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Noise masking method based on an effective
ratio mask estimation in Gammatone channels

feng bao and waleed h. abdulla

In computational auditory scene analysis, the accurate estimation of binarymask or ratiomask plays a key role in noisemasking.
An inaccurate estimation often leads to some artifacts and temporal discontinuity in the synthesized speech. To overcome this
problem, we propose a new ratio mask estimation method in terms of Wiener filtering in each Gammatone channel. In the
reconstruction of Wiener filter, we utilize the relationship of the speech and noise power spectra in each Gammatone channel to
build the objective function for the convex optimization of speech power. To improve the accuracy of estimation, the estimated
ratiomask is furthermodified based on its adjacent time–frequency units, and then smoothed by interpolatingwith the estimated
binary masks. The objective tests including the signal-to-noise ratio improvement, spectral distortion and intelligibility, and
subjective listening test demonstrate the superiority of the proposed method compared with the reference methods.
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I . I NTRODUCT ION

Speech enhancement is a focused topic in the speech signal-
processing area. The noise reduction or noise masking is
often concerned in the speech enhancement. They aim to
remove ormask a certain amount of background noise from
noisy speech and make the enhanced speech have a better
quality and a higher intelligibility. A lower speech intelligi-
bility in the background noise remains a major complaint
of the comfort and hearing fatigue by listeners. Although
the state-of-the-art monaural speech enhancement algo-
rithms have achieved an appreciable suppression of the
noise and improved speech quality certainly, it is still a chal-
lenge for them, thus far, to improve the intelligibility of
noise-degraded speech.

Monaural speech enhancement, i.e., speech enhance-
ment from single-microphone recordings, is particularly
challenging due to an infinite number of solutions. From the
application point of view, monaural speech enhancement is
perhaps most desirable compared with multi-microphone
solutions, since a monaural system is less sensitive to
room reverberation and spatial source configuration. In the
past several decades, many monaural speech enhancement
methods have been proposed, such as spectral-subtraction
[1, 2], Wiener filtering [3], and statistical-model-based
methods [4] enhanced in the frequency domain. These
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approaches are more suitable to handle the stationary noise
(e.g., white or car noise) rather than non-stationary noise
(e.g., babble and street noises). The musical noise and vac-
uum feeling are usually caused by these typical methods.
In the face of these problems, a very effective de-nosing
method [5] was proposed with Generalized Gamma Prior
(GammaPrior), which was extended from the minimum
mean-square error (MMSE) estimation of discrete Fourier
transform (DFT) magnitude. In this method, two classes
of generalized Gamma distributions were adopted for the
complex-valued DFT coefficients. The better performance
on subjective and objective tests was achieved compared
with typicalWiener filter and statistical-model-basedmeth-
ods. Zoghlami proposed an enhancement approach [6] for
noise reduction based on non-uniform multi-band analy-
sis. The noisy signal spectral band is divided into subbands
using a gammatone filterbank, and the sub-bands signals
were individually weighted according to the power spectral
subtraction technique and the Ephraim andMalah’s spectral
attenuation algorithm. This method is a kind of sub-band
spectral subtraction or Wiener filter method.

However, the difficulties of non-stationary noise are still
not solved very well based on the above methods. Thus,
the baseline Hidden Markov Models (HMMs) [7] and
Codebook-driven [8] methods with a priori information
(i.e., spectral envelops or spectral shapes) about speech and
noise were proposed to overcome the situation of non-
stationary noise. Some revisedmethods based on codebook
and HMM were proposed in recent years. For example, the
Sparse AutoregressiveHiddenMarkovModels (SARHMM)
method [9] modeled linear prediction gains of speech and
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noise in non-stationary noise environments. The likelihood
criterion was adopted to find the model parameters, com-
bined with a priori information of speech and noise spectral
shapes by a small number of HMM states. The sparsity of
speech and noise modeling helped to improve the track-
ing performance of both spectral shape and power level of
non-stationary noise. Another very new codebook-based
approach with speech-presence probability (SPP) [10] also
achieved a very good result on speech enhancement of non-
stationary noise environment. This kind of codebook-based
method with SPP (CBSPP) utilized the Markov process to
model the correlation between the adjacent code-vectors
in the codebook for optimizing Bayesian MMSE estima-
tor. The correlation between adjacent linear prediction (LP)
gains was also fully considered during the procedure of
parameter estimation. Through the introduction of SPP
in the codebook constrained Wiener filter, the proposed
Wiener filter achieved the goal of noise reduction.

The aforementioned methods are focused on noise
reduction. These noise reduction methods often utilize
a gain function into each time–frequency (T–F) bin to
suppress the noise based on a T–F representation of the
noisy speech. The usage of the gain function over all T–F
bins can be considered as an attenuation of noise mag-
nitude in each T–F bin. These methods generally derive
their gains as a function of the short-time signal-to-noise
ratio (SNR) in the respective T–F bin, that is, speech and
noise powers at each T–F bin need to be estimated. With
respect to the noise masking, the Computational Auditory
Scene Analysis (CASA) [11, 12] is considered as an effec-
tive approach. By incorporating auditory perception model
(i.e., Gammatone filterbank), it could mask the noise based
on an estimation of the binary mask in each T–F unit
that includes the different number of T–F bins concerned
in noise reduction methods. Because the result of binary
mask only corresponds to value 0 dominated by noise or
value 1 dominated by the speech in each T–F unit, these
CASA methods based on the binary mask often wrongly
remove the background noise in a weak T–F unit domi-
nated by the speech and seriously affect the hearing quality.
A good solution for the shortage of binarymask is ideal ratio
mask (IRM) [13, 14] that a priori knowledge of speech and
noise is known in advance in the derivation of the mask.
The IRM could be considered as a soft decision that the
mask values continuously vary from 0 to 1 instead of a
hard decision that the mask value is 0 or 1 derived from
the ideal binary mask (IBM) [15, 16]. The IRM is more
reasonable to handle the situations that speech energy is
larger or less than noise in each T–F unit. These ratio mask
estimators [13, 14] operated in DFT domain. It is a kind
of Weiner filtering solution that the transfer function of
Weiner filter can be obtained by estimating speech andnoise
powers.

