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Estimation accuracy of covariance matrices
when their eigenvalues are almost duplicated

kantaro shimomura and kazushi ikeda

The covariance matrix of signals is one of the most essential information in multivariate analysis and other signal process-
ing techniques. The estimation accuracy of a covariance matrix is degraded when some eigenvalues of the matrix are almost
duplicated. Although the degradation is theoretically analyzed in the asymptotic case of infinite variables and observations,
the degradation in finite cases are still open. This paper tackles the problem using the Bayesian approach, where the learning
coefficient represents the generalization error. The learning coefficient is derived in a special case, i.e., the covariance matrix is
spiked (all eigenvalues take the same value except one) and a shrinkage estimation method is employed. Our theoretical analysis
shows a non-monotonic property that the learning coefficient increases as the difference of eigenvalues increases until a critical
point and then decreases from the point and converged to the distinct case. The result is validated by numerical experiments.
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I . I NTRODUCT ION

The problem of estimating covariance matrices often
appears in signal processing andmultivariate analysis. Thus,
the estimation accuracy of the covariancematrices is impor-
tant in signal processing, in general. The estimation accu-
racy depends on the estimator. The most popular one is
the sample covariance matrix and it is equivalent to the
maximum likelihood estimator (MLE) under the Gaussian
assumption. The MLE has good properties such as asymp-
totic unbiasedness, consistency, and asymptotic efficiency,
but these apply only for big data. The MLE does not per-
form well when the dataset is small. Another case of fail-
ure in MLE is when some eigenvalues take the same or
almost same values. For the identity matrix, e.g., the eigen-
values of the sample covariance matrix are spread out [1].
This problem is not rare. In fact, the subspace methods
for system identification assume the covariance matrix is
the sum of a low-rank matrix for signals and the iden-
tity matrix for noises, which leads to this kind of matrix
[2]. Another case is the spike-and-slab prior distribution
in Bayesian model selection [3]. Thus, it is important to
elucidate the mechanism of the degradation in estimating
duplicated eigenvalues especially for a small dataset.

One approach to tackle the problem of duplicated eigen-
values is shrinkage estimationmethods [4–7]. Donoho et al.
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proposed an estimator that is optimal for the spiked covari-
ancematrix, i.e., all the eigenvalues of the populationmatrix
are equal except the maximum one [8]. They gave the risk
of estimation called Stein’s loss [9] as a function of the max-
imum eigenvalue using random matrix theory [10]. Their
result shows the optimal estimator �̂ = diag(λ̂1, 1, 1, . . .)
for the population covariance is � = diag(λ1, 1, 1, . . .) is
expressed as

λ̂1 =
⎧⎨
⎩

�1

α + (1 − α) �1
if �1 >

(
1 + √

γ
)2

,

1 otherwise,
(1)

where

α = 1 − (γ )/((�1 − 1)2)

1 + (γ )/(�1 − 1)
, (2)

γ is the ratio of the number of variables to that of obser-
vations, and �1 is the maximum eigenvalue of the sample
covariance matrix expressed as

�1 =
{

λ1 (1 + γ / (λ1 − 1)) if λ1 > 1 + √
γ ,(

1 + √
γ
)2 otherwise.

(3)

The result shows the risk of estimation, L(�, �̂), increases
as λ1 increases, until the maximum eigenvalue reaches the
transition point and then it decreases to zero thereafter. This
means the risk is a non-monotonic function of λ1 (Fig. 1).

Although this property of non-monotonicity is inter-
esting, the theoretical results hold only in the asymptotic
that both the numbers of variables and observations go to
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Fig. 1. Risk of estimation vs. the maximum eigenvalue (γ = 1/4).

infinity. As seen in the MLE case, finite variables and/or
observations change the performance. Thus, an analysis of
the risk in more realistic cases is necessary.

