SIP (2019), vol. 8, e4, page 1 of 20 © The Authors, 2019.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence
(http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative
Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

doi:10.1017/ATSIP.2018.23

ORIGINAL PAPER

Development of a computationally efficient
voice conversion system on mobile phones

SHUHUA GAOD2, XIAOLING WUul'2, CHENG XIANG! AND DONGYAN HUANG?

Voice conversion aims to change a source speaker’s voice to make it sound like the one of a target speaker while preserving
linguistic information. Despite the rapid advance of voice conversion algorithms in the last decade, most of them are still too
complicated to be accessible to the public. With the popularity of mobile devices especially smart phones, mobile voice conversion
applications are highly desirable such that everyone can enjoy the pleasure of high-quality voice mimicry and people with speech
disorders can also potentially benefit from it. Due to the limited computing resources on mobile phones, the major concern is the
time efficiency of such a mobile application to guarantee positive user experience. In this paper, we detail the development of a
mobile voice conversion system based on the Gaussian mixture model (GMM) and the weighted frequency warping methods.
We attempt to boost the computational efficiency by making the best of hardware characteristics of today’s mobile phones, such
as parallel computing on multiple cores and the advanced vectorization support. Experimental evaluation results indicate that
our system can achieve acceptable voice conversion performance while the conversion time for a five-second sentence only takes

slightly more than one second on iPhone 7.

Keywords: Voice conversion, GMM, Mobile application, Parallel computing, Weighted frequency warping

Received 1 July 2018; Revised 8 November 2018

I. INTRODUCTION

Voice conversion refers to the modification of the voice of
a speaker, called the source speaker, to make it sound as if
it was uttered by another speaker, called the target speaker,
while leaving the linguistic content unchanged. Therefore,
the voice characteristics of the source speaker must be iden-
tified and transformed by a voice conversion system to
mimic those of the target speaker, without changing the
message transmitted in the speech.

Voice conversion has great potential in developing var-
ious industrial applications, including not only integration
into a text-to-speech synthesis systems (T'TS) to customize
the voice as we like [1], but also serving a role in rehabil-
itation medicine, entertainment, and education areas. For
example, by transforming the vowels of a speaker with
dysarthria, a speech motor disorder, into the vowel space of
anon-dysarthria speaker, the speech intelligibility has been
improved significantly [2]. Besides, voice conversion tech-
nologies have also been used to produce varied multi-singer
voices by applying a conversion model to a single-singer

'Department of Electrical & Computer Engineering, National University of Singa-
pore, Singapore

?Human Language Technology Department, Institute for Infocomm Research,
A*STAR, Singapore

Corresponding author:
Dongyan Huang
Email: huang@izr.a-star.edu.sg

database [3], to synthesize emotional speech from stan-
dard reading (neutral) speech [4] or transform the emotion
conveyed in a speech to another one [5], and to generate
prosodically corrected versions of foreign language learners’
utterances in the computer-assisted pronunciation training
[6, 7]. On the contrary, voice conversion may also present
a threat to speaker verification and has thereby forced the
enhancement of anti-spoofing capacities of typical speaker
verification systems [8]. All in all, it deserves our efforts
to study voice conversion for both scientific research and
industrial application purposes.

Roughly speaking, human speech can be decomposed
into three components: language content, spectral pattern,
and prosody [8]. The last two factors form the focus of
current voice conversion studies located at two levels: the
supra-segmental level, which includes prosodic features
such as the fundamental frequency contour, the duration
of words, phonemes, timing, rhythm, and intensity levels
etc; and the segmental level including the average pitch
intensity, the frequency response of the vocal tract, and the
glottal source characteristics. In this sense, voice conver-
sion aims to map the spectral and prosodic features of the
source speaker to the ones of the target speaker in order to
modify voice individuality. Such a feature mapping task is
commonly formulated as a supervized learning problem in
the literature, which requires a certain amount of speech
data available from both the source speaker and the tar-
get speaker for training. The key difference among various

mailto:huang@i2r.a-star.edu.sg

2

SHUHUA GAO, et al.

studies lies in the specific mapping models adopted, mainly
including codebook-based, statistical and artificial neural
network-based methods, which have been reviewed com-
prehensively in a recent survey [9]. In the following, we only
discuss some representative approaches briefly to explain
the rationality of our methodology.

A typical voice conversion system requires two types of
models, i.e., a speech model and a conversion model. After
extensive investigations, it has been found that the three
most relevant speech features regarding speaker individual-
ity are the average spectrum, the formants, and the average
pitch level [6]. Consequently, most voice conversion sys-
tems attempt to transform short-time spectral envelopes
and prosodic characteristics including the pitch value, dura-
tion, and intensity [9]. Thus, before voice conversion, a
suitable speech model must be adopted to analyze the input
speech signals so as to extract the relevant speech features
for subsequent modifications. Additionally, a good speech
model should be able to reconstruct the speech signal from
model parameters with high quality, a capacity we need
to synthesize speech for the target speaker after conver-
sion. Usually, the speech model is built frame-by-frame
while each frame represents a short-time segment (typically
<20ms).

Popular speech models include the STRAIGHT model
[10], the pitch-synchronous overlap-add (PSOLA) model
[11], and the harmonic plus noise model (HNM) [12], among
others. STRAIGHT belongs to the filter model family, which
assumes the speech is produced by filtering an excitation
signal with a vocal tract filter independent of the excita-
tion. To alleviate the interference between signal periodicity
and the spectral envelope, STRAIGHT performs a pitch-
adaptive spectral analysis, which can preserve the details
of time-frequency surfaces while almost perfectly removing
minor structures caused by signal periodicity. On the other
hand, signal-based methods such as PSOLA and HNM do
not model speech as a combination of a source signal and a
spectral envelope filter, thereby avoiding restrictive assump-
tions like the independence between the source signal and
the filter, which can usually lead to higher quality of speech
synthesis. Specifically, the PSOLA methods can modify the
speech signal either in the frequency domain (FD-PSOLA),
or directly in the time domain (TD-PSOLA). Particularly,
TD-PSOLA decomposes the speech waveform into a stream
of short-time analysis signals set at a pitch synchronous rate,
which is one of the most popular and simplest methods
for high-quality prosodic modification. Nonetheless, in the
aspect of voice conversion, models based on the sinusoidal
decomposition of speech are more desirable, because such
models allow flexible spectral and prosodic modifications
by manipulating model parameters. As a typical represen-
tative, HNM is one of the most widely used models for
speech synthesis and modification [12]. HNM decomposes
the speech signal into a deterministic part as a sum of sinu-
soids with frequencies relevant to pitch and a stochastic part
obtained by filtering a white Gaussian noise. A comparison
study in [13] shows that HNM gives better overall perfor-
mance than TD-PSOLA, and thereby a speech model based

on such harmonic plus stochastic decomposition is adopted
in our system.

Derived from the above speech modeling and analysis
step, the output features may be directly used or further
processed for subsequent feature mapping [9]. As afore-
mentioned, in current voice conversion, most methods
assume frame-by-frame processing and thus depend mainly
on local speech features present in short-time segments.
Common spectral features include Mel-cepstral coefficients
(MCCs), linear predictive cepstral coefficients(LPCCs), line
spectrum frequency (LSF) and formant frequencies, and
bandwidths [8, 9]. Regarding the prosodic features, we usu-
ally only consider the f; and the duration patterns. Typ-
ical voice conversion systems only perform simple modi-
fications of prosodic features, e.g., normalizing the global
mean and variance of log-scaled f; values [8, 14], because
prosody is a supra-segmental characteristic not conveyed
on segmental basis but through larger units, which is more
challenging [15]. Consequently, most researches focus on
mapping for the spectral features. Mathematically speak-
ing, voice conversion is to learn a mapping function f(-)
from the source speech feature x to the target speech fea-
ture y using the training corpus and then apply this function
to a new unseen source speech sample for conversion at
runtime.

Starting from the seminal work based on vector quanti-
zation (VQ) and mapping codebooks developed by Abe et
al. in 1988 [16], many methods for spectral feature mapping
have been proposed in the literature. Though the codebook
mapping-based methods are simple and computationally
efficient, they performed poorly due to the generation of
discontinuous feature sequences [9, 15]. At present, more
popular methods are mainly classified into the following
categories: (1) mixture of linear mappings, like Gaussian
mixture models (GMM) [13, 17, 18] and hidden Markov
models (HMM) [19, 20]; (2) a single nonlinear mapping
model, including support vector machine regression [21],
artificial neural networks (ANN) [22, 23], and the more
recent deep learning approaches [24, 25]; (3) frequency
warping-based mapping approaches such as weighted fre-
quency warping [26], dynamic frequency warping [27],
and bilinear frequency warping [28]; and (4) nonparamet-
ric mapping methods like the exemplar-based method [29,
30], Gaussian Process regression [31], and the K-histogram
approach [32]. In GMM-based methods, the distribution of
the source (target) spectral feature vectors are modeled with
a group of multivariate normal distributions, and the con-
version function typically adopts a linear form and thus can
be solved with least squares directly [13, 15]. Another way
to handle the mapping in GMM is to fuse the source and
target feature vectors together to build a GMM for the aug-
mented vector z = [x7, yT]7, called a joint GMM, and the
mapped target vector during conversion can be acquired
using the mean vectors and the covariance matrices we have
obtained from training [33]. In ANN-based approaches,
both shallow and deep networks have been investigated to
map the features from the source to the target nonlinearly,
which may outperform GMM-based methods due to the

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

extremely flexible structure and the prominent nonlinear
fitting ability especially when a deep neural network (DNN)
is used [23, 34]. Nevertheless, the network design and train-
ing requires plenty of expertise since the learning process
can easily get stuck in local minima and DNN generally asks
for a large amount of training data [35]. It is known that sta-
tistical methods like GMM tend to generate over-smoothed
speech of degraded quality though they can convert speaker
identity well [27, 30]. By contrast, frequency warping aims
to map the frequency axis of the source speaker’s spectrum
to that of the target speaker by warping source spectral
envelope, thereby retaining more spectral details and gen-
erally producing speech of higher quality [30, 36]. Despite
the high-quality score, the similarity between converted
and targeted voices, i.e., the identity conversion perfor-
mance, is not satisfactory in frequency warping, because
the spectral shape was not completely modified [26]. An
alternative method to generate high-quality speech is the
nonparametric exemplar-based voice conversion. An exem-
plar is defined as a segment of speech spectrogram span-
ning multiple frames, while the set of linear combination
weights compose an activation vector. To avoid the over-
smoothing effect, the activation vector is required to be
sparse, which can be estimated by nonnegative matrix fac-
torization (NMF) with sparse constraint or nonnegative
matrix deconvolution [29]. This framework has been fur-
ther extended to include spectral compression factor and a
residual compensation technique [30]. Experiment results
on the VOICES database demonstrate the superiority of the
exemplar-based method on both converted speech similar-
ity and quality. However, this approach has the disadvan-
tage of high computational cost, which renders it currently
unsuitable for mobile applications. Arguably, GMM is still
one of the most successful and most widely used models in
practical voice conversion systems [8, 9, 15, 37]. In our voice
conversion system designed for smart phones, we adopted
the weighted frequency warping method, which combines
GMM with frequency warping to achieve better balance
between speech quality and similarity [26].