Because of the huge and complicated training process of
speech and noise priori information, the noise reduction
methods based on HMM and codebook or deep learning-
based noise ratio masking method may have some limi-
tations on solving the practical issues. Particularly worth

mentioning is that the noise types and priori information
are not easy and unrealistic to predict in advance.

Therefore, we propose a noise-masking method without
any priori information and assumption of speech and noise
signals. This proposed method can better mimic the hear-
ing perception properties of the human being to improve
the intelligibility of the enhanced speech. The soft decision
factor, ratio mask, is used to resynthesize speech signal so
that it can avoid the wrong elimination of weak speech T–
F units caused by the binary mask. Furthermore, the ratio
mask in our proposed method is a kind of ratio between
the estimated speech and noise powers. Considering the
superiority of solving theminimization problem, the speech
power is estimated by convex optimization [17, 18] in the
proposed method. For further compensating the powers
of weak speech components, the estimated ratio mask is
modified and interpolated to recover parts of speech com-
ponents.

The remainder of this paper is organized as follows.
In Section II, we present the overall principle of the pro-
posed method. The performance evaluation is described in
Sections III and IV provides the conclusions.

I I . THE PR INC IPLE OF THE
PROPOSED METHOD

Figure 1 describes the main block diagram of the proposed
noise-masking method. First, the input noisy speech is
decomposed into 128 channels by using Gammatone filter-
bank [19, 20]. Then, the signal of each channel is windowed
in time domain and a fast Fourier transform (FFT) is done
for this windowed signal to obtain the power spectrum of
noisy speech. The feature extraction module is utilized to

Fig. 1. The Block diagram of the proposed method.
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calculate the noise power spectrum by Minima Controlled
Recursive Averaging (MCRA) [21] and normalized cross-
correlation coefficient (NCCC) [22] between the spectra
of noisy speech and noise. The NCCC is used to repre-
sent the proportion of noise power in noisy speech, which
will contribute to the convex optimization of speech power.
The objective function used for convex optimization is built
based on noisy speech power and NCCC in each chan-
nel, and minimized by the gradient descent method [23].
The speech power is estimated by minimizing the objec-
tive function. After that, the powers of estimated speech and
noise are used to estimate the ratio mask. This ratio mask is
then modified based on the adjacent T–F units and further
smoothed by interpolating with the estimated binary mask
for increasing the accuracy of ratiomask estimation. Finally,
the enhanced speech is resynthesized from the smoothed
ratio masks [24].

Based on above block diagram, we mainly describe four
key parts. In Section II-A, the speech synthesis mechanism
will be described, which is a basic orientation of the pro-
posed work. The estimation method of the ratio mask and
binary mask concerned in speech synthesis are given in
Sections II-B and II-C, respectively. The speech power esti-
mation closely related to the ratio mask and binary mask
estimation is deduced in Section II-D.

A) Speech synthesis mechanism
In the proposed method, the enhanced signal is resynthe-
sized in time domain based on CASA model [24], which
is different from the frequency domain synthesis method,
such as the Wiener filter method. In the last stage of
the speech enhancement system, the target speech is syn-
thesized by means of the estimated ratio mask and fil-
ter responses of noisy speech signal in each Gammatone
channel.

The Gammatone filter response of arbitrary channel is,
Gc [y(t)],

Gc [y(t)] = y(t) ∗ gc(t), (1)

such as c is the Gammatone channel index and t is the
time index. The symbol ∗ is the convolution operation by
Gammatone filter [19]. gc(t) is a Gammatone filter impulse
response [20] described as:

gc(t) =
{

ta−1 exp(−2πbt) cos(2π fc t), t ≥ 0
0, else

(2)

where a = 4 is the order of the filter, b is the equivalent rect-
angular bandwidth, which increases as the center frequency
fc increases.

Then, the first filtering response of the noisy speech sig-
nal, gc(t), is reversed in time domain again and further
filtered by the Gammatone filter, that is, Fc [y(t)],

Fc [y(t)] = Gc [y(t)] ∗ gc(t), (3)

where Gc [y(t)] represents the time-reverse operation of
Gc [y(t)].

These twice time-reverse operations eliminate the phase
difference between the filter outputs of the Gammatone
channels. The phase-corrected output from each filter chan-
nel is then divided into time frames by a raised cosine
window for the overlap-and-add. Figure 2 shows the block
diagram of the speech synthesis mechanism.

The signal magnitude in each channel is then weighted
by the corresponding ratio mask value at that time instant.
The weighted filter responses are then summed across all
Gammatone channels to yield a reconstructed speech wave-
form as follows:

x̂(t) =
∑

C

M(c , t) · Fc [y(t)] ·W(c , t), (4)

where c and C are the Gammatone channel index and
number, respectively. M(c , t) is the estimated ratio mask.
Fc [y(t)] is the time-reverse signal of Fc [y(t)]. W(c , t) is
a raised cosine window. x̂(c , t) is the resynthesized speech
signal.

B) Ratio mask estimation
In our noise-masking method, the noisy speech signal with
4 kHz bandwidth is decomposed into the T–F units by a
128-channel Gammatone filterbank [19, 20] whose cen-
ter frequencies are quasi-logarithmically spaced from 80 to
4000Hz. In the proposed method, we assume that the clean
speech and noise are additive and statistically independent
in each gammatone channel. Thus, the powers of noise and
speech in each channel can be expressed as follows:

Py(c , m) = Px(c , m)+ Pd(c , m), (5)

where c is the channel index, m is the frame index, Py(c , m),
Px(c , m), and Pd(c , m) indicate the powers of the noisy
speech, clean speech, and noise in the cth channel of the
mth frame, respectively. The ratio mask can be estimated as
follows:

VR(c , m) = P̂x(c , m)

P̂x(c , m)+ P̂d(c , m)
, (6)

where VR(c , m) is the initial ratiomask estimation in the cth
channel of the mth frame. P̂x(·) and P̂d(·) are the estimated
powers of speech and noise, respectively. The speech power
estimationwill be given in Section II-D and the noise power
is obtained by the MCRA method [21].