The problem of finite observations is formulated as the
learning curve in machine learning, which is the averaged
generalization/prediction error as a function of the num-
ber of observations [11]. In Bayesian statistics, the learning
curve is expressed as the learning coefficient divided by
the number of observations. That is, the learning coeffi-
cient is defined as the coefficient of the leading term of the
mean Kullback–Leibler divergence from the true to pre-
dicted distributions [12, 13]. When the probability model is
parametric and regular, i.e., uniquely identifiable, the learn-
ing coefficient is represented as a half of the number of
the parameters. When the model is singular, however, the
learning coefficient takes a smaller value than a half of the
number of parameters, depending on the probabilitymodel.
This idea is applicable to the estimation of covariancematri-
ceswith duplicated eigenvalues since this is a singularmodel
due to the duplication of eigenvalues and unidentifiable
eigenvectors associated with them [14].

The learning coefficient of a singular model is, however,
difficult to derive in general and, only several special cases
have been solved so far [15–18]. Thus, to give an exact anal-
ysis to a finite case, we considered a specific algorithm, a
shrinkage method based on the empirical Bayes method,
and derived its learning coefficient in a simple case of
two dimensions. As a result, the learning coefficient of the
algorithmhas a non-monotonic propertywith respect to the
maximumeigenvalue of the population covariancematrices
in the same way as the infinite case, although the methods
for these analyses are totally different. Finally, we confirmed
the theoretical value through numerical experiments.

I I . PREL IM INAR IES

Let Xi (i = 1, . . . , N) be D-dimensional vectors indepen-
dently drawn from an identical normal distribution with
mean 0 and covariance � and

S = 1

N

N∑
i=1

Xi X
T
i , (4)

the sample covariance matrix, respectively. Then, � and S
are diagonalized using orthogonal matrices V andU as

� = diag (λ1, . . . , λD) = VT�V , (5)

L = diag (�1, . . . , �D) = U T SU , (6)

where λ1 ≥ · · · ≥ λD and �1 ≥ · · · ≥ �D are the eigenval-
ues of � and S and diag(·) denotes the diagonal matrix of
·. Note since the sample covariance matrix S and its eigen-
values L are sufficient statistics of the covariance matrix �

and its eigenvalues �, estimators of � and � are written as
�̂(S) and �̂(L), respectively, where �̂ = diag(λ̂1, . . . , λ̂N).

Let us consider a shrinkage method that can explic-
itly treat duplication of eigenvalues. Since duplication of
eigenvalues makes eigenvectors unidentifiable uniquely, we
concentrate on the estimation of eigenvalues irrespective
of eigenvectors. This is useful even when eigenvectors are
desired because they can be calculated taking the dupli-
cation into account. For this purpose, we introduce a
hierarchicalmodel whereV is chosen from the uniformdis-
tribution on the orthogonal matrix space with fixed �, i.e.,

Xi ∼ N (0, V�VT ), V ∼ p (V |�) , (7)

and consider a Bayesian estimation method. Note it is nat-
ural to consider eigenvalues and eigenvectors separately
when treat duplicated or repeated eigenvalues since the lat-
ter are not identifiable [19]. The joint distribution of S and
V for this model is written as

p (S , V |N , �) = p (L , U , V |N , �)

= p (L , U |N , V , �) p (V |�) . (8)

Here, p(L , U |N , V , �) is the joint probability of the eigen-
values and their eigenvectors of sample covariance matrix,
which is obtained by transforming theWishart distribution
with degree of freedom N and the scale matrix V�VT .
An important property of this model is the support of
the distribution of covariance matrix, p(�) = p(V�VT ),
varies depending on the hyperparameters �. For example,
when � is the identity matrix, � is also the identity matrix
irrespective of V .