In recent years, mobile devices, especially smart phones
and tablets, have prevailed in our daily life. A report shows
that time spent on mobile devices grew 117% between 2014
and 2015, while overall mobile application (app) usage has
increased on average 58% year-over-year [38]. However,
though there are many algorithms proposed and verified
with specific datasets in literature, as listed above, to the
best of our knowledge, there are still no voice conversion
systems using such advanced methods that can work on
mobile devices, particularly on mobile phones. Moreover,
through a search on Apple store and Google play for present
applications labeled with voice change/conversion, we found
that most of the existing voice change applications merely
attempt to simply modify some of the spectral or prosodic
features with no specific target but only to generate robot-
like voices for fun, such as VoiceLab and Voice Changer.
Only few applications are intentionally developed to mimic
another predefined persons voice, such as Trump Voice
Changer, which can utter the input text in a Trump-like

voice, and the Celebrity Voice Changer Lite app, which pro-
vides a fixed list of celebrities as your voice conversion
targets. Even so, according to user reviews, these mobile
applications (apps) exhibit obvious limitations, e.g., the pro-
duced utterance usually sounds unnatural, dissimilar, and
short of intelligibility. Besides, some apps need an Internet
connection to access online servers. More importantly, no
apps support customization of target speakers but only pro-
vide fixed targets, missing the key features of a general voice
conversion system. Therefore, this motivates us to develop
a full-fledged, offline, and real-time voice conversion sys-
tem on mobile phones by the efficient implementation of a
GMM-based algorithm, which involves the best utilization
of hardware vectorization instructions, parallel computing
on multiple cores, and good design of the software archi-
tecture. An iOS application called Voichap is developed to
demonstrate the feasibility of full-featured real-time voice
conversion on iPhone devices.

This paper is organized as follows. In Section II, we
briefly introduce the underlying algorithm framework for
voice conversion in our system. In Section III, we describe
the major principles and techniques for efficient implemen-
tation of the core algorithms on mobile phones. The sub-
sequent Section IV presents the software architecture and
the development of a practical mobile application for the
iOS platform. Section V demonstrates the iOS application
and afterward the effectiveness and efficiency of this appli-
cation are evaluated experimentally. In Section VI, we give a
brief discussion regarding deep learning-based approaches.
Finally, we conclude the paper in Section VII.

II. VOICE CONVERSION
FRAMEWORK

As mentioned above, we have reviewed, analyzed, and com-
pared the various voice conversion methods and finally
chosen a technique called Weighted Frequency Warp-
ing (WFW), which combines the outstanding conversion
capacity of GMM-based approaches and the high quality
of frequency-warping based transformations, proposed by
Daniel Erro et al. in [26, 33, 36]. We adopted this method
mainly due to its good performance yet still a relatively low
computational burden since we must take the limited com-
putational resources of mobile devices into consideration.
For completeness purpose of this paper, the overview of
the voice conversion frameworKk is first illustrated and then
the individual components of this framework are briefly
described in this section.

A) Overview of the voice conversion system

An overview of a typical voice conversion system, includ-
ing both the training phase and the conversion phase is
shown in Fig. 1. Overall, in the training phase a conversion
function f(-) is learned to map the source feature vector
x to the target feature vector y. Then, during the conver-
sion phase, the feature vector x of a new source utterance is

3

4

SHUHUA GAO, et al.

Training Conversion

Source speaker
utterance

Source speaker

Target speaker

utterances utterances

Speech analysis

A 4 A 4

Feature construction

X y "x

A 4

Alignment Conversion

1 ST

Conversion function training

fO

Speech synthesis

Converted
utterance

Fig. 1. General architecture of a typical voice conversion system.

built and subsequently transformed by ¥ = f(x), whichare
finally used to synthesize the converted utterance in the tar-
get speaker’s voice. In machine learning terminology, such
voice conversion is a regression problem, but it is generally a
challenging process due to that fact that speech quality and
converted-to-target conversion similarity are usually two
contradictory goals and a proper balance must be achieved
[15]. In the subsections below, corresponding to the blocks
in Fig. 1, we describe speech modeling for speech analy-
sis, feature construction, and conversion function learning
separately.

B) Deterministic plus stochastic model

In a voice conversion system, a speech model should first
be good for synthesis purposes, i.e., when a speech signal
is reconstructed from the model parameters, it should pre-
serve fidelity to be perceptually indistinguishable from the
original one. The aforementioned TD-PSOLA is a powerful
method for speech synthesis [11]. However, it is not suit-
able for voice conversion because it assumes no model for
the speech signal and consequently no spectral manipula-
tion can be easily applied. Therefore, our system uses the
deterministic plus stochastic model based on the sinusoidal
decomposition of speech [39]. Similar to the classic HNM
[12], this model represents the speech signal s as a sum
of a set of sinusoids with time-varying parameters and a
noise-like component denoting the residual

J
sln] =" Ajlnlcos 0;[n]) + elnl, (1)
j=1

where the deterministic part appears only in the voiced
fragments and the stochastic part contains the remain-
ing non-sinusoidal signal components, such as friction and

breathing noise. Though the model parameters are time-
varying globally, they can be considered stable within short
intervals, making it reasonable and easier to analyze the sig-
nal locally by frames, where each frame corresponds to a
constant number of speech samples, say N, in a time interval
of 10 ms in our case.

After the amplitudes and phases are detected [40] for
each measurement point k corresponding to the time
instant kN, k > 1, the deterministic waveform is interpo-
lated at every time instant by

_ A j A
Aj[kN—i-m]_A]- +—N m,

(2)
form=20,1,..., N — 1, where AP represents the ampli-
tude of the jth harmonic at point k. The phases and the
frequencies are interpolated together by a 3rd order poly-
nomial as follows,

0;[kN + m] =am® +bm* +cm+d, (3)

where the parameters a, b, ¢, d are chosen in an optimal
manner [41]. Now with the sinusoids available, we can
obtain the complete deterministic part d[n] according to
equation (1), and the stochastic component e[n] can be
subsequently isolated as follows,

](k)

dn] =) A;[nlcos(6; [n]),

j=1

e[n] = s[n] —dln], (4)
where] ® is the number of harmonics in the kth frame.

The remaining work is to analyze the magnitude spec-
tral shape of the residual with the linear predicative cod-
ing (LPC) method. After we acquire the deterministic plus
stochastic model (1), prosodies including the duration and
pitch can be modified straightly, which are detailed in [41].

To reconstruct the signal from the measured parameters,
the overlap-add (OLA) technique can be used to rebuild the
deterministic part, where a frame of 2N samples is built at
each measurement point k, described by

](k)

dlkN+m] =) (Ay‘) cos (wj.">m + qu."’)
j=1

N—m
N

(k+1) (k+1) (k+1) M
+Aj cos (wj (m—N)—|—¢j)ﬁ) (5)

Next, the N-length frames of white Gaussian noise are
shaped in the frequency domain by previously calculated
LPC filters to generate the stochastic component. By this
means, the speech signal can be successfully synthesized
from model parameters. Experimental results show that the
system output is perceptually indistinguishable from the
original speech [41].

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

C) Line spectral frequencies feature
construction

Though we have built a harmonic plus stochastic model, it
should be noted that converting voices directly from these
model parameters is quite difficult, because the amplitudes
and the phases do not provide a suitable parameteriza-
tion of the harmonic spectral envelope for the purpose of
voice conversion. This is mainly caused by the fact that the
number of harmonics is variable and generally high, which
makes conversion quite complicated. Thus, as shown in
Fig. 1, a further feature construction step is needed to allow
better representation of speech for conversion purpose. In
this study, the line spectral frequencies (LSF) coefficients,
which have better quantization and interpolation proper-
ties [42], are used as the features to estimate the parame-
ters {«;, i;, X;} of the Gaussian mixture model, which is
introduced in the next subsection .

Given a pth order all-pole representation of the spec-
trum, 1/ A(z), the LSF coefficients are the roots of the (p +
1)th order polynomials given by

P(z) = A(z) + z PtV Az),

Q2) = A(z) —z PV AGET, (6)
where P is a palindromic polynomial and Q an anti-
palindromic polynomial. Note that the roots of P(z) and
Q(z) arelocated in symmetric pairs on the unit circle, which
means they can be completely characterized by the fre-
quencies corresponding to the roots locations and only p /2
frequencies need to be stored for each polynomial. Thus, the
LSF feature has p attributes in total.

Regarding practical implementation, the all-pole mod-
eling (DAP) iterative technique is used since it leads to
less distortion and thus provides better perceptual qual-
ity than its predecessors [43]. In determining the optimal
order for the harmonic all-pole filters, a trade-off must be
made because high-order filters provide higher resolution
and higher quality, while low-order filters can be converted
more reliably. Through trial and error, p = 14th order all-
pole filters are found to provide the best results.