As equation (6), the ratio mask changes from 0 to 1
rather than 0 or 1 happened in the binary mask. The ratio
mask value will close to 0, if the current T–F unit is dom-
inated by the noise, that is, the noise power is larger than
speech power. On the contrary, the ratiomask approximates
to 1, if the speech dominates the current T–F unit. Thus,
the soft discrimination factor, ratio mask, can keep parts of
speech component in the weak voiced fragments by using a
smaller ratio value instead of 0 caused by the binary mask
estimation.

The speech components at low frequency are more
important than that of at high frequency because the
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Fig. 2. The Block diagram of the speech synthesis mechanism.

information of low frequency contributes to more speech
intelligibility. Therefore, the ratio mask at low frequency is
modified by its adjacent T–F units to further preserve the
speech energy in the proposed method. The modified ratio
mask, ṼR , is obtained as

ṼR(c , m) =
{

Va(c , m), if c ∈ [1, 50]

VR(c , m), otherwise
, (7)

where

Va(c , m) = VR(c + 2, m)+ VR(c + 1, m)+ VR(c , m)

3
,

(8)
here Va(c , m) represents the average of ratio masks in three
adjacent T–F units of the same frame. The purpose that
we average the adjacent T–F units is to eliminate the out-
liers units and keep the speech energy. The initial ratio
mask defined in equation (6) is only modified below the
50th channel which corresponds to the center frequencies
of 636Hz, because the speech components are more impor-
tant below this frequency based on the hearing perception.
Thus, the basic idea of equation (7) is to recover the partial
speech energy that has beenmasked in the initial ratiomask
estimation.

The binary mask can be deemed as a hard decision and
is easy to keep more speech components due to its binary
discriminant. Also, parts of the noise components are not
masked enough and kept at the same time. Comparatively
speaking, the ratiomask has a good ability ofmasking noise,
but it simultaneously damages some speech components.
Thus, combining the advantages of both ratio mask and
binary mask, the linear interpolation between them given
in equation (9) is utilized to smooth the ratio mask, when
the binary mask value is 1. The smoothed ratio mask is
obtained by

V̂R(c , m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η · ṼR(c , m)+ (1− η) · VB (c , m),

if VB (c , m) = 1

ṼR(c , m),

if VB (c , m) = 0

, (9)

where η = 0.2 is a smoothing factor obtained bymassive lis-
tening test. Meanwhile, we also use the average HIT-False
Alarm rate (HIT-FA) objective test [25] to determine the

Fig. 3. Average HIT-FA score histogram with respect to factor η.

credibility of η = 0.2. Figure 3 shows the HIT-FA score
curve versus the smoothing factor η which varies from 0
to 1.0. The speech signal is subjected to five types of noises
(white, babble, office, street, and factory1 noise) under three
kinds of SNRs (0, 5, and 10 dB). The highest point appears
in the condition of η = 0.2 for three SNRs. Thus, in the
paper, we set the factor η to 0.2. VB (c , m) is the estimated
binarymask value [25] that will be introduced in the follow-
ing Section II-C and ṼR(c , m) is the modified ratio mask
given in equation (7).

C) Binary mask estimation
Due to the power estimation error, the estimated powers of
speech and noise do not meet equation (5) any more. So, we
introduce a factor to solve this issue, that is, the noisy speech
power can be expressed as

Py(c , m) = P̂x(c , m)+ σ(c , m) · P̂d(c , m), (10)

where Py(c , m), P̂x(c , m), and P̂d(c , m) are the noisy speech
power, estimated speech power and estimated noise power
in the cth channel of the mth frame, respectively. σ(c , m)

is a factor to balance equation (10). Thus, the power esti-
mation errors of the speech and noise are compensated
by the factor σ(c , m). When the factor σ(c , m) increases,
the noise components will be reduced in the current T–F
unit. It means that the current T–F unit is dominated by
speech components, when σ(c , m) has a larger value. Oppo-
sitely, when the factor σ(c , m) has a smaller value, the noise
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Fig. 4. Average HIT-FA score histogram with respect to threshold ξ .

components dominate the current unit. Based on equation
(10), the factor σ(c , m) can be given as

σ(c , m) = Py(c , m)− P̂x(c , m)

P̂d(c , m)
. (11)

The difference of Py(c , m) and P̂x(c , m) in the numerator of
equation (11) corresponds to the noise power derived from
the speech power estimation. The denominator is the noise
power obtained by MCRA method [21]. The factor σ(c , m)

makes the estimated powers, P̂x(·) and P̂d(·), meet equation
(5). The σ(c , m) can be considered as a boundary factor [25]
to distinguish the speech or noise T–F unit. In our experi-
ments, if factor σ(c , m) is larger than the threshold ξ , the
current T–F unit is dominated by speech components and
labeled as value 1. Otherwise, the noise components domi-
nate the current T–F unit labeled as value 0. Thus, the binary
mask VB (c , m) used in equation (9) can be determined as

VB (c , m) =
{

1, if σ(c , m) > ξ

0, otherwise
. (12)

By a HIT-FA objective test based on equation (12), we
found that HIT-FA has a good result when the threshold
ξ is chosen as 3. Figure 4 shows the average HIT-FA score
histogram about threshold ξ with the value from 1.6 to 3.8
based on five types of noises (white, babble, office, street,
and factory1 noise) under three kinds of SNRs situations (0,
5 and 10 dB).

D) Speech power estimation
The enhanced speech is resynthesized by the estimated ratio
mask defined in equation (9), which relies on the powers
of the estimated speech and noise. Thus, the speech power
is the key point of our proposed noise-masking method.
The speech power estimation can be deemed as a minimiz-
ing problem. We apply the convex optimization [17] that its
local optimal solution easily matches the global optimum to
solve the minimization problem.