A popular method to determine the hyperparameters �

is the empirical Bayes method. We calculate the marginal-
ized likelihood by integrating p(L , U |N , V , �)p(V |�)

over the orthogonal matrix space and maximize it, i.e.,

�̂ (L) = argmax
�

p (S|�) (9)

= argmax
�

∫
p (L , U |N , V , �) p (V |�) dV . (10)

Since this integration is invariant under any orthogonal
transformation S �→ VSVT , the distribution of V can be
replaced with the Haar measure on the orthogonal matrix
space [20]. Then, themarginal likelihood is expressed using
hypergeometric function with matrix argument [21]. Since
the marginal likelihood is difficult to maximize due to
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the complexity of the hypergeometric function, in general,
we only consider a special case of the spiked covariance
model for �, i.e., λ1 ≥ λ2 = λ3 = · · · = λD [1]. In addi-
tion, we use the eigenvectors of the sample covariance
matrix for the estimation instead of the posterior p(V |S),
i.e., �̂ = U �̂U T , which is often supposed in the shrinkage
estimation.

Note although the learning coefficient is originally
defined for Bayesian estimation, it makes sense since
shrinkage estimation can be regarded as an approximation
of the posterior in hierarchical models [22].

I I I . MA IN RESULTS

We show some facts on the shrinkage estimation with our
hierarchical model before deriving the learning coefficient
of the proposed estimation method. See Appendix for the
proofs.

Proposition 1. For the marginal likelihood of the hierarchi-
cal model (7) with spiked covariance model, the following
statements hold.

(i) The marginal likelihood is written as

p (S|�) =
∫

p (L , U |N , V , �) p (V |�) dV

∝ |�|−N/2 exp

[
− N

2
λ−1

2 trS

]

· 1 F1

(
1

2
;

D

2
;

N

2

(
λ−1

2 − λ−1
1

)
S

)

where 1 F1 denotes the hypergeometric function with
matrix argument [23].

(ii) � = diag(λ1, λ2, . . . , λ2) that maximizes p(S|�) satis-
fies the following equations,

tr� = λ1 + (D − 1) λ2 = trS , (11)

λ1 = 1

N

F ′ (N/2
(
λ−1

2 − λ−1
1

))
F
(
N/2

(
λ−1

2 − λ−1
1

)) , (12)

where F (z) = 1 F1(1/2; D/2; zS) and F ′(z) is its deriva-
tive.

(iii) If there exists a non-trivial solution of the equations
above, it maximizes the marginal likelihood, where the
trivial solution is λ1 = λ2 = trS/D.

(iv) The equations have a non-trivial solution if and only if

N D
∑
i< j

(�i − � j )
2 − (D2 + D − 2)(trS)2 > 0. (13)

In the two-dimensional case, the marginal likelihood is
explicitly calculated.

Corollary 2. When D = 2, the marginal likelihood is given
by

p(S|�) = N N (�1 − �2) (�1�2)
(N−3)/2 (λ1λ2)

−N/2

4� (N − 1)

· exp

[
− N (�1 + �2) (λ1 + λ2)

4λ1λ2

]

· I0

(
N (�1 − �2) (λ1 − λ2)

4λ1λ2

)
, (14)

where Ik(z) denotes the modified Bessel function of the first
kind with order k.

Since
∫

p(S|�)d�1d�2 = 1 holds, (14) can be regarded
as the joint probability density function of the eigenval-
ues of the sample covariance matrix with respect to �1, �2.
By substituting D = 2 into Proposition 1, the estimator of
eigenvalues is given explicitly.

Corollary 3. The estimator that maximizes (14) is given by

(λ̂1, λ̂2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�1 + �2

2
,
�1 + �2

2

)
, if

(
�1

�2
− 1

)
N1/2

< 23/2

(
1 +

√
2N1/2 + 2

N − 2

)
,

(
�1 + �2 + t

2
,
�1 + �2 − t

2

)
, otherwise,

(15)

where t is the solution of

t = (�1 − �2) A

(
N (�1 − �2) t

(�1 + �2)
2 − t2

)
(16)

and A(z) = I1(z)/I0(z).

Corollary 3 gives the relation between the eigenvalues
of the sample covariance matrix and the estimated eigen-
values by our shrinkage estimation (Fig. 2). When the two
eigenvalues l1 and l2 are closer together than a threshold,
the estimators of λ̂1 and λ̂2 take the same value.