D) Voice conversion via weighted frequency
warping

From the given training set, i.e., a parallel corpus including
the source speaker’s and the target speaker’s utterances, the
final LSF feature vector can be acquired as x and y, respec-
tively. After time alignment, it is common to use a GMM
to represent the feature distribution. We can use an aug-
mented vector z = [x7, yT]T to build a joint GMM with
m components,

P =Y aN(zw,), @)
i=1

where p; and X; are, respectively, the mean vector and the
covariance matrix for the ith Gaussian component and {; }

are positive adding up to 1. u; and X; can be partitioned
into a block-wise form corresponding to x and y given by

ur D Nl
=1y Ti=| s ww |
K 2D X

which can be estimated from data using the Expectation-
Maximization (EM) technique.

During conversion, for a source input vector x, from
the frame t, the conditional distribution of y, given x; is
again modeled with mixed Gaussian distribution, and we
can use the mean vector as the predicted target output vec-
tor ¥,. Thus, the classic conversion function of GMM [15] is
formulated as follows,

(8)

Fx) =Y x| w! + E @ x—wD)] o)

i=1

where w; (x;) is the posterior probability that the given LSF
vector x; belongs to the ith Gaussian, defined by

i N (x5 i, T
YN (s p, ET)

(10)

wi(x;) =

Though the traditional GMM method described above
can achieve good similarity for voice conversion, the qual-
ity of the converted speech is still unsatisfactory mainly due
to the over-smoothing effect [15]. By contrast, frequency-
warping-based methods can avoid significant loss of speech
quality since the degree of modification is limited [35].
Therefore, we adopted the method originally proposed in
[36], which aims to obtain high converted-to-target sim-
ilarity while preserving the speech quality, by combining
GMM and frequency warping. The main inspiration is that
the mean LSF vectors of each acoustic class corresponding
to each Gaussian component in GMM, u and u’, have
a very similar formant structure. Following this observa-
tion, a piecewise linear frequency-warping function W;(f)
is developed using the position of these formants for each
acoustic class, and the frequency-warping function for the
complete frame including m acoustic classes is obtained by

W(f) = wi(x)Wi(f). (11)
i=1

With the established W(f), supposing A(f) and 6(f)
are the magnitude and phase estimators of the current
frame’s spectrum, spectral modifications can be made by
warping the source envelopes as follows,

A(f) = AW, 0, () =0W (). (12)

Even after we obtain the warped spectrum of the current
frame S,,(f) as above, the energy distribution still differs
from the one of the actual target voice, because the intensity,
bandwidth, and spectral tilt remain almost unchanged. The
GMM transformation function (9) is used here to obtain a

5

6

SHUHUA GAO, et al.

new version of the target spectrum S, (f) from the trans-
formed LSF vector F (x). The final converted spectrum for
the current frame is obtained by

S'(f)=G(fHSu(h) (13)
where the energy correction filter G (f) is given by
_ [Se(H
G(f) = Su(f) * B(f), (14)

which uses a smoothing window function B(f) to do con-
volution (the * operator). The B(f) function can control
the balance between similarity and quality of the converted
speech by adjusting its shape. A triangular smoothing func-
tion is commonly used in practice [26].

To change the magnitude of the formants, the all-pole
envelope of the converted ¥ = F (x) can be acquired and
the energy at certain bands of interest can be measured. The
energy of the converted speech frame in each band is simply
corrected with constant multiplicative factors.

An important prosodic feature, the fundamental fre-
quency fo, is modified by the simple but popular mean-
variance global transformation [35]. Since f, follows a log-
normal distribution, the mean 1 ¢, and the variance o, of
log fo can be computed during training. Then, f; of the
converted speech signal can be linearly scaled by

O.(t)

log fi = 1) + =1 (log fi” = 1)), ()
o

where the superscripts (s) and (¢) represent the source and

target respectively, and fo(c) is the fundamental frequency of

the converted speech.

As for the stochastic component in equation (1), its
conversion is known to be not as relevant as the har-
monic/deterministic conversion [13]. Nevertheless, it is bet-
ter to predict the stochastic component for the target
speaker using the vocal tract LSF parameters in voiced
frames, as detailed in [36]. At this point, we have finished
the description of the underlying voice conversion theory
for our system. In the following section, we will detail the
highly efficient implementation of such algorithms.

I. EFFICIENT IMPLEMENTATION
OF CORE ALGORITHMS

Compared with laptops and PCs (personal desktop com-
puters), mobile devices, e.g., smart phones, are generally
characterized by quite limited memory, power and compu-
tational resources. Nonetheless, the main objective of our
study is to develop a full-fledged voice conversion system
on mobile phones without server-side support. Thus, the
key challenge is to implement the conversion algorithm
efficiently enough such that the time required by voice con-
version, especially the conversion phase, is acceptable for
daily use. To address this problem, the following two points
should be mainly taken into account:

e Algorithm efficiency. The methods chosen for speech
modeling, synthesis, and conversion are expected to be
time-saving themselves. In Section II, we have intro-
duced the involved algorithms for our voice conversion
system, which are adopted partially due to their low
computational burden yet still acceptable performance.
For instance, the previously described deterministic plus
stochastic model for speech modeling is indeed pitch-
asynchronous, which can greatly simplify the analysis
since the accurate separation of the signal periods is not
necessary. More importantly, this conversion algorithm
can even work well with a small number of training sam-
ples, e.g., tens of sentences.

e Implementation efficiency. This is the task on which we
put most emphasis during this study. Generally speak-
ing, the hardware is always faster than software. Thus, it
is critical to make full use of the advanced hardware char-
acteristics present on common mobile phones, including
support for vectorized calculation and multi-core parallel
computation. Besides, the choice of a proper program-
ming language and smart manipulations of matrices also
play an important role in acceleration.

In this section, we detail the key implementation aspects
regarding computational efficiency.

A) Multi-core parallel computing

Today, it is almost standard practice for smart phones to
ship a multi-core CPU, even for low-end smart phones. As
an example, iPhone 7, released in September 2016, uses the
Apple A1o Fusion 64-bit system-on-chip (SoC), which con-
sists of two low-power cores and two high-power cores.
As another example, the low-end Redmi 5 Android phone,
released on December 2017 by Xiaomi, is equipped with a
Snapdragon 450 SoC carrying 8 cores. Therefore, to make
full use of the computational capacity of mobile phones,
especially the multi-core processors widely available on
smart phones, our system must be parallelized to work on
multiple cores for real-time conversion performance.

Parallel computing is a type of computation in which
many calculations or the execution of process are carried
out simultaneously on multiple cores. In simple words, a
large complicated problem can be decomposed into smaller
and easier ones, which can be allocated to different cores
to be solved simultaneously, and thereby reduce the total
computation time required [44]. Due to the physical con-
straints preventing frequency scaling, parallel computing
has gained broader interest and has become the dominant
paradigm in computer architecture, as shown by the popu-
larity of multi-core processors [45]. For example, the multi-
core processors have been exploited to efficiently decode
videos [46]. In our voice conversion system, the computa-
tion is parallelized in mainly two spots, the speech modeling
and analysis phase during both training and conversion,
which is illustrated in Fig. 2.

The parallelization during the training phase is obvious
and straightforward, as illustrated on the left side of Fig. 2

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

Training |

Conversion

Source speaker
utterance

Source speaker

Target speaker

utterances utterances

Splitting

ty iy tn
Core Core o Core
1 2 n

Multi-core CPU

Multi-core CPU

Fig. 2. Parallel computation during training and conversion phases.

since the speech analysis and feature construction of each
utterance sample is independent. Therefore, we can dis-
tribute the total 2 M samples from both the source speaker
and target speaker on the C cores by creating a thread
t; on each core. In such a way, ideally, C audio samples
can be processed at the same time without interfering each
other. Therefore, the total running time is greatly reduced
because the time consumed by speech analysis and feature
engineering occupies a large portion of the entire time cost.

It is more subtle to parallelize the conversion phase. The
average duration of sentences in the corpus is about 4 or 5
s, similar to the ones we speak everyday. Given an utterance
input from the source speaker to be converted, we first split
it into a group of continuous partitions p;, i = 1,2,..., K,
whose lengths are approximatively equal, say, around ¢,, sec-
onds. Then, similarly to the training phase, we again allocate
these short partitions to different cores for simultaneous
processing, as shown on the right-hand side in Fig. 2. To
compensate the possible artifacts introduced in the segment
boundary, there is an additional overlapping region of ¢,
seconds’ duration on each side of the segmentation point,
shown in Fig. 3(a). After each partition p; is converted into
p, we merge these segments into a complete converted
speech using a logistic function to achieve a smooth transi-
tion around the partition point. The logistic function used
for smooth transition here is given by

¢(x) = (16)

14 e~k >
where k adjusts the steepness of the curve.

In our current implementation, the overlapping length is
40 ms, i.e., about 640 samples. Supposing we index the two
overlapping regions around the partition point from —640
to 640 and choose k = 0.015 in the logistic function (16),
shown in Fig. 3(b), the sample at index i merges the corre-
sponding two samples, s! in the left partition and s/ in the
right partition, by

si=(1—¢@)s! +¢(i)s]. (17)

Though in current implementation we mainly parallelize
the speech analysis, feature construction, and frame align-
ment steps due to their high time consumption, it should
be noted that more parallelization can still be applied to the

Partitic?n point :I

Split a sentence for parallel conversion

(a)

0.8

0.6

0.4 +

0.2 4

0.0 4
T T T T T T T
-600 -400 -200 O 200 400 600

Logistic function for segment merging

(b)

Fig. 3. Multi-core parallelism in the conversion phase. First, an input sen-
tence is partitioned into multiple segments and those segments are converted
simultaneously; then, the converted segments are merged smoothly using a
logistic function for weighted sum. (a) Split a sentence for parallel conversion
(b) Logistic function for segment merging.

subsequent steps such as the estimation of GMM param-
eters in equation (8). For example, in the work of Woj-
ciech Kwedlo [47], a shared memory parallelization of the
standard EM algorithm based on data decomposition is
proposed to learn the GMM parameters on a multi-core
system for higher performance. Thus, we are planning to
implement such features to further accelerate our voice
conversion system in its next version.