For real and positive speech power vector px ∈ �n com-
posed of 128 channels, if objective function J : �n → �
is convex, J (px) has the minimum value with respect to
px . The vector px can be estimated by the minimization
problem without constrains. The optimal solution can be

reached when we optimize each element of px individu-
ally. Thus, the optimal value P̂x(c , m) of Px(c , m) can be
obtained as follows:

P̂x(c , m) = arg min
px

J
[
Px(c , m)

]
. (13)

The above minimization problem is a kind of convex opti-
mization with respect to variable Px(c , m) based on objec-
tive function J [Px(c , m)]. This convex optimization can be
easily implemented by the gradient descent method. Here,
the objective function J (·) is built as follows:

J
[
Px(c , m)

]
=

128∑
c=1

[
Py(c , m)− Pd(c , m)− Px(c , m)

]2

+ λ · ϕ
(

Px(c , m)
)
. (14)

The first term in equation (14) is defined in the sense ofmin-
imum mean-square error, which is completely convex, i.e.,
the square error between Py(·) and Pd(·)+ Px(·) should
equal to 0, when Pd(·) and Px(·) are correctly estimated.
Since the estimation errors with respect to Pd(·) and Px(·)
exist in practical situation, the second term in equation (14)
is introduced for the error constrain. The function ϕ(·) is
called the regularization or penalty function. Here we use
the l1 norm as a penalty function, i.e., ϕ(Px) =

∑128
c=1 |Px |.

The λ > 0 is the regularization parameter. By varying the
parameter λ, we can trace out the optimal trade-off solu-
tion of equation (14). Due to the non-negativity of λ and
ϕ(·), equation (14) is also a completely convex function. It
means that the approximative value P̂x(·) can be estimated
by minimizing equation (14).

In equation (14), Py(·) is the noisy speech power
obtained in time domain. We assume that the noise has
been pre-estimated by the MCRA [21] method. Thus, the
objective function (14) only has one variable, Px(·). Then,
we further utilize the relationship of noise and noisy speech
to obtain the proportion of noise power within the noisy
power. Multiplying noisy power by this proportion, we can
get a modified objective function as follows

J
[
Px(c , m)

]
=

128∑
c=1

[
Py(c , m)− ρ(c , m) · Py(c , m)

− Px(c , m)
]2
+ λ ·

128∑
c=1

Px(c , m), (15)

where ρ(c , m) is the normalized cross-correlation coeffi-
cient [22] between noise and noisy speech spectra calculated
in the frequency domain. The ρ(c , m) · Py(c , m) is consid-
ered as an approximative value of noise power. Actually,
the factor ρ(c , m) indicates the percentage of noise com-
ponents within the noisy speech signal. Therefore, we apply
this coefficient to represent the proportion of noise power in
noisy speech signal, instead of using noise power spectrum
directly. The common situation of noise overestimation
can make the estimated speech power negative, which is
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impossible for the real application. The usage of normalized
cross-correlation coefficient cleverly avoids noise overes-
timation, because ρ(c , m) varies from 0 to 1. Therefore,
the ρ(c , m) · Py(c , m) is always smaller than noisy speech
power, Py(c , m).

Figure 5 shows an examples that two NCCCs vary with
the time with respect to the channel index and frame index
in five channels. The channel indexes are 20, 50, 70, 100, and
120 which correspond to the center frequencies of 237, 636,
1077, 2195, and 3432Hz, respectively. Figure 5(a) describes
the NCCC, χ(c , m), between the true noise and noisy
speech, and Fig. 5(b) shows the NCCC, ρ(c , m), between
of the estimated noise and noisy speech. From Fig. 5, we
can find that each Gammatone channel has different NCCC
value because the signal energy of each channel is different,
where more energy is concentrated at low frequencies. The
estimated ρ(c , m) approximately matches to the ideal ratio
trajectory χ(c , m). Thus, it is confident to apply the esti-
mated noise with MCRA to obtain the proportion of noise

Fig. 5. An example of normalized cross-correlation coefficient in different
channels (Input SNR = 5 dB, white noise). (a) True noise condition. (b) Esti-
mated noise condition.

Table 1. Iterative algorithm of P̂x .

Input: Py(c , m) and ρ(c , m)

Output: P̂x(c , m)

For each frame and channel of noisy speech
k = 0
iterative step size δ = 0.1
If iterative error > θ

∇ = d J ( P̂x )

d P̂x

P̂ (k+1)
x ←− P̂ (k)

x − δ · ∇
iterative error= J (·)(k+1) − J (·)(k)

k = k + 1
End if error ≤ θ

Return P̂ (k)
x (c , m)

power in noisy speech. The ρ(c , m) in the unvoiced frag-
ments is larger than that in voiced fragments, because the
signal components in the unvoiced segments more like the
noisy components. Moreover, [1− ρ(c , m)] · Py(c , m) can
ensure the difference between noisy and noise signals is not
negative since ρ(c , m) is less than or equal to 1 based on the
following normalized cross-correlation:

ρ(c , m) =
∑L

l=1 Y(c , m, l) · D̂(c , m, l)√∑L
l=1 Y2(c , m, l) ·∑L

l=1 D̂2(c , m, l)
, (16)

where L is the number of FFT points, l is the frequency
index, and Y(c , m, l) and D̂(c , m, l) are the spectral mag-
nitude of noisy speech and the estimated noise in the cth
channel of the mth frame, which are calculated by FFT with
the size of 256 and MCRA method [21], respectively.

Equation (15) can be solved by the gradient descent
method [23] to calculate the approximative value of the
estimated speech power, P̂x(c , m), in each channel of each
frame. The complete algorithm framework is presented in
Table 1. The input of iteration algorithm is noisy power and
ρ(c , m). The output of iteration algorithm is the optimal
solution of speech power. By taking derivation of J (·) in
equation (15) with respect to P̂x(c , m), we can get the gradi-
ent ∇ of objective function. Then, moving P̂x(c , m) to the
direction of the negative gradient to obtain the (k + 1)th
iteration solution. After that, the iterative error of adjacent
two iterations is computed to determine if the iteration is
over. The iteration will stop, if the iterative error is smaller
than threshold θ where it is set to 1 based on objective
and subjective tests. Otherwise, the iteration will keep going
until convergence.

I I I . EXPER IMENTS AND RESULTS

In this section of performance evaluation, we discuss the
enhanced results of our proposed method named as Con-
vexRM. The test clean speeches are selected from TIMIT
[26] database including 50 utterances. Five types of noises
from NOISEX-92 [27] noise database are used, which
include white, babble, office, street, and factory1 noises. The
input SNR is defined as −5, 0, 5 and 10 dB, respectively.
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Fig. 6. Power error comparison of speech against the number of Iteration.