A) Derivation of learning coefficient
The learning coefficient is defined based on the Kullback–
Leibler divergence [12]. The mean of the Kullback–Leibler
divergence from the true distribution p to the predicted one
q is called the Bayesian generalization error in asymptotics,
which is written as

E [KL (p||q)] = κ

N
+ o

(
1

N

)
, (17)

where E [·] denotes the expectation with respect to the
observations. The coefficient of leading term κ is called the
learning coefficient. In case that the distributions are D-
dimensional multivariate normal distribution with mean
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Fig. 2. The relation between the eigenvalues of the sample covariance matrix
and those of the estimated eigenvalues. N = 220.

0 and covariance matrices �1 and �2, respectively, the
Kullback–Leibler divergence is described as

KL (�1||�2) = 1

2

(
tr�−1

1 �2 − log �−1
1 �2 − D

)
,

which is equivalent to the Stein’s loss of covariance matri-
ces [9]. When a statistical model is regular, as a special case,
its learning coefficient of maximum likelihood estimation
becomes the half of the number of parameters [12], i.e.,

E [KL (�||S)] N 	 D (D + 1)

2
,

when the estimator of the covariance matrix is the sample
covariance matrix.

In our case, the expectation with respect to the obser-
vations Xi (i = 1, . . . , N) is equivalent to the expectation
with respect to the sample covariance matrix S . Thus, the
learning coefficient for �̂(S) is given by

E [KL(�||�̂(S))]N

	 D(D + 1)

2
+ E [tr�−1(�̂(S) − S)]N

− E [log |S−1�̂(S)|]N . (18)

Using the proposed shrinkage estimator of the covariance
matrix,

�̂ (S) = U

[
λ̂1

λ̂2

]
U T , (19)

and the reparametrization as

λ = λ2 c = (λ1/λ2 − 1) N1/2

� = �2d = (�1/�2 − 1) N1/2

e = t/�2N1/2,
(20)

the second and the third terms of (18) are given by

E [tr�−1(�̂ − S)]N = c

2
λ−1(1 + c N−1/2)−1

· E
[
(d − e)�

(
1 − 2

(
V2

11 + U 2
11

)
(21)

+ 4V11U11 (V11U11 + V12U12))]

	 c

2
A

(
c2

4

)
E [d − e], (22)

E [log |S−1�̂|]N

= E

[
log(1 + dN−1/2)−1

(
1 + d + e

2
N−1/2

)

·
(

1 + d − e

2
N−1/2

)]

	 1

4
E [d2 − e2], (23)

respectively. Note that this kind of reparameterization is
widely used in evaluating learning coefficients [13, 22]. In
(22) and (23), the difference between the eigenvalues of
shrinkage estimator, e, and the probability density func-
tion of the distance of eigenvalues of the sample covari-
ance matrices, d, can respectively be approximated to the
solution of d I1(de/4) − e I0(de/4) = 0 and the solution
of p(d) = d

4 exp[−(c2 + d2)/8]I0(cd/4). See Appendix for
the validity of these approximations.

B) Numerical experiments
To validate the derived learning coefficient, some numeri-
cal experiments were carried out. The experimental learn-
ing coefficients were calculated as the Kullback–Leibler
divergence from the true distribution to the predicted dis-
tribution averaged over 104 sample covariance matrices,
multiplied by 2N , while the theoretical learning coefficients
were numerically calculated using (18), (22), and (23). The
two learning coefficients coincide well, including their non-
monotonicity (Fig. 3).

Fig. 3. Learning coefficients versus c , the normalized eigenvalue ratio. Experi-
ments (solid) and theory (dashed).
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I V . D ISCUSS ION

How duplication of eigenvalues in covariance matrices
affects estimation was clarified here. We derived the learn-
ing coefficient of a shrinkage estimator based on the empir-
ical Bayes method where both the numbers of variables and
observations are finite. Our shrinkage estimation method
has two phases depending on the sample eigenvalues, i.e., in
one phase the estimation error increases when the popula-
tion covariance matrix has eigenvalues closer to each other
than a thresholdwhile in the other phase the learning coeffi-
cient varies smoothly with respect to the difference of eigen-
values. This phenomenon is consistent with an asymptotic
case where the numbers of variables and observations are
infinite. However, the influence of duplication is stochas-
tic in the finite case and the state fluctuates between the
two phases while the influence of duplication is determin-
istic in the infinite case. The analysis of the fluctuation is
still open.