B) Vectorization via SIMD

After the computation work is spread on multiple cores,
our next target is to make the single-core throughput as
high as possible. Again, we need to explore and take full
advantage of the hardware’s capacity, especially in-core par-
allelism for operations on arrays (vectors) of data, due to
the heavy use of matrices in the underlying algorithms.
On modern mobile phones, in-core parallelism, or vector-
ization, is mainly supported by SIMD widely available on
today’s processors [44, 48].

Most mobile processors, including those from both
iPhone and Android phones, are designed with the ARM
architectures. For example, iPhone 7 uses the Apple Aio
Fusion 64-bit system-on-chip, which is based on the
ARMVS8-A architecture with 64-bit instructions support.
Particularly, modern ARM mobile processors, such as all of
the Cortex-AS8 series, usually support the Advanced SIMD
extensions, known as NEON, which is a combined 64- and
128-bit SIMD instruction set that provides standardized
acceleration for media and signal processing applications
[48]. NEON can support 8-, 16-, 32-, and 64-bit integer

8

SHUHUA GAO, et al.

LD ADD LD ST

Ay +
1 +

2 +

66806

3 +

Scalar operations SIMD operations
(@) (b)

Fig. 4. Scalar vs. SIMD operation for multiple additions.

and single-precision (32-bit) floating-point data and pro-
vide SIMD operations up to 16 operations at the same time.
In a study on digital image stabilization for mobile devices,
the motion vector projection and the FFT calculations are
accelerated using the Neon SIMD engine available on the
ARM CPU, and the global motion vector for each frame can
be calculated in <20 ms [49]. As its counterpart, in x86/64
architectures commonly adopted for PCs, the processors
usually provide SSE or AVX-based SIMD instruction set.
In brief, SIMD performs the same operation on multiple
data elements of the same type aligned in a vector simul-
taneously. Theoretically, if we can process g data elements
as a whole with a single SIMD, then the speedup is close to
q compared with sequential processing via scalar instruc-
tions, though the actual speedup is potentially limited by the
memory bandwidth. Fig. 4 illustrates a common operation
in multimedia processing, where the same value is being
added to a large number of data elements, implemented
with scalar instructions and SIMD instructions separately
for comparison purpose. In the context of audio processing,
audio data usually comes in 16-bit integer types. Supposing
we are using the 64-bit NEON registers for vectorization,
we can pack four 16-bit integers into this single register at
the same time, as shown in Fig. 4(b). The process using only
scalar instructions is depicted in Fig. 4(a). To perform a sin-
gle addition, two load operations (LD) are first executed to
read two numbers A and B from memory. Then, an addi-
tion (ADD) is instructed to get the result C. Finally, the sum
C is written back to memory with a store (ST) instruction.
By contrast, SIMD enhanced load, add and store instruc-
tions can perform on four integers simultaneously, which
is highlighted in Fig. 4(b). Therefore, in total, 16 scalar
instructions are reduced to only four instructions via SIMD
vectorization, which yields a theoretical speedup of four.
To make use of SIMD in practical programming and
software development, there are mainly three ways: (1) cod-
ing in low-level assembly instructions directly; (2) using
intrinsic functions with C interfaces which internally wrap
assembly codes; and (3) leveraging auto-vectorization if sup-
ported by compilers [48]. Generally, programming in the
assembly language directly is labor-intensive and highly
error-prone, despite their possibly extreme performance.
On the other hand, auto-vectorization can be completely
conducted by a compiler itself with no need of human inter-
vention. However, at present even state-of-art compilers are

not smart enough, and consequently, only a small portion of
codes can be vectorized automatically. Therefore, our study
relies on intrinsic functions as a trade-off between system
performance and manual labor.

It is worth pointing out that, in a real implementa-
tion, dependence on intrinsic functions does not necessarily
mean we have to call them directly in programming by
ourselves. Notably, the major part of the speech analysis
and conversion algorithms are formulated into matrix com-
putations. Therefore, we can resort to some mature linear
algebra libraries, which expose high-level interfaces to facil-
itate application development while internally making use
of intrinsic functions to vectorize matrix/array computation
as much as possible. That is, the internal utilization of SIMD
instructions is almost transparent to users. Relevant details
are described in the next subsection.

C) C++ implementation

In the above two subsections, we have described core-level
and instruction-level parallelism to accelerate the core algo-
rithms for voice conversion. The objective of this study is
to develop an efficient voice conversion system on mobile
devices, not limited to a specific device type like iPhone,
iPad or Android phones. Though the GUI development kits
differ greatly from each other on different mobile operation
systems, such as iOS for iPhone and Android for most of
the other smart phones, we want the core algorithm imple-
mentation of this system to be platform independent such
that this crucial part can be easily ported across multiple
platforms with minimum modifications. Hence, we separate
the core functionality and the GUI in our system architec-
ture. To satisty both platform neutrality and high-efficiency
demands, the C++ programming language is the best can-
didate for coding the core algorithms. As a general-purpose
language, C++ highlights performance, efficiency, and flex-
ibility, i.e., it allows low-level memory manipulation while
still providing high-level abstractions in an object-oriented
manner. Below we briefly outline how to achieve multi-core
and SIMD-based parallelism in C++.

To apply thread-based parallelism for multi-core com-
putation, that is, multi-thread programming in C++, the
simplest way is to use the standard OpenMP API, which
supports multi-platform shared-memory parallel program-
ming in C and C++ [50] by only using straightforward
directives. However, OpenMP is still poorly supported on
iOS, the mobile operation system of iPhone or iPad. Instead,
as Apple recommends, we should use Grand Central Dis-
patch (GCD) technology for task parallelism, which is spe-
cially designed and highly optimized for iOS. In short, those
simple parallelism frameworks are still somewhat platform
dependent. Fortunately, this portability problem can be
solved with the new C++ 11 standard published in 2011,
which adds support for multi-threading programming by
introducing a new thread library. In simple words, we can
create a new thread by instantiating the std: : thread
class by passing a function representing the work to be
done in this thread. Special attentions should be paid to

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

avoiding data races in such multi-threaded programs by
using synchronization primitives like std: :mutex and
std: : Llock to protect shared data. Interested readers may
refer to this excellent book [51] for more details on multi-
thread programming in C++.

As for vectorization on each core using SIMD instruc-
tions, we lean upon the well-known Eigen library, a high-
performance C++ template library for linear algebra, which
has been used in many industrial projects [52]. We choose
Eigen particularly because it supports all matrix sizes and
provides common algorithms for matrix decomposition,
numerical equation solvers and other related algorithms
such as fast Fourier transform (FFT). More importantly,
Eigen is fast enough by performing explicit vectorization
internally for SSE, AVX, and ARM NEON instruction sets
while hiding this complexity from users. That is, we can
achieve instruction-level parallelism as much as possible by
simply implementing the algorithms using matrices and lin-
ear algebra operations provided by Eigen. As a side benefit,
FEigen provides interfaces similar to MATLAB, which can
simplify programming and make the codes more readable
especially for engineers.

Now we can give a bird’s-eye view of the software archi-
tecture of our voice conversion system shown in Fig. 5. It
is clear that our system splits the core algorithms (compute
engine) and the graphical user interface (GUI) to maxi-
mize platform portability. Ideally, no modifications of the
core algorithms’ source codes are required when ported to
another platform, and we just need to recompile the C++
codes with the platform specific compilers for deployment.
On the contrary, generally, the GUI part is tightly coupled
to specific platforms, such as iOS, Android and Windows,
and cannot be migrated. For example, on iOS, we con-
struct the GUI with the UIKit framework using either the
Swift or Objective-C language, while Android provides its
own UI components accessible by the Java or Kotlin lan-
guage. One pitfall of the C++ based computing kernel is
that C++ only supports poor or even no interoperability
with some languages including Swift, the main language for
iOS development. Thus, we decide to wrap the input/output
interfaces of core algorithms using the C programming lan-
guage, which can interact with all mainstream languages
quite easily. In the complete mobile application, the GUI
communicates with the core algorithms by passing informa-
tion mainly through the train and convert functions
provided as C interfaces. In such a way, the computational
engine, i.e., the core algorithms, can work well on all the four
operation systems shown in Fig. 5 as we have tested, two for
mobile devices and two for PCs, thus realizing our objective
of platform independence.

V. 10S APPLICATION
DEVELOPMENT

After the core algorithms for the voice conversion sys-
tem are implemented with C++, the remaining work is to
develop a friendly GUI on mobile phones, i.e., to develop a

i0S

“

Core
Algorithms
(C+4)

an>=301D Mac

Fig. 5. Overview of software architecture. The core algorithms (compute
engine) are implemented in C++ for portability. The graphical user inter-
face (GUI) sits on top of the engine and may be built with different lan-
guages/libraries on various platforms. The engine exposes C interfaces to be
used by GUI on four common operation systems: i0S, Android, Windows, and
Mac.

Source speaker

-5

)) Source speaker Sounds

) ’ §
' t’_ Target speaker
<=
Target speaker /

Training phase Conversion phase

(@) (b)

Fig. 6. Workflow of the voice conversion application on mobile phones.

mobile application, to facilitate the access of this system. As
we have illustrated earlier in Fig. 5, we can develop GUI with
different languages and tools on different platforms, which
is well decoupled from the compute engine in our architec-
ture. In this section, as a specific example, we present the
development of an iOS application (app), which is deployed
on iPhone 7, arguably the most popular smart phone in 2017.
Opverall, as a prototype to verify the feasibility of voice con-
version on mobile phones, our app focuses on usability and
concision. The most fundamental usage of this app only
involves two steps depicted in Fig. 6. Firstly, both the source
speaker and the target speaker read a small number of sen-
tences while their utterances are recorded by the phone to
form a parallel corpus for subsequent conversion model
training. Secondly, the source speaker can speak something
to the app again and it will try to convert this message
to make it sound like being spoken by the target speaker.
In the following, more details about the modular structure
and some specific design issues of this iOS application are
presented.