The sampling rate of the noisy speech signal is 8 kHz. We
apply segmental SNR (SSNR) improvement measure [28],
log spectral distortion (LSD) measure [29], and short-time
objective intelligibility (STOI) [30] to evaluate the objec-
tive quality of the enhanced signal. Meanwhile, theMultiple
Stimuli with Hidden Reference and Anchor (MUSHRA)
listening test [31] is utilized tomeasure the subjective perfor-
mance. To put our results in perspective, the GammaPrior
[5], SARHMM [9], and CBSPP [10] are selected as reference
enhancement methods and their related ready-made batch
program and source codes are used for tests. The IRM is the
ideal situation that the clean speech and noise signals are
known in advance.

A) Experiment setup
In the Section II-D, the objective function (15) was solved
by the gradient descent method. The iteration times should
be seriously considered. A large number of iterations can
not only obtain a better estimated result but also make the
enhanced system very complicated. However, the enhanced
performancemay be degraded, if the number of iterations is
unreasonably constrained. Therefore, we analyze the aver-
age iteration error in all 128 channels between 30 and 70
iterations to ensure the reasonable number of iterations.
An example of average errors in terms of "dB" is expressed
in Fig. 6. In this error comparison, we use four kinds of
SNRs under five types of noises to determine the num-
ber of iterations. From Fig. 6, we can find that the power
error reaches a lower value when the number of iterations is
larger than 60. Therefore, during the convex optimization
of speech power, the number of iterations in the gradient
descent method is set to 60, which adequately satisfies the
convergent condition.

Although the proposed method needs to iteratively esti-
mate the speech power, we set a fixed iterative number of
60 to reduce the computation complexity. The SARHMM
and CBSPP not only need the prior information and big
database but also cost a lot of time to search the mapping
pairs during the online enhancement. However, the itera-
tive estimation of our proposed method is very simple with
a small iteration number. Our proposedmethod is a slightly

Fig. 7. The cochleogram comparison (Input SNR = 5 dB, factory1 noise). (a)
The cochleogram resynthesized by idea ratio mask; (b) The cochleogram resyn-
thesized by the estimated binary mask VB ; (c) The cochleogram resynthesized
by the initial ratio mask VR ; (d) The cochleogram resynthesized by the modi-
fied ratio mask with adjacent T–F units ṼR ; (e) The cochleogram resynthesized
by the smoothed ratio mask with binary mask V̂R .

more complex than theGammaPrior approach, but the pro-
posed method does not need the additive Gaussian noise
assumption and the complexity of it is tolerable.

An example of cochleogram comparison based on ratio
mask estimations is given by Fig. 7 to observe the esti-
mation performance. Figure 7(a) is the cochleogram based
on the ideal ratio mask that the clean speech and noise
are known in advance. Figure 7(b) is the cochleogram
obtained through the estimated binary mask by equation
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Fig. 8. Speech waveform comparison of five channels (Input SNR = 5 dB, white noise). (a) Clean speech; (b) Noisy speech; (c) Enhanced speech.

(12). Figure 7(c) is the cochleogram acquired via the ini-
tial estimation of ratio mask by equation (6). Figure 7(d) is
the cochleogram based on the modified ratio mask by adja-
cent T–F units and the cochleogram of Fig. 7(e) is the final
estimated ratio mask interpolated with the binary mask in
equation (9). The speech components at low frequency usu-
ally contain some useful information and, so it is unrealistic
to totally remove the background noise at low frequency.
Thus, in Figs 7(d) and 7(e), we deliberately keep the very
little energy of the T–F units as the floor noise below the
12th Gammetone channels that correspond to the center
frequencies of 120Hz. The binary mask estimation loses
some speech T–F units at low frequency and keeps parts
of speech units at the middle frequency. The initial ratio
mask has relatively good results on remaining the speech
components at the middle frequency but misses too many
speech T–F units at low frequency. By using the modified

algorithm given by equation (7), the ratio masks at low fre-
quency are recovered. Moreover, Combining the feature of
better preservation of speech T–F units at the middle fre-
quency of binary mask, the smoothed ratio mask given by
equation (9) recovers and enlarges the edge of speech T–F
units. Based on the above analysis, the final estimated ratio
mask (V̂R) obtains a better performance and is considered
as the key point in our proposed method (ConvexRM).

To further observe the noise-masking performance in
each Gammatone channel, Fig. 8 shows an example that the
waveforms vary with the time in five channels. The clean
speech, noisy speech and enhanced speech are shown in
Figs 8(a)–8(c), respectively. From this figure, we can find
that the enhanced speechwaveformsmatch the clean speech
waveformswell in the 50th, 70th, 100th, and 120th channels.
For the 20th channel, the enhanced speech has more back-
ground noise than clean speech, because Gammatone filter
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prefers to reinforce the energy at low frequency. Actually,
this energy level of noise does not affect the hearing quality
too much.

To demonstrate the effectiveness of the proposedmethod
with 60 iterations using the gradient descent method, the
spectrograms of the enhanced speech by different methods
are shown in Fig. 9 for verifying the noise masking.

From the Fig. 9, we can find that the proposed
ConvexRM method masks more background noise and
keeps more speech components than other three refer-
ence approaches, respectively. The GammaPrior algorithm
removes the least noise in these methods. Although the
SARHMM wipes off noise components to a certain degree,
it also loses parts of speech components in high frequency.
As the CBSPP approach, the parts of weak speech compo-
nents are eliminated after enhancement. Our ConvexRM
method has better results on noise masking and speech
energy reservation. To further observe the performance of
noise elimination, The SSNR, LSD, STOI, and MUSHRA
tests are discussed in the next subsections.

B) SSNR improvement test results
The average SSNR measurement [28] is often utilized to
evaluate the denoising performance of speech enhancement
method. The input SNR and the output SNR are defined
as follows, respectively. The average SSNR improvement is
obtained by subtracting Sin from Sout .

Sin = 10 · log10

∑N−1
n=0 x2(n)∑N−1

n=0 [x(n)− y(n)]2
, (17)

Sout = 10 · log10

∑N−1
n=0 x2(n)∑N−1

n=0 [x(n)− x̂(n)]2
, (18)

where N is the number of samples. x(n) is the original clean
speech, y(n) represents the input noisy speech and x̂(n)

denotes the enhanced signal.
The average SSNR improvement of various enhancement

methods for stationary and non-stationary noise condi-
tions are presented in Table 2 for different input SNRs (i.e.,
−5, 0, 5, and 10 dB). As Table 2, the ConvexRM method
generally shows a higher value than other three reference
methods. To give more details, the proposed ConvexRM is
a little higher than the CBSPP method in babble and office
noises. Both CBSPP and SARHMM approaches are better
than the GammaPrior on the performance of reducing the
background noise.