Our analysis treated the simple case of two-dimensional.
To expand our results, we need to calculate the marginal
likelihood in (8) for general cases. Although this is written
using the generalized Bingham distribution or its product,
the derivation of the estimators or the conditions is difficult
due to the complexity of the hypergeometric function. We
need a newmethod to solve this problem. Nonetheless, this
work has given a new insight to this problem because the
Bayesian approach is shown to be hopeful.
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APPENDIX

Proof of Proposition 1
Since p(L , U |N , V , �) in (8) is the joint distribution of
eigenvalues and eigenvectors transformed from theWishart
distribution with degree of freedom N and scale matrix
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V�VT , the probability density function is given by

p (L , U |N , V , �)

= N N D/2 |S|(N−D−1)/2 exp
(− (N/2) tr

(
SV�−1VT

))
2N D/2 |�|N/2 �D (N/2)

·
∏
i< j

∣∣�i − � j

∣∣ (A.1)

= N N D/2 |L |(N−D−1)/2 exp
(− (N/2) tr

(
U LU T V�−1VT

))
2N D/2 |�|N/2 �D (N/2)

·
∏
i< j

∣∣�i − � j

∣∣ , (A.2)

where�D denotes themultivariate gamma function defined
as

�D (N/2) = π D(D−1)/2
D∏

i=1

�

(
1

2
(N − i + 1)

)
. (A.3)

Here, the last term
∏

i< j

∣∣�i − � j

∣∣ is the Jacobian to trans-
form variables from the elements of matrix to eigenvalues
and eigenvectors.

The marginal likelihood in (8) is calculated as

p (S|�)

=
∫

p (L , U |N , V , �) p (V |�) dV

∝ |�|−N/2
∫

exp

[
− N

2
trSV�−1VT

]
dV

= |�|−N/2
∫

exp

⎡
⎢⎢⎢⎣− N

2
trSV

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

λ−1
1 − λ−1

2
0

. . .
0

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

λ−1
2

λ−1
2

. . .

λ−1
2

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠VT

⎤
⎥⎥⎥⎦ dV

= |�|−N/2 exp

[
− N

2
λ−1

2 trS

]

·
∫

exp

⎡
⎢⎢⎢⎣− N

2
trSV

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

λ−1
1 − λ−1

2
0

. . .
0

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠VT

⎤
⎥⎥⎥⎦ dV

= |�|−N/2 exp

[
− N

2
λ−1

2 trS

]

·
∫

exp

⎡
⎢⎢⎢⎢⎣− N

2

(
λ−1

1 − λ−1
2

)
trSV

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

T

VT

⎤
⎥⎥⎥⎥⎦ dV

∝ |�|−N/2 exp

[
− N

2
λ−1

2 trS

]

·
∫

exp

[
− N

2

(
λ−1

1 − λ−1
2

)
trSvvT

]
dS D−1

∝ |�|−N/2 exp

[
− N

2
λ−1

2 trS

]

·
∫

Bingham
(

v| N

2

(
λ−1

1 − λ−1
2

)
S

)
dS D−1

= |�|−N/2 exp

[
− N

2
λ−1

2 trS

]

· 1 F1

(
1

2
;

D

2
;

N

2

(
λ−1

2 − λ−1
1

)
S

)
,

where Bingham(v|N/2(λ−1
1 − λ−1

2 )S) denotes the proba-
bility density function of the Bingham distribution without
normalization and dS D−1 means the integration over the
D-dimensional unit sphere. The normal constant of the
Bingham distribution is written as hypergeometric func-
tion with matrix argument. Note that we can extend this
calculation to the case of