A) Overview of the functional modules

In software engineering, it is well known that modular-
ization is a fundamental principle for large-scale software

9

10

SHUHUA GAO, et al.

E GUI &
Data Management

Database
(Core Data framework)

¥ ¥ i

Account management Speaker management

Source
speaker

Target |
speaker

Training text i
recorder

materials & blater !

File system

Core Audio
framework |

Compute Engine
(algorithms in C++)

Fig. 7. Outline of the modules in the iOS application.

development. The main modules in our system are exhib-
ited in Fig. 7. To manage the user accounts, including reg-
istration, login and logout, we store the user information
in a light-weight mobile database such as SQLite, whose
access is mediated by the iOS Core Data framework to sim-
plify coding. Similarly, for one source speaker (i.e., the user),
multiple target speakers can be trained, and the association
between the source speaker and the target speaker are also
recorded into the database. Most of the hard disk storage
of this app is occupied by the corpus built for voice con-
version training. We provide text materials each containing
about 20 normal sentences to be read by a pair of source
speaker and target speaker. While a speaker is reading the
transcript, his/her voice can be easily recorded by our app
(Fig. 6) and saved as monophonic WAV files with a sam-
pling frequency of 16 kHz, with support from the iOS Core
Audio framework.

At last, it should be noticed from Fig. 7 that currently in
our system the interaction between the GUI layer and the
compute engine, i.e., the core algorithms implemented in
C++, is quite clear and concise. During training, the GUI
layer only needs to tell the engine what are the WAV files
composing the training set, and the engine will produce a
model file corresponding to the conversion function. Sim-
ilarly, at the point of conversion, the GUI layer notifies the
engine about the audio file from the source speaker to be
converted, and the engine will finally store the finished con-
verted speech in a new WAV file and inform the GUT layer
of the file path. We can hear the converted voice by simply
playing this audio file. Besides, it can also be set to be played
automatically when finished.

B) Specific design issues

It is a very challenging task to develop a well-performing
iOS application, which involves UI design, business logic
modeling, coding with Swift/Objective-C, debugging with

Fig. 8. Model-View-Control(MVC) design pattern.

XCode, and many other tedious works. Here, details are
omitted to conserve space. In the following, we only list
and address two specific design concerns about the app
development as representatives of the whole process.

1) MVC DESIGN PATTERN FOR THE USER INTERFACE
In developing GUI-based applications, a well-known best
practice is to separate the data from its presentation,
because the presentation may vary a lot according to spe-
cific requirements, e.g., in a chart or in a table. Since the first
release of iOS, Apple has recommended to adopt the Model-
View-Controller (MVC) design pattern to emphasize this
best practice, which is delineated in Fig. 8. Generally, model
objects hold the data or knowledge we have, and view rep-
resents something visible in the user interface dedicated
to displaying the data. However, the model and the view
cannot communicate directly in order to reduce coupling.
Instead, they are mediated by the controller object, typically
through the delegate pattern.

In practice, we define a model object to access the data
stored in the database or the file system, as shown in Fig. 7.
When there is a proper change in the data, the model noti-
fies the controller object, and subsequently, the controller
attempts to update the view according to the changed data.
In the other direction, when the user interacts with the
view; his/her action is passed to the controller, which further
informs the model about the user intention, e.g., updating
or deleting data. Despite its simplicity, the layers of a typical
GUI application can be cleanly decoupled by the MVC pat-
tern to encourage better organization and to promote code
reuse. In our app, each window is constructed with the MVC
pattern described above.

2) DATA-DRIVEN PRESENTATION IN COLLECTION
VIEWS

To better display multiple audio information and target
speaker items, table view and collection views are exten-
sively used in the GUI interface of our application. For
better flexibility and reusability of the program, it is best
to separate the data from its visualization through a UI-
Data-Operation style. In the iOS development framework,
the data are stored in a data source object and the operation
is represented by a delegate object. Note that the table views
and collection views in i0OS UIKit are all designed with a
specialized MVC mechanism.

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

The data source is only responsible for providing the data
and does not know how the data are displayed. The delega-
tion gives objects a chance to coordinate their appearance
and state with changes occurring elsewhere in a program,
usually brought about by user actions. More importantly,
delegation makes it possible for one object to alter the
behavior of another object without the need to inherit from
it. With this design pattern, we can better decouple the
data source and its presentation. Once the data are updated
somewhere, the UI will respond automatically to reflect the
data changes. Hence, such data-driven presentation style is
also widely adopted in our app to facilitate the complex user
interface development.

V. EXPERIMENTS AND RESULTS

We have developed the voice conversion system in a con-
venient bottom-up manner since the two layers in Fig. 7
are almost perfectly decoupled. That is, the compute engine
responsible for intensive computation was first constructed
with a focus on accuracy and eficiency by iterative test-
ing and improvement. The next step was designing the user
interface and the associated data managers for a mobile
application with attention paid to usability and conciseness.
The finished mobile application, called Voichap, was suc-
cessfully deployed on an iPhone 7 device. In the following,
we first evaluate the core algorithm speedup enabled by
multi-core and vectorization-based parallelism. Then, we
describe the user interface of this application and demon-
strate its usage through specific examples. Finally, we eval-
uate the efficiency and effectiveness of this mobile voice
conversion system by measuring its running time and con-
ducting conversion quality test scored by 10 listeners.

A) Core algorithm speedup test results

To evaluate the efficiency of our implementation making
full use of parallelism, we tested the engine performance
with various environment configurations. For simplicity, we
conducted the tests on a Windows 10 PC with an Intel Core
iy CPU carrying 4 hardware cores, since the algorithms were
first developed and tested with the powerful Visual Stu-
dio IDE on Windows 10. This also demonstrates that our
core algorithm implementation is indeed platform agnos-
tic, since we can run the same code on iOS (iPhone 7) with
no changes at all. In each test measuring the running time
listed below, the experiments were repeated for 10 times for
more accurate estimation.

1) OVERALL PERFORMANCE

We timed the training process for 20 utterances, each
with a duration of 4.5 s on average, from both the source
speaker and target speaker, which is the default configura-
tion of our mobile application. In this test, the number of
Gaussian components used in the model (7) is chosen as
m = 4. As the baseline, we also measured the running time
of the original MATLAB code on the same PC. It should
be reminded here that many built-in functions of MATLAB

401.85

Time of training (seconds)

S+NV StV M+NV M+V MATLAB

Fig. 9. Running time of the training phase with different configurations (95%
confidence interval). From left to right, S+NV: single-threaded C++ with no
vectorization, S+V: single-threaded C++ with vectorization, M+NV: multi-
-threaded C++ without vectorization, M+V: multi-threaded C++ with vector-
ization, MATLAB: 64-bit MATLAB 2016 with default settings.

are in fact highly optimized C or Fortran routines, which
may be well implemented in a parallel manner internally.
Thus, it is common that a naive C++ numerical program
cannot beat its counterpart in MATLAB in time efficiency.
The statistics of the measured running time is illustrated
in Fig. 9. Additionally, we should note that the frequency
warping method only transforms the voiced frames. Thus,
the number of voiced frames in the utterances may be of
more interest. In our training set including 20 utterances,
the average number of voiced frames in each utterance is
302.6 and the frame shift is 8 ms (128 samples). Thus, the
average length of the voiced signal in the training set is only
2.42 s. Similarly, we can count the average number of voiced
frames in the test set for conversion, which is about 297.5,
corresponding to an average duration of 2.38s if we only
consider the voiced segments.

As is shown in Fig. 9, the C++ program enhanced by
both vectorization and multi-core parallelism can even out-
perform the one in MATLAB, which is already quite fast
due to its highly optimized built-in functions and spe-
cific toolboxes devoted to signal processing. This result also
demonstrates the inherent efficiency of C++ as well as the
high performance of Eigen. Obviously, when we make the
most of the hardware characteristics to parallelize the pro-
gram, including both multi-core and vectorization-based
parallelism, the running time is reduced to a minimum
around 25 s. Of course, the precise running time on mobile
phones will be longer than the one on PC due to the lim-
ited power of mobile devices. However, the acceleration
effects of hardware-enabled parallelism on system perfor-
mance are similar, indicating the necessity of parallelizing
the core algorithms for truly efficient implementation on
mobile phones.

2) PROFILING OF EACH STAGE

In the current implementation of the training phase, the first
two stages including speech analysis, feature construction,
and frame alignment (see Fig. 1) are parallelized over mul-
tiple cores. Ideally, each utterance or pair of source-target

11

12

SHUHUA GAO, et al.

424918
. 104 7933
w)
©
S 103
g%
E 102
[J]
£
F 10!
10°
S1 S2 S3 S1 S2 S3

Single thread Four threads
(@) (®)
Fig. 10. Running time of each stage during the training phase with differ-
ent configurations (95% confidence interval). S;: speech analysis and feature

construction; S,: frame alignment of parallel corpus; S3: conversion function
training. Vectorization is enabled for all conditions.

utterances (for frame alignment) can be processed inde-
pendently and simultaneously on separate cores. To further
inspect the workload distribution, we measured the run-
ning time of each stage during training with 20 parallel
training samples, each with a duration of about 4.5s5 on
average. The results are plotted in Fig. 10(a).

Clearly, it is shown that the first stage, i.e., speech analy-
sis and feature construction, takes most of the time (about
84%). By contrast, the second stage of training, i.e., frame
alignment only takes a negligible proportion of the total
time for the current training set. As for the final stage, con-
version function training, though it takes a non-negligible
amount of computation time, it is not straightforward to
parallelize this stage, because it requires all the data as a
whole. Furthermore, since the last stage takes much less
time compared with the first two stages, we choose to only
implement the first two stages through multi-core paral-
lelism for now. By distributing the workload of the first two
stages to four cores using four threads, the running time of
these two stages is greatly reduced to about 35.2% and the
total running time is reduced to about 44.8% of the time
needed on a single core, which is demonstrated in Fig. 10(b).
Finally, we want to emphasize that, though the time spent
by the frame alignment stage (S2 in Fig. 10) seems to be
minor, it is still necessary to parallelize this stage, because
its theoretical time complexity is quadratic due to the use of
dynamic time warping [53], while the other two stages only
demonstrate linear time complexity empirically.