C) LSD test results
During the signal enhancement, although parts of back-
ground noises are removed, the signal may also distort at
the same time. Therefore, in order to further check the spec-
trum distortion of the enhanced signal, the LSD measure
[29] is employed to evaluate the objective quality of the
enhanced speech. It measures the similarity between the
clean speech spectrum and the enhanced speech spectrum,

Fig. 9. Spectrogram comparison (Input SNR = 5 dB, factory1 noise), (“She had
your dark suit in greasy wash water all year").
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Table 2. SSNR improvement results.

Noise type Methods −5 dB 0 dB 5 dB 10 dB

White IRM 19.89 15.03 12.77 9.32
GammaPrior 10.01 8.95 7.62 5.94
SARHMM 13.06 10.72 8.52 6.34
CBSPP 16.01 13.02 10.07 6.86
ConvexRM 16.19 13.48 10.42 7.09

Babble IRM 15.12 14.12 11.51 7.99
GammaPrior 7.24 6.86 5.65 4.47
SARHMM 8.50 7.43 6.31 5.04
CBSPP 10.49 9.03 7.41 5.04
ConvexRM 10.78 9.29 7.53 5.40

Office IRM 16.12 14.89 12.82 9.02
GammaPrior 9.33 8.61 7.46 6.05
SARHMM 10.96 9.55 7.41 6.30
CBSPP 11.28 9.47 7.74 5.62
ConvexRM 11.37 9.78 7.85 6.33

Street IRM 18.29 16.12 13.92 11.65
GammaPrior 11.89 10.96 9.54 7.54
SARHMM 12.81 11.54 9.98 7.43
CBSPP 12.92 10.92 8.67 7.34
ConvexRM 15.85 13.19 10.51 8.06

Factory1 IRM 17.23 15.73 13.12 10.65
GammaPrior 9.14 8.09 6.84 5.32
SARHMM 10.33 8.86 7.38 5.62
CBSPP 12.93 10.60 8.09 5.63
ConvexRM 13.00 10.87 8.45 5.78

and is defined as

l = 1

M

M−1∑
m=0

√√√√ 1

K

K−1∑
k=0

[
10 · log10

|X̂(m, k)|2
|X(m, k)|2

]2

, (19)

where k is the index of frequency bins. K = 512 is the
FFT size. m is the frame index, and M is the total num-
ber of frames. |X(m, k)| denotes the clean speech amplitude
of DFT coefficients, and |X̂(m, k)| denotes the enhanced
speech amplitude of DFT coefficients.

The LSD test results are given in Table 3. FromTable 3, we
can see that the ConvexRMmethod has less distortion than
other methods in−5, 0, 5, and 10 dB conditions. Addition-
ally, the SARHMM method almost shares the same level of
spectral distortion with our proposed system in 10 dB situ-
ation that ourmethod is still better than other two reference
approaches. It means that our ConvexRM method masks
more background noise and causes less spectral distortion.

D) STOI test results
STOI [30] denotes a correlation of short-time temporal
envelopes between clean and enhanced speech, and has
been shown to be highly correlated to human speech intel-
ligibility score. The STOI measure is derived based on a
correlation coefficient between the temporal envelops of the
clean and enhanced speech in short-time regions and the
score of STOI ranges from 0 to 1. The higher the STOI
value is, themore the intelligibility has. Table 4 describes the
STOI results that the enhanced signal by ConvexRM holds
the highest intelligibility among all methods, especially in
the low SNR conditions (−5 and 0 dB). Three reference

Table 3. LSD results.

Noise type Methods −5 dB 0 dB 5 dB 10 dB

White Noisy 14.58 12.85 11.48 8.66
IRM 5.29 4.67 4.01 3.12
GammaPrior 9.34 7.98 6.75 5.94
SARHMM 7.78 7.07 6.46 5.92
CBSPP 9.18 8.17 8.13 7.69
ConvexRM 7.15 6.69 6.33 5.82

Babble Noisy 10.87 9.03 7.44 6.04
IRM 5.01 4.12 3.23 2.34
GammaPrior 8.09 6.83 5.77 5.05
SARHMM 7.84 6.76 5.85 5.01
CBSPP 8.09 7.40 6.93 5.78
ConvexRM 7.39 6.58 5.73 4.97

Office Noisy 10.01 8.27 6.75 5.45
IRM 4.45 3.67 3.05 2.21
GammaPrior 7.23 6.06 5.21 4.60
SARHMM 7.03 6.09 5.34 4.61
CBSPP 7.35 6.73 6.32 5.42
ConvexRM 6.56 5.79 5.16 4.58

Street Noisy 9.17 7.53 6.18 5.05
IRM 3.72 3.06 2.46 2.09
GammaPrior 6.10 5.18 4.87 4.27
SARHMM 6.62 5.74 4.95 4.29
CBSPP 6.56 6.23 5.68 5.01
ConvexRM 5.98 5.28 4.82 4.24

Factory1 Noisy 12.43 10.46 8.61 7.01
IRM 5.59 4.88 3.75 3.05
GammaPrior 8.35 7.02 5.96 5.35
SARHMM 8.14 7.02 6.04 5.36
CBSPP 8.48 7.02 6.04 5.36
ConvexRM 7.28 6.49 5.87 5.34

methods even are lower than the noisy signal in several situ-
ations(e.g., 10 dB white, −5, and 0 dB office noise) because
they lose parts of speech components in the weak speech
fragments. All the methods obtained the high scores under
street noise. The reason is that the street noise given in
NOISEX-92 database is a kind of relatively stationary noise
and the more noise energy is usually existed at the low fre-
quency. Actually, the street noise is also easier to process
than white and much easier than the babble or office noise.