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

. . .
λ1

λ2

. . .
λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

by using the generalized Bingham distribution [24]. Let
F (z) denote 1 F1(1/2; D/2; zS) hereafter for simplicity.
The conditions of � to maximize p(S|�) is given by

making the gradients of the likelihood function null, i.e.,

∂

∂λ1
log p (S|�)

= − N

2
λ−1

1 + N

2
λ−2

1

F ′ (N/2
(
λ−1

2 − λ−1
1

))
F
(
N/2

(
λ−1

2 − λ−1
1

)) = 0,

∂

∂λ2
log p (S|�) = − N (D − 1)

2
λ−1

2 + NtrS

2
λ−1

2

− N

2
λ−2

2

F ′ (N/2
(
λ−1

2 − λ−1
1

))
F
(
N/2

(
λ−1

2 − λ−1
1

))
= 0.

The second claim in Proposition 1 is straightforward
from the above. The third claim is shown by the unique-
ness of the maximum likelihood estimator of the Bingham
distribution [24] and the monotonicity of z−N/2, exp(−z)
and F (z). From (11), it is sufficient to consider only the case
λ2 = (trS − λ1)/(D − 1) to derive the condition a non-
trivial solution exists. To do this, we rewrite log p(S|�) as a
function of λ1,

g (λ1) = log p
(
S|diag (λ1, (trS − λ1)/ (D − 1))

)
= log

[
λ

−N/2
1

(
trS − λ1

D − 1

)−N/2+D−1
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exp

[
− N (D − 1) trS

2(trS − λ1)

]

· F

(
N

2

((
trS − λ1

D − 1

)−1

− λ−1
1

))]
,

and consider the condition where the trivial solution is not
the maximizer, i.e., g ′′(λ1) > 0 at λ1 = trS/D. To calculate
g ′′(trS/D), we need the series expansion of F (z) at z =
0. The series expansion of hypergeometric function with
matrix argument can be written using zonal polynomial Cκ

[21],

F (z) = 1 F1

(
1

2
;

D

2
; zS

)

=
∞∑

k=0

∑
κ�k

(1/2)κ
(D/2)κ

Cκ (zS)

k!

=
∞∑

k=0

(∑
κ�k

(1/2)κ
(D/2)κ

Cκ (S)

)
zk

k!

where κ = (k1, . . . , kl ) � k denotes partitions of an integer
and (a)κ is the generalized Pochhammer symbol defined as

(a)κ =
l∏

i=1

(
a − i − 1

2

)
ki

,

(a)ki
= � (a + ki )

� (a)
= a (a + 1) · · · (a + ki − 1) .

From the above, we have

F (0) = 1,

F ′ (0) = trS

D
,

F ′′ (0) = (trS)2 + 2
∑D

i=1 �2
i

D (D + 2)

= (D + 2) (trS)2 + 2
∑

i< j

(
�i − � j

)2
D2 (D + 2)

,

and then

g ′′
(

trS

D

)

= − D3N((D2 + D − 2)(trS)2 − N D
∑

i< j (�i − � j )
2)

2(D − 1)2(D + 2)(trS)4
.

Since g ′′(trS/D) > 0, we get the fourth claim in Proposi-
tion 1.

Proof of Corollary 2
Using the formula

I0 (1) = 1

π

∫ π

0
exp [cos x] dx

and the invariance of integration against the transformation
V �→ U V , (16) is calculated as

∫
p (L , U |N , V , �) p (V |�) dV

∝ (�1 − �2) (�1�2)
(N−3)/2

∫
exp

[
− N

2
U LU T V�−1VT

]
dV

= (�1 − �2) (�1�2)
(N−3)/2

·
∫ π

0
exp

[
− N

2
tr

[
cos θ − sin θ

sin θ cos θ

]
L

[
cos θ sin θ

− sin θ cos θ

]
�−1

]
dθ

= (�1 − �2) (�1�2)
(N−3)/2

·
∫ π

0
exp

[
N (�1 − �2) (λ1 − λ2)

4λ1λ2
cos 2θ

− N (�1 + �2) (λ1 + λ2)

4λ1λ2

]
dθ

∝ (�1 − �2) (�1�2)
(N−3)/2 exp

[
− N (�1 + �2) (λ1 + λ2)

4λ1λ2

]

· I0

(
N (�1 − �2) (λ1 − λ2)

4λ1λ2

)
.

