zi + const (if xi = 0 and
zi > 0),

+∞ otherwise.

(5)

Minimizing the gKL divergence fits particularly well if the
data are integer values.

To use the spatio-temporal structures of the data
attributes, we propose graph-based regularizers for NTC.
We denote an adjacency matrix for the nth mode asW(n) =
W(n)T ∈ R

In×In+ (n = 1, . . . , N), where element wi , j indi-
cates the weight between the i th and j th features in the
nth mode. We define a regularizer for the nth mode using a
divergence as:

�(A(n)) = 1

2

In∑
i=1

In∑
i ′=1

K∑
k=1

w
(n)
i , j (d(a(n)

i ,k ‖ a(n)
i ′ ,k)

+ d(a(n)
i ′ ,k ‖ a(n)

i ,k )). (6)

By combining the loss of NTC and our regularizers, we
formulate the objective of our method as:

g (A) = f (A) +
N∑

n=1

λn�(A(n)), (7)

where we denote the hyperparameters for a regularizer on
the nth mode as λn.

Then the problem of our method is to attain minimizer
A∗ of g (A) under a non-negative constraint:

A∗ = argmin
A

g (A) subject to A(n) ≥ 0, ∀n. (8)
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