3) EFFECT OF NUMBER OF CORES

To further analyze the speedup effect brought by multi-core
parallelism, we measured the training time for the training
set composed of 20 parallel utterances of average duration
about 4.5s as well as the conversion time of a 5-s source
input utterance. Since there are in total 4 cores in the CPU of
our PC, the program was configured to use a different num-
ber of cores ranging from 1 to 4 for parallelism. The running
time with respect to the number of cores allowed is reported

D
o

w1
o
1

N
o
1

28.49

w
o
1

24.34

N
o
1

[any
o
1

Time of training (seconds)

o
I

=
(%)
1

=
o
1

o
[%2)
1

Time of conversion (seconds)

o
o
I

1 2

3 4
Number of CPU cores used

Fig. 1. Running time of the training phase (top) and the conversion phase
(bottom) when a different number of CPU cores are used for multi-core paral-
lelism (95% confidence interval). There are four cores in total in the CPU under
investigation. Vectorization is enabled.

in Fig. 11. Since only the first two stages of the training phase
benefit from multi-core parallelism, that is, about 84% of
the program can be parallelized (Fig. 10(a)), the accelera-
tion effect exhibited in Fig. 11 is indeed consistent with the
Amdahl’s law, which is often used in parallel computing to
predict the theoretical speedup when using multiple proces-
sors [54]. Specifically, with four cores available, the speedup
of the training phase is about 2.3 times, while Amdahl’s law
predicts a theoretical speedup of at most 2.7 times. Overall,
according to the relationship between running time and the
number of cores shown in Fig. 11, this voice conversion sys-
tem is characterized by sublinear speedup when multi-core
parallelism is applied.

We further investigated the scalability of multi-core par-
allelism in our system by increasing the training set size
proportionally to the number of cores used. Results are
shown in Fig. 12. Obviously, the average time required for 10
training samples per core increases as the total problem size
enlarges. This is due to the fact that not all the parts of the
algorithm framework are parallelized (Fig. 10). Neverthe-
less, the utilization of multi-core parallelism in our system is
still scalable, since the running time can be greatly reduced
for a fixed problem size when more cores are available
(Fig. 11). From a practical perspective, it should be noted
that though in principle we can use as many threads as we
like when implementing multithreading based parallelism,
the speedup cannot be further enhanced once there are
more threads than cores on a single CPU. For example, in

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

Time of training (seconds)

10-1
Training set size - number of cores

20-2 30-3 40-4

Fig. 12. Training time of various training set sizes and numbers of cores (95%
confidence interval). On average, each core corresponds to a training set of
10 utterances. A label n-k means n utterances in the training set and k cores.
Vectorization is enabled.

our case the training phase of our system is CPU-intensive,
and thus at most four threads can be executed simultane-
ously on a 4-core CPU.

B) Demonstration of the application

The mobile application we have developed for iPhone 7,
Voichap, has six windows in total, whose screen shots are
shown in Fig. 13, which correspond closely to the various
modules in Fig. 7. The most important actions are per-
formed in Figs 13(d) and 13(f), where the training and
conversion take place. We have provided some transcripts
to be read by both the source speaker and the target speaker
to build a parallel corpus for training purpose, as shown in
Fig.13(d), where we can also edit the target speaker informa-
tion, including his/her name and a short description. More
specifically, in the context of Voichap, the source speaker
actually refers to the user. Hence, the user only needs to
read these sentences once and the saved audios can be
reused to match all target speakers for training in the future.
Afterward, the user can ask the target speaker, e.g., his/her
friend, to read these sentences again to the phone and the
utterances are recorded by this app to create the training
corpus.

As previously illustrated in Fig. 7, the speaker informa-
tion is stored in a light-weight database and the taped audios
are organized in a specific directory for each speaker in the
iOSlocal file system. After we finish the recording, the Train
button in Fig. 13(d) can be touched to start the training pro-
cess, and at the end, a conversion model file is generated
corresponding to the given source-target pair. Note that the
model file contains all the necessary information required to
quickly restore the conversion function f(-) when needed
(Fig. 1). Now, it is time to play with real-time voice conver-
sion highlighted by the Speak here screen in Fig. 13(f). Just
simply press and hold down the microphone button, and say
anything you like. Once the microphone button is released,
the conversion phase starts automatically and immediately.

After a short while, you can hear what you have just spoken
being repeated, but in the voice of the target speaker.

As a side note, our Voichap application can also be fed
with audio files directly aside from recording improviza-
tional utterances by ourselves. This support can make the
application much more interesting. As aforementioned in
the introduction section, currently, there are some paid apps
available on Google Play or Apple Store regarding voice
changing, which can mimic a celebrity’s voice though gen-
erally the performance is poor. However, with our Voichap
app, you can transform your voice into the one of any
celebrity once you can get some training utterances from
him/her. Of course, it is impractical to really ask a celebrity
to read the specified text to our phone. However, we can
easily download their public speeches from websites like
YouTube and then extract the audios and break them into
sentences as the training materials of the target speaker. The
remaining work is to speak the same sentences and record
our utterances as the source speaker’s training data. This
process is shown in Fig. 14, where we take President Trump
as an example. In short, a new target is first created and
the audio files are loaded, which we grabbed from YouTube.
After the model is trained, we can speak words like ‘make
America great again’ as if we were President Trump while
the voice conversion system modifies the voice individuality
and makes it as if it was really spoken by President Trump.

C) Experimental evaluations of the voice
conversion system

The effectiveness and real-time performance of our mobile
voice conversion system, Voichap, were evaluated with voice
conversion among both male and female speakers. Unlike
the traditional benchmarking of voice conversion, which is
always pursuing better transformation similarity or speech
quality regardless of the computational cost, as a practical
mobile app, Voichap attempts to achieve good but not nec-
essarily the best performance yet in an acceptable period of
time. Our ultimate objective is to develop a real-time voice
conversion system on mobile phones for daily use and the
user experience matters most. Obviously, it does not make
much sense in this situation if a user has to wait for half
an hour to get the converted speech even if the conversion
quality is extremely high.

Four candidates ranging in age from 20 to 30 were chosen
as speakers in the following tests, including one male and
one female as the source and the same setting for the target.
Thus, four speaker pairs are examined in total: male-to-
male (M-M), male-to-female (M-F), female-to-male (F-
M), and female-to-female (F-F).

1) PARAMETER TUNING AND TIME EFFICIENCY

The two major parameters of our voice conversion sys-
tem are the number of training sentences and the number
of Gaussian components in the GMM model, i.e,, m in
equation (7). According to a survey of multiple users, we
found that it is a good choice to build a transcription col-
lection of 20 sentences with a duration around 4 or 5 for

13

14

SHUHUA GAO, et al.

MY RECORDINGS

Ve funny voice
\Z) moanrinasem

ey lecturel
\ZJ mwioang s e

Signup

Forgot password

1
Audio

(a) Login and sign up
ssean M1 1113 AM 3

Cancel

Antony

85

Karukapally

Train

®

—, 2. We expect growth this year to be
| P | one plus percent, still positive @
= though less than we hoped for.

_—, 1. Overall, we are not doing badly,
Z_\ P | considering the global economic
— uncertainties.

giwlelrjtlyjulijolp

als|difjglh]lilk]!
ez xlclvibin|im Es

123 @ O space return £

(d) Speaker info & training

(b) Recorded audios list

1113 AM

(e) Source and targets management

11216 AM

Audio

MY RECORDINGS

Funny voice
1604/17 11:09 PM

i
W
@I H5M

14/04117 5:01 PM

.

n &2 L4 n

Audio

(c) Select the target speaker

$

2\ (2 | 1{

Save

(f) Speak here

Fig.13. User interface of the Voichap application on iPhone 7. (a) Login and sign up (b) Recorded audios list (c) Select the target speaker (d) Speaker info & training

(e) Source and targets management (f) Speak here.

the purpose of training. Though generally a larger train-
ing set can contribute to better performance, it may make
the user get bored to read a lot of sentences and can also
lead to an overlong training time. To determine the best
option of m, we mainly need to balance the running time
and the conversion performance. By testing various values
of m, we summarize the training time with respect to each
m in Fig. 15.

Clearly, the training phase will take a longer time if
more Gaussian components are adopted. Besides, we see
that the total training time exhibits a nonlinear relation
with respect to the number of Gaussian components .
On the other hand, the average training time for the train-
ing set including 20 utterances ranges from 20 to 55 for

various m’s. Most importantly, through a subjective listen-
ing test of the converted speech in terms of converted-
to-target similarity and speech quality, which is illustrated
in Fig. 16, we find that the overall improvement is minor
once m > 4 and consequently the listeners give compa-
rable opinions on the similarity and quality of the con-
verted speeches generated by various m values above this
threshold. Therefore, from Figs 15 and 16, it is sensible to
choose m = 4 as the default parameter value of our system,
which can help greatly reduce the running time yet with-
out significantly deteriorating the converted speech quality
and similarity from the aspect of human perception. In
the following objective and subjective evaluations, we all
setm = 4.

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

1. Create a new target 2. Train the model

Audio clips
of Trump

Donald Trump

3. Use the model to convert your voice
to Trump's

PMAKE
AMERI

GREAT #

Sounds like

Donald Trump 7 7 |

You speak
“Make America great again”

Fig. 14. A typical usage scenario: how to make yourself sound like President

Trump?.
5 5
4 - + 4 - N
o] qiqid. > ’ihii
o
A ¢ ¢ ¢
2 A 2 ¢
1 J 1
¢
0 T T T T T T 0 T T T T T T
1 2 4 8 16 32 1 2 4 8 16 32
m m
Similarity Quality
(a) (b)

Fig. 15. Measured running time of the training phase with respect to differ-
ent number of Gaussian components (95% confidence interval). The training
set contains 20 sentences of average length around 4.5 s and the running time
is measured by repeating 10 times. Vectorization and 4-core parallelism are
enabled.