The remainder term is the normalization constant.

Approximations
By the reparametrization in (20),�, S , and �̂(S) are rewrit-
ten as

� = V

[
λ
(
1 + c N−1/2

)
λ

]
VT ,

S = U

[
�
(
1 + dN−1/2

)
�

]
U T ,

�̂ (S) = U

[
�
(
1 + d+e

2 N−1/2
)

�
(
1 + d−e

2 N−1/2
) ]U T ,

respectively. Then,

E [tr�−1(�̂ − S)]N

= 1

2
λ−1 E

[
(d − e) �trV

[
(1 + c N−1/2)−1

1

]

VTU

[ −1
1

]
U T

]

= c

2
λ−1(1 + c N−1/2)−1

· E
[
(d − e) �

(
1 − 2

(
V2

11 + U 2
11

)
+ 4V11U11 (V11U11 + V12U12))] .
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By substituting V11 = cos θ0, U11 = cos θ , we get

E
[
(d − e) �

(
1 − 2

(
V2

11 + U 2
11

)
+ 4V11U11 (V11U11 + V12U12))]

= c

2
λ−1(1 + c N−1/2)−1 E [(d − e) � cos (2 (θ0 − θ))]

	 c

2
λ−1(1 + c N−1/2)−1 E

[
(d − e) �

(
1 − 2 (θ0 − θ)2

)]
.

The conditional distribution of θ for expectation is

p (L , U |N , V , �)

∝ exp

[
− N

2
U LU T V�−1VT

]

∝ exp

[
− N

4
(�1 − �2)

(
λ−1

2 − λ−1
1

)
cos (2 (θ0 − θ))

]

= exp

[
−1

4
cd�λ−1

(
1 + c N−1/2

)−1
cos (2 (θ0 − θ))

]

from (A.2), which is the probability density function of the
von Mises distribution [25]. Thus, we have

E
[
(d − e)�

(
1 − 2 (θ0 − θ)2

)]
= E

[
(d − e)�A

(
1

4
cd�λ−1(1 + c N−1/2)−1

)]

by considering the variance of von Mises distribution,
where

E [�] 	 λ,

A

(
1

4
cd�λ−1(1 + c N−1/2)−1

)
	 A(c2/4)

and A(z) = I1(z)/I0(z). Assuming the independence of �

and d, we get

E [tr�−1(�̂ − S)]N 	 c

2
(1 + c N−1/2)−1 A(c2/4)E [d − e]

→ c

2
A(c2/4)E [d − e] (N → ∞).

In a similar fashion, we get

E
[
log
∣∣∣S−1�̂

∣∣∣] N

= E

[
log(1 + dN−1/2)−1

(
1 + d + e

2
N−1/2

)

·
(

1 + d − e

2
N−1/2

)]
N

= (E [− log(1 + dN−1/2)

+ log

(
1 + dN−1/2 + d2 − e2

4
N−1

)])
N

=
(

E

[
−dN−1/2 + d2

2
N−1 + dN−1/2 + d2 − e2

4
N−1

−1

2

(
dN−1/2 + d2 − e2

4
N−1

)2

+ O(N−3/2)

])
N

= E

[
d2 − e2

4
+ O(N−1/2)

]

→ 1

4
E [d2 − e2] (N → ∞).

As for the approximation on e and d, it is necessary to
evaluate E [d − e] and E [d2 − e2] numerically, where

e =
{

0 if d < 23/2
(
1 +

√
2N1/2+2
N−2

)
,

t/�N1/2 otherwise,

with t in Corollary 3. Rewriting (16), we get the approxima-
tion of e as

e�N−1/2 = d�N−1/2 A

(
de�2

�2(2 + dN−1/2)2 − e2�2N−1

)
,

e = d A

(
de

(2 + dN−1/2)2 − e2N−1

)

→ d A

(
de

4

)
(N → ∞) .