E) Subjective listening test results
In our experiments, the MUSHRA listening test [31] is used
to evaluate the subjective quality of the enhanced speech.
The MUSHRA listening test consists of several successive
experiments. Each experiment aims to compare a high-
quality reference speech (i.e., clean speech) to several test
speech signals sorted in randomorder, in which the subjects
are provided with the signals under test as well as one clean
speech and hidden anchor. Each subject needs to grade
the whole test speech signals on a quality scale between
0 and 100.

During the MUSHRA test, we used as hidden anchor
a speech signal having an SNR of 0 dB less than the noisy
speech to be enhanced. Sevenmale and seven female listen-
ers participated in the tests, and each listener did the test
two times. The listeners were allowed to listen to each test
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Table 4. STOI results.

Noise type Methods −5 dB 0 dB 5 dB 10 dB

White Noisy 0.52 0.64 0.76 0.86
IRM 0.77 0.80 0.84 0.90
GammaPrior 0.52 0.64 0.76 0.85
SARHMM 0.51 0.63 0.74 0.83
CBSPP 0.52 0.63 0.73 0.81
ConvexRM 0.56 0.68 0.79 0.86

Babble Noisy 0.51 0.63 0.74 0.83
IRM 0.76 0.79 0.83 0.89
GammaPrior 0.51 0.63 0.74 0.82
SARHMM 0.49 0.61 0.72 0.81
CBSPP 0.49 0.61 0.72 0.79
ConvexRM 0.52 0.65 0.77 0.85

Office Noisy 0.63 0.72 0.80 0.86
IRM 0.78 0.81 0.85 0.92
GammaPrior 0.61 0.71 0.79 0.85
SARHMM 0.55 0.66 0.75 0.82
CBSPP 0.60 0.66 0.77 0.82
ConvexRM 0.65 0.75 0.82 0.88

Street Noisy 0.75 0.81 0.86 0.90
IRM 0.84 0.88 0.91 0.95
GammaPrior 0.76 0.82 0.86 0.90
SARHMM 0.68 0.75 0.81 0.87
CBSPP 0.74 0.79 0.88 0.86
ConvexRM 0.80 0.85 0.88 0.92

Factory1 Noisy 0.51 0.63 0.75 0.84
IRM 0.75 0.80 0.84 0.91
GammaPrior 0.51 0.64 0.75 0.84
SARHMM 0.47 0.61 0.73 0.83
CBSPP 0.46 0.60 0.72 0.81
ConvexRM 0.53 0.67 0.78 0.87

Fig. 10. The MUSHRA results for five types of noises.

speech several times and had access to the clean speech ref-
erence. The ten test utterances used were contaminated by
aforementioned five types of noises using a 5 dB input SNR.
A statistical analysis of the test results was conducted for the
different de-noising methods under five noise conditions.

Figure 10 shows the averaged MUSHRA listening test
results with a 95% confidence interval. Most of the listen-
ers preferred to the proposed ConvexRM method over the
other methods under five types of noises. SARHMM and
CBSPP are the very competing methods to the proposed
one. In the situations of white, street and factory1 noises,
ConvexRM obtains an obvious preference compared with
other three reference approaches. As the conditions of bab-
ble and office noise, most listeners still chose the proposed
ConvexRM method despite its score has a little decline.

From the hearing perception, the enhanced speech by the
proposedmethod ismore comfortable and continuous than
SARHMM and CBSPP methods. Meanwhile, the proposed
method can feel less background noise than GammaPrior
method.

I V . CONCLUS IONS

In this paper, we proposed a novel method for noise mask-
ing based on an effective estimation of ratio mask in
Gammatone domain instead of DFT domain. The convex
optimization algorithm was applied to estimate the speech
power, combined with an adaptive factor named NCCC.
The adjacent T–F units were considered for keeping the
speech components at the low frequency. To recover weak
speech components, the linear interpolation between the
ratio mask and the binary mask was utilized to smooth the
estimated ratio mask. By objective measures and subjective
listening test, our proposed method has shown a better per-
formance than other three reference methods, especially in
the low SNR conditions the improvement of intelligibility is
obvious. This also implies that our noise-masking method
is effective.

REFERENCES

[1] Boll, S.: Suppression of acoustic noise in speech using spectral sub-
traction. IEEE Trans. Acoust., Speech, Signal Process, ASSP-27 (2)
(1979), 113–120.

[2] Li, C.; Liu, W.J.: A novel multi-band spectral subtraction method
based on phase modification and magnitude compensation, in Proc.
IEEE ICASSP, 2011, 4760–4763.

[3] Loizou, P.C.: Speech Enhancement: Theory and Practice, CRC Press,
Boca Raton, FL, USA, 2007.

[4] Ephraim, Y.;Malah, D.: Speech enhancement using aminimummean
square error short-time spectral amplitude estimator. IEEE Trans.
Acoust. Speech Signal Process., 32 (6) (1984), 1109–1121.

[5] Erkelens, J.S.; Hendriks, R.C.; Heusdens, R.; Jensen, J.: Minimum
mean-square error estimation of discrete Fourier coefficients with
generalized gamma priors. IEEE Trans. Audio, Speech, Lang. Process.,
15 (6) (2007), 1741–1752.

[6] Zoghlami, N.; Lachiri, Z.; Ellouze, N.: Speech enhancement using
auditory spectral attenuation, in EUSIPCO 2009, Scotland, 24–28
August 2009.

[7] Zhao, D.Y.; Kleijn, W.B.: HMM-Based gain modeling for enhance-
ment of speech in noise. IEEE Trans. Audio, Speech, Lang. Process., 15
(3) (2007), 882–892.

[8] Srinivasan, S.; Samuelsson, J.; Kleijn, W.B.: Codebook driven short
term predictor parameter estimation for speech enhancement. IEEE
Trans. Audio, Speech, Lang. Process., 14 (1) (2006), 163–176.

[9] Deng, F.; Bao, C.C.; Kleijin, W.B.: Sparse hiddenMarkov models for
speech enhancement in non-stationary noise environments. IEEE
Trans. Audio, Speech, Lang. Process., 23 (11) (2015), 1973–1987.

[10] He, Q.; Bao, F.; Bao, C.C.: Multiplicative update of auto-regressive
gains for codebook-based speech enhancement. IEEE Trans. Audio,
Speech, Lang. Process., 25 (3) (2017), 457–468.

[11] Hu, G.; Wang, D.L.: Monaural speech segregation based on pitch
tracking and amplitude modulation. IEEE Trans. Neural Netw., 15 (5)
(2004), 1135–1150.



12 feng bao and waleed h. abdulla

[12] Bao, F.; Abdulla, W.H.: A Noise Masking Method with Adaptive
Thresholds based on CASA, APSIPA, Jeju, South Korea, 2016.

[13] Wang, Y.; Narayanan, A.; Wang, D.L.: On training targets for super-
vised speech separation. IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., 22 (12) (2014), 1849–1858.

[14] Williamson, D.S.;Wang, Y.X.;Wang, D.L.: Complex ratiomasking for
monaural speech separation. IEEE/ACM Trans. Audio, Speech, Lang.
Process., 24 (3) (2016), 483–493.

[15] Madhu, N.; Spriet, A.; Jansen, S.; Koning, R.; Wouters, J.: The poten-
tial for speech intelligibility improvement using the ideal binarymask
and the ideal Wiener filter in single channel noise reduction systems:
application to auditory prostheses. IEEE/ACM Trans. Audio, Speech,
Lang. Process., 21 (1) (2013), 63–72.

[16] Koning, R.; Madhu, N.; Wouters, J.: Ideal timeÍCFrequency mask-
ing algorithms lead to different speech intelligibility and quality in
normal-hearing and Cochlear implant listeners. IEEE/ACM Trans.
Audio, Speech, Lang. Process., 62 (1) (2014), 331–341.

[17] Boyd, S.; Vandenberghe, L.: Convex Optimization, Cambridge Uni-
versity Press, 2004.

[18] Bao, F.; Abdulla, W.H.: A new IBM estimation method based on
convex optimization for CASA. Speech Commun., 97 (2018), 51–65.

[19] Patterson, R.D.; Nimmo-Smith, I.; Holdsworth, J.; Rice, P.: An Effi-
cient Auditory Filterbank based on the Gammatone Function, Appl.
Psychol. Unit, Cambridge Univ., Cambridge, UK, 1998.

[20] Abdulla, W.H.: Advance in Communication and Software Technolo-
gies, Chapter Auditory Based Feature Vectors for Speech Recognition
Systems, WSEAS Press, 2002, pp. 231–236.

[21] Cohen, I.: Noise estimation by minima controlled recursive averag-
ing for robust speech enhancement. IEEE Signal Process. Lett., 9 (1)
(2002), 12–15.

[22] Bao, F.; Dou, H.J.; Jia, M.S.; Bao, C.C.: A novel speech enhancement
method using power spectra smooth in wiener filtering, in APSIPA,
2014.

[23] Gardner, W.A.: Learning characteristics of stochastic gradient-
descent algorithms: a general study, analysis, and critique. Signal
Process, 6 (2) (1984), 113–133.

[24] Weintraub, M.: A Theory and Computational Model of Auditory
Monaural Sound Separation. Ph.D. dissertation, Dept. Elect. Eng.,
Stanford University, Stanford, CA, 1985.

[25] Bao, F.; Abdulla, W.H.: A convex optimization approach for time-
frequency mask estimation, inWASPAA, 2017, pp. 31–35.

[26] Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S.;
Dahlgrena, N.L.: DARPA- TIMIT, Acoustic Phone Ticcontinuous
SpeechCorpus,USDepartment ofCommerce,Washington,DC, 1993
(NISTIR Publication No. 4930).

[27] Varga, A.P.; Steeneken, H.J.M.; Tomlinson, M.; Jones, D.: The
NOISEX-92 study on the effect of additive noise on automatic speech
recognition. http://spib.rice.edu/spib/select, 1992.

[28] Quackenbush, S.R.; Barnwell, T.P.; Clements, M.A.: Objective Mea-
sures of Speech Quality, Prentice–Hall, Englewood Cliffs, NJ, 1988.

[29] Abramson, A.; Cohen, I.: Simultaneous detection and estimation
approach for speech enhancement. IEEE Trans. Audio, Speech, Lang.
Process, 15 (8) (2007), 2348–2359.

[30] Taal, C.H.; Hendriks, R.C.; Heusdens, R.; Jensen, J.: An algorithm
for intelligibility prediction of timeÍCfrequency weighted noisy
speech. IEEE Trans.Audio, Speech, Lang. Process, 19 (7) (2011),
2125–2136.

[31] Vincent, E.: MUSHRAM: AMATLAB interface forMUSHRA listen-
ing tests, [Online]. Available: http://www.elec.qmul.ac.uk/ people/
emmanuelv/mushram, 2005.

FengBao received the B.S. andM.S. degrees in Electronic Engi-
neering from Beijing University of Technology in 2012 and
2015, respectively. From October 2015, he started to pursue
Doctor degree in the Department of Electrical and Computer
Engineering, University of Auckland, Auckland, New Zealand.
His research interests are in the areas of speech enhancement
and speech signal processing. He is the author or coauthor of
over 20 papers in journals and conferences.

Waleed H. Abdulla holds a Ph.D. degree from the University
of Otago, New Zealand. He is currently an Associate Professor
in the University of Auckland. He was Vice President-Member
Relations and Development (APSIPA). He has published more
than 170 refereed publications, one patent, and two books.He is
on the editorial boards of six journals. He has supervised over
25 postgraduate students. He is the recipient of many awards
and funded projects such as JSPS, ETRI, and Tsinghua fel-
lowships. He has received Excellent Teaching Awards for 2005
and 2012. He is also a Senior Member of IEEE. His research
interests include human biometrics; signal, speech, and image
processing; machine learning; active noise control.

http://spib.rice.edu/spib/select
http://www.elec.qmul.ac.uk/ people/emmanuelv/mushram
http://www.elec.qmul.ac.uk/ people/emmanuelv/mushram

	I Introduction
	II The Principle of the proposed method
	A Speech synthesis mechanism
	B Ratio mask estimation
	C Binary mask estimation
	D Speech power estimation

	III EXPERIMENTS AND RESULTS
	A Experiment setup
	B SSNR improvement test results
	C LSD test results
	D STOI test results
	E Subjective listening test results

	IV Conclusions