Let’s return back to the mobile application Voichap now.
Using the same training set and test set, the running time of
the app with both multi-core and multi-thread parallelism
enabled on iPhone 7 was measured as follows:

e The training phase of a parallel corpus containing 20
sentences of average length about 4 s takes approximately
36.5 S.

e The conversion phase for a 4.6-s sentence from the source
speaker takes about 0.85 s.

This result meets our expectations on the basis of Figs 9
and 15. Note that compared with a PC, the computa-
tional ability of an iPhone device is relatively poor, which

60

50 +

40 A

30 A

Time of training (seconds)

20 A

1 2 4 8 16 32

Fig. 16. Subjective evaluation of the voice conversion system with respect to
the number of Gaussian components m in GMM. 10 listeners were asked to
evaluate the speech similarity and quality. Here it shows the average score of the
four possible source-target conversion directions.

Table 1. The MCD of the unconverted source, the
traditional GMM and the weighted frequency warping
(WFW) method

No conversion GMM WEW

MCD(dB) 7.83 5.85 5.97

inevitably leads to a longer running time than the one
measured with MATLAB on a Windows 10 PC.

2) OBJECTIVE EVALUATION OF VOICE CONVERSION

Usually, two kinds of evaluations can be used to score the
performance of a voice conversion system: objective evalua-
tion and subjective evaluation. For objective evaluation, the
most widely used measure in literature is the Mel-cepstral
distortion (MCD) between the converted speech and the
original target speech [9, 15, 18]. The MCD is calculated by

10
MCD[dB] = ——

24
2 i Al‘ 2) 8
og 10 g(c &) (18)

where ¢; and ¢; are the ith coeflicients of the target and con-
verted Mel-cepstral coefficients (MCCs). For each pair of
target-converted utterances, the MCD is calculated frame-
by-frame after alignment and then averaged over all paired
frames. For comparison, we also reported the MCD for
the traditional GMM method [17]. The results are listed in
Table 1.

Generally, alower MCD indicates smaller spectral distor-
tion, i.e., higher conversion accuracy. Table 1 shows that the
MCD of WFW is only slightly larger than the one of GMM.
This result illustrates one of the design goals of WFW), that
is, it aims to improve the quality of the converted speech
without decreasing the conversion similarity. In particular,
this merit is largely attributed the GMM-based energy cor-
rection filter given in (14), which can slightly correct the
gross details of the spectral shape such as the spectral tilt and
energy distribution but without altering the small details in
the wrapped spectrum [26].

15

16

SHUHUA GAO, et al.

10° 5
] —eo— Natural
10t 1 —— WFW
g —— GMM
3 :
$ 1072 3
©]
o]
o]
]
1073 5
10_4 T T T T
0 5 10 15 20 25

Order of mel-cepstrum

Fig. 17. Global variances for the natural speech and the converted speeches via
GMM and WFW.

As aforementioned, the WFW used in our system is a
combination of GMM and frequency warping. Compared
with the statistical transformations like GMM, frequency
warping can achieve good scores on conversion quality by
overcoming the over-smoothing effect in traditional GMM.
To show that WFW can contribute to more natural voice
conversion, though in the last step GMM transformations
are applied to correct the energy of the warped spectra, we
evaluated the global variance (GV) of the converted speech,
defined as follows [18],

v(y) = [v(1),v(Q2),...,v(D)]",

T

1 1 <& ’
vid) == (md) -7 ; yt(d>) ., (19)

t=1

where y,(d) is the dth component of the target static feature
vector at frame ¢. Similar to the MCD index (18), the Mel-
ceptral coefficients are used here. The GV is calculated for
each utterance and the average values are reported in Fig. 17
to compare the WFW and GMM methods.

Obviously, we see that the GV obtained by the con-
ventional GMM approach is significantly smaller than the
natural speech, indicating that the converted Mel-cepstra
are excessively smoothed. On the other hand, the GV pro-
duced by the WFW method is clearly larger than the one
of GMM and is closer to the GV of natural speech. This
comparison shows that WFW can effectively alleviate the
over-smoothing problem present in GMM by introducing
frequency warping and thus the output speech is less muf-
fled. Overall, the GV results imply that WFW can lead
to more natural speech conversion than GMM, which is
further verified in the subjective evaluation below.

3) SUBJECTIVE EVALUATION OF VOICE CONVERSION

In the objective evaluation, we have measured and com-
pared the MCD and the GV indices. However, it is known
that the MCD metric may correlate poorly with human
perception in reality, i.e., a small MCD value does not nec-
essarily indicate a better result when evaluated by human

listeners. This is known as the perceptual deficiency prob-
lem, which states the reduction in the mean square error
between the converted and the original speech parameters
may not lead to better-perceived speech [55]. Thus, cur-
rently, the objective criterion like MCD is only suitable for
defining the training objective and validation purpose, but
not for evaluating the final system [9]. Thus, to evaluate the
true performance of Voichap on iPhone 7, we invited 10 vol-
unteers to participate in a subjective evaluation test focusing
on the following two aspects.

o Speech quality. This quantifies the quality of the converted
speech in terms of naturalness, intelligibility, and presence
of audible artifacts with a 5-point scale from 1 (very bad)
to 5 (excellent).

o Speech similarity. Subjects are given a pair of speeches in
random order including the original one and the con-
verted one, and they need to score the similarity using a
5-point scale, from 1 (very different) to 5 (identical).

For this subjective evaluation, the training set contains
20 utterances of average length about 4s and the number
of Gaussian components is set to m = 4. In total, we per-
formed four tests including two intra-gender conversions
(F-E M-M) and two cross-gender ones (F-M, M-F). The
evaluation results from 10 listeners with a 95% confidence
interval are shown in Fig. 18. It is not supervising that intra-
gender conversions usually give better performance than
cross-gender ones due to the greater difference between
female and male voices. Besides, we also see that the per-
ceptual score depends largely on individual listeners [9], as
indicated by the large variance in Fig. 18. Comparing GMM
and WEW, we see that there is only a small gap between the
similarity scores of the two methods. However, there is a
significant increase in quality from GMM to WFW, which
shows the effectiveness of frequency warping in improving
conversion quality. This quality enhancement is consistent
with the higher GV in Fig. 17. It should be noted that in
WEFW by tuning the smoothing-in-frequency window in
the energy correction filter (14), different balance between
quality and similarity can be achieved to meet the practical
performance expectation.

In general, an average score of 3 represents an acceptable
level of speech quality and similarity for voice conversion. In
view of the small training set in these tests, it is reasonable
to conclude that we have verified the feasibility of real-time
voice conversion on mobile phones. Besides, thanks to the
time efficiency of this app, the user experience is also pos-
itive. Particularly, the conversion phase for a sentence of
a normal length only takes <1 s, which can be considered
close to real-time conversion on mobile phones.

VI. DISCUSSION

Nowadays, artificial neural networks, especially deep learn-
ing, are quite popular and it seems they can solve questions
in many fields including voice conversion [24, 25, 55]. Gen-
erally speaking, deep learning-based approaches can lead

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

5
BN GvViM
s WFW
4 -
et
g 31
wv
2 -
1 .
F-F F-M M-F M-M
Conversion direction
Similarity
(a)
5
El GvVM
s WFW
4 -
NN
- i -
(8]
” N
2 -
1 -
F-F F-M M-F M-M
Conversion direction
Quality

(b)

Fig.18. Subjective evaluation of the voice conversion system Voichap on iPhone
7 in terms of converted speech quality and similarity (95% confidence interval).
There are 10 volunteer listeners participating in these tests and the 5-point scale
is used for scoring. (a) Similarity (b) Quality.

to better results than traditional methods like the one used
in our study. Thus, one may be wondering why we do not
adopt deep learning for voice conversion here. It should be
noted that deep learning is not a panacea because its great
performance depends significantly on a huge size of train-
ing data, which unavoidably results in an extremely high
computational cost. That is why a powerful GPU is often
required to train a deep neural network with hundreds or
even thousands of parameters. In fact, one of our authors,
Dongyan Huang, has also conducted a study on statisti-
cal parametric speech synthesis using generative adversarial
networks (GAN), which is closely related with voice conver-
sion, and as many as 8000 sentences are used for network
training [55]. Obviously, it is not practical to obtain such
a large dataset from a normal user, not to mention the
seemingly endless training on mobile devices.

By contrast, the objective of our study is to develop a
real-time voice conversion system on mobile devices with
no need for server-side support. For a mobile application,

it would be insane to ask the user for such a huge amount
of training audios. What is worse, the poor GPU capacity
on most mobile phones can hardly accelerate the neural
network training process. As a result, the network train-
ing on a mobile phone even with a moderate size of data
may take hours or even days, which is definitely unac-
ceptable, let alone the longer conversion time. Therefore,
for this project, we try to implement a traditional voice
conversion algorithm, the GMM-based weighted frequency
warping method [33]. Even so, great efforts must be taken
to implement such algorithms wisely to ensure its time
efficiency such that the training and conversion can be fin-
ished in a reasonable time on mobile phones. Besides, as we
have described before, a trade-off between the best possible
performance and the time efficiency must be made.

One limitation of the current system is that it only sup-
ports one-to-one voice conversion and parallel corpora are
required. That is why we have supplied some fixed text
materials to be recorded in our application, Voichap. If a new
target speaker is to be added, then his/her voice has to be
recorded by reading these text materials to build a parallel
corpus with the source speaker (the user). Such a require-
ment of parallel corpora may not be user-friendly enough.
To make the framework more flexible and to relieve the need
of parallel corpora, more advanced techniques like one-to-
many or many-to-one voice conversion methods can be
adopted, for example, eigenvoice conversion [56] and ten-
sor representation [57]. Such studies deserve to be exploited
in the future development of our mobile voice conversion
system.

VII. CONCLUSION

Voice conversion can be applied in many practical prob-
lems, e.g., personalizing TTS systems, speech-to-speech
translation, and speaking- and hearing-aid devices. Due to
the prevalence of smart phones in recent years, in this paper,
we tried to verify the feasibility of real-time voice conversion
on a single mobile device, i.e., both the training and con-
version are executed on the mobile device with no remote
support from a server. Specifically, we presented the efficient
implementation of the core algorithms and the development
of a mobile application, Voichap, on iPhone 7. The most
important lesson learned is to make full use of the hardware
advantages commonly available on mobile phones, espe-
cially multi-core parallel computing and vectorization using
SIMD instructions. The experimental evaluations show that
our system can work properly on an iPhone 7 device. The
training phase for a training set composed of 20 sentences
takes about 40 s, while the conversion phase of a 5s source
input needs slightly more than 1 s. Besides, according to the
subjective evaluations, the performance of Voichap in terms
of converted speech quality and similarity on iPhone 7 is
also satisfactory. Though the voice conversion performance
of this system is definitely not the best, especially compared
with state-of-the-art deep learning-based methods, it can
work totally off-line and achieve real-time voice conversion

17

18

SHUHUA GAO, et al.

on mobile phones due to the optimized implementation,
which, as far as we know, is pioneering in this field.

Future work includes adding more functionality to the
current i0S app and porting it to Android phones. This
should not be a difficult task thanks to the sensible design
of the software architecture shown in Fig. 5, where the com-
pute engine is well decoupled from the GUI layer. Given
the rapid growth in computational capability of mobile
phones, it is promising that our voice conversion app can
work even faster on newly released smart phones and, ide-
ally, deep learning based approaches will become practical
on mobile devices in the near future. Finally, it should
be noted that the weighted frequency warping algorithm
used in our system belongs to the most commonly used
trajectory-based conversion approaches, which convert all
spectral parameters of a complete utterance simultaneously.
To further reduce the delay of voice conversion, frame-
based approaches capable of converting spectral parameters
frame by frame are more desirable, e.g., the time-recursive
conversion algorithm based on maximum likelihood esti-
mation of spectral parameter trajectory [58], which is also
planned in our future work.

ACKNOWLEDGMENT

This study was conducted via collaboration between
Department of Electrical & Computer Engineering, National
University of Singapore and Institute for Infocomm Research,
A*STAR, Singapore. We acknowledge the support from
both sides. We thank Mr. Mingyang Zhang from Southeast
University, China, for his assistance and helpful comments
on objective evaluations of the voice conversion system.

FINANCIAL SUPPORT

This research received no specific grant from any funding
agency, commercial or not-for-profit sectors.

STATEMENT OF INTEREST

None.

REFERENCES

[1] Daniels, J.; Ha, L.K.; Ochotta, T,; Silva, C.T.: Robust smooth fea-
ture extraction from point clouds. Proceedings - IEEE International
Conference on Shape Modeling and Applications 2007 SMI'07, 2007,
123-133.

[2] Kain, A.B.; Hosom, J.-P;; Niu, X.; van Santen, J.P; Fried-Oken, M.;
Staehely, J.: Improving the intelligibility of dysarthric speech. Speech

Commun., 49 (9) (2007), 743-759.

Kobayashi, K.; Toda, T.; Neubig, G.; Sakti, S.; Nakamura, S.: Statistical
singing voice conversion with direct waveform modification based on
the spectrum differential, in Fifteenth Annual Conf. of the Int. Speech
Communication Association, 2014.

[3

Kawanami, H.; Iwami, Y.; Toda, T.; Saruwatari, H.; Shikano, K.: Gmm-
based voice conversion applied to emotional speech synthesis, in

[4

[11

[14

[19

[20

[21

]

]

]

]

Eighth European Conf. on Speech Communication and Technology,
2003.

Akanksh, B.; Vekkot, S.; Tripathi, S.: Interconversion of emotions in
speech using td-psola, in Thampi, S.M.; Bandyopadhyay, S.; Krish-
nan, S; Li, K.-C.; Mosin, S.; Ma, M.: Eds., Advances in Signal Pro-
cessing and Intelligent Recognition Systems, Springer, Trivandrum,
India, 2016, 367-378.

Felps, D.; Bortfeld, H.; Gutierrez-Osuna, R.: Foreign accent conver-
sion in computer assisted pronunciation training. Speech Commun.,
51 (10) (2009), 920-932.

Aryal, S;; R., Gutierrez-Osuna: Can voice conversion be used to
reduce non-native accents? in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE Int. Conf. on. IEEE, 2014, 7879-7883.

Wu, Z.; Li, H.: Voice conversion versus speaker verification: an
overview. APSIPA Trans. Signal. Inf. Process., 3 (2014), e17.

Mohammadi, S.H.; Kain, A.: An overview of voice conversion sys-
tems. Speech Commun., 88 (2017), 65-82.

Kawahara, H.; Masuda-Katsuse, I.; De Cheveigne, A.: Restructur-
ing speech representations using a pitch-adaptive time-frequency
smoothing and an instantaneous-frequency-based fo extraction: pos-
sible role of a repetitive structure in sounds1. Speech Commun., 27
(3-4) (1999), 187-207.

Moulines, E.; Charpentier, E: Pitch-synchronous waveform process-
ing techniques for text-to-speech synthesis using diphones. Speech
Commun., 9 (5-6) (1990), 453-467.

Stylianou, Y.; Laroche, J.; Moulines, E.: High-quality speech modifi-
cation based on a harmonic+ noise model, in Fourth European Conf.
on Speech Communication and Technology, 1995.

Stylianou, Y,; Cappé, O.; Moulines, E.: Continuous probabilistic
transform for voice conversion. IEEE Trans. Speech Audio Process.,
6 (2) (1998), 131-142.

Toda, T. et al: The voice conversion challenge 2016. Proc. of the
Annual Conf. of the Int. Speech Communication Association, INTER-
SPEECH, vol. 08-12-Sept, 2016, 1632-1636.

Helander, E.; Virtanen, T.: Voice conversion using partial least squares
regression. Audio, Speech, Language Process., IEEE Trans., 18 (5)
(2010), 912-921.

Abe, M.; Nakamura, S.; Shikano, K.; Kuwabara, H.: Voice conversion
through vector quantization. ICASSP-88., Int. Conf. Acoust., Speech,
Signal Process., 2 (1988), 655-658.

Kain, A.; Macon, M.W.: Spectral voice conversion for text-to-speech
synthesis, in Acoustics, Speech and Signal Processing, 1998. Proc. of the
1998 IEEE Int. Conf. on, vol. 1. IEEE, 1998, 285-288.

Toda, T.; Black, A.W,; Tokuda, K.: Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory.
IEEE Trans. Audio, Speech, Language Process., 15 (8) (2007), 2222
2235.

Kim, E.-K,; Lee, S.; Oh, Y.-H.: Hidden markov model based voice con-
version using dynamic characteristics of speaker, in Fifth European
Conf. on Speech Communication and Technology, 1997.

Zhang, M.; Tao, J.; Nurminen, J.; Tian, J.; Wang, X.: Phoneme cluster
based state mapping for text-independent voice conversion, in Acous-
tics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE Int. Conf.
on. IEEE, 2009, 4281-4284.

Song, P; Bao, Y;; Zhao, L.; Zou, C.: Voice conversion using support
vector regression. Electron. Lett., 47 (18) (2011), 1045-1046.

Narendranath, M.; Murthy, H.A.; Rajendran, S.; Yegnanarayana, B.:
Transformation of formants for voice conversion using artificial neu-
ral networks. Speech Commun., 16 (2) (1995), 207-216.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

DEVELOPMENT OF A COMPUTATIONALLY EFFICIENT VOICE CONVERSION SYSTEM ON MOBILE PHONES

Desai, S.; Black, A.W.; Yegnanarayana, B.; Prahallad, K.: Spectral map-
ping using artificial neural networks for voice conversion. IEEE Trans.
Audio, Speech, Language Process., 18 (5) (2010), 954-964.

Chen, L.-H.; Ling, Z.-H.; Liu, L.-J; Dai, L.-R.: Voice conversion using
deep neural networks with layer-wise generative training. IEEE/ACM
Trans. Audio, Speech, Language Process. (TASLP), 22 (12) (2014), 1859
1872.

Van Den Oord, A. et al.: Wavenet: a generative model for raw audio.
arXiv preprint arXiv:1609.03499, 2016.

Erro, D.; Moreno, A.; Bonafonte, A.: Voice conversion based on
weighted frequency warping. IEEE Trans. Audio, Speech, Language
Process., 18 (5) (2010), 922-931.

Godoy, E.; Rosec, O.; Chonavel, T.: Voice conversion using dynamic
frequency warping with amplitude scaling, for parallel or nonparallel
corpora. IEEE Trans. Audio, Speech, Language Process., 20 (4) (2012),
1313-1323.

Erro, D.; Navas, E.; Hernaez, I.: Parametric voice conversion based
on bilinear frequency warping plus amplitude scaling. IEEE Trans.
Audio, Speech, Language Process., 21 (3) (2013), 556-566.

Wu, Z.; Virtanen, T.; Kinnunen, T.; Chng, E.S.; Li, H.: Exemplar-based
voice conversion using non-negative spectrogram deconvolution, in
Eighth ISCA Workshop on Speech Synthesis, 2013.

Wu, Z; Virtanen, T.; Chng, E.S; Li, H.: Exemplar-based sparse
representation with residual compensation for voice conversion.
IEEE/ACM Trans. Audio, Speech, Language Process., 22 (10) (2014),
1506-1521.

Xu, N; Tang, Y,; Bao, J.; Jiang, A.; Liu, X.; Yang, Z.: Voice conversion
based on Gaussian processes by coherent and asymmetric training
with limited training data. Speech. Commun., 58 (2014), 124-138.

Uriz, A.].; Agiiero, P.D.; Bonafonte, A.; Tulli, J.C.: Voice conversion
using k-histograms and frame selection, in Tenth Annual Conf. of the
Int. Speech Communication Association, 2009.

Erro, D.; Polyakova