In addition, when N goes to infinity,

23/2

(
1 +

√
2N1/2 + 2

N − 2

)
→ 23/2

holds. This means e approximates to the solution of
d I1(de/4) − e I0(de/4) = 0 when d < 23/2 and e = 0 oth-
erwise. To get the approximation of d, we transform
p(�1, �2) into p(�, d) and marginalize it as

p (�1, �2) d�1d�2

= N N (�1 − �2) (�1�2)
(N−3)/2 (λ1λ2)

−N/2

4� (N − 1)

· exp

[
− N (�1 + �2) (λ1 + λ2)

4λ1λ2

]

· I0

(
N (�1 − �2) (λ1 − λ2)

4λ1λ2

)
d�1d�2

= N N (dN−1/2)�N−2(1 + dN−1/2)(N−3)/2λ−N (1 + c N−1/2)−N/2

4� (N − 1)

· exp

[
− N�(2 + dN−1/2)(2 + c N−1/2)

4λ(1 + c N−1/2)

]

· I0

(
cd�

4λ(1 + c N−1/2)

)
�N−1/2d�dd,
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and

p(d) =
∫ ∞

0
p(�, d)d�

= N N−1/2(dN−1/2)(1 + dN−1/2)(N−3)/2λ−N (1 + c N−1/2)−N/2

4�(N − 1)

·
∫ ∞

0
�N−1 exp

[
− N�(2 + dN−1/2)(2 + c N−1/2)

4λ(1 + c N−1/2)

]

· I0

(
cd�

4λ(1 + c N−1/2)

)
d�

= N N−1/2(dN−1/2)(1 + dN−1/2)(N−3)/2λ−N (1 + c N−1/2)−N/2

4�(N − 1)

· �(N)

(
N(2 + dN−1/2)(2 + c N−1/2)

cd

)−N

· 2 F1

(
1

2
+ N

2
,

N

2
; 1;

(
N(2 + dN−1/2)(2 + c N−1/2)

cd

)−2
)

·
(

cd

4λ(1 + c N−1/2)

)−N

= d(1 − N−1)(1 + dN−1/2)−3/2

4

·
(

4(1 + c N−1/2)1/2(1 + dN−1/2)1/2

(2 + dN−1/2)(2 + c N−1/2)

)N

· 2 F1

(
1

2
+ N

2
,

N

2
; 1;

(
N(2 + dN−1/2)(2 + c N−1/2)

cd

)−2
)

= d(1 − N−1)(1 + dN−1/2)−3/2

4

·
(

4(1 + c N−1/2)1/2(1 + dN−1/2)1/2

(2 + dN−1/2)(2 + c N−1/2)

)N

·
(

1 − cd

N(2 + dN−1/2)(2 + c N−1/2)

·
(

1 + cd

N(2 + dN−1/2)(2 + c N−1/2)

)−1
)N

· 2 F1

(
N ,

1

2
; 1;

2cd

N(2 + dN−1/2)(2 + c N−1/2)

·
(

1 + cd

N(2 + dN−1/2)(2 + c N−1/2)

)−1
)

→ d

4
exp

[
− c2 + d2

8

]
I0

(
cd

4

)
(N → ∞) ,

respectively. In the above derivation, the formulas

2 F1(α, β ; γ ; z) = (1 − z)γ−α−β
2 F1(γ − α, γ − β ; γ ; z)

= (1 − z)−α
2 F1

(
α, γ − β ; γ ;

z

z − 1

)
,

lim
γ→∞ p+1 Fq (α1, . . . , αp , γ ; β1, . . . , βq ; z)

= p Fq (α1, . . . , αp ; β1, . . . , βq ; z)

and

Ik(z) = (z/2)k

�(k + 1)
1 F1

(
k + 1

2
; 2k + 1; −2z

)

are applied.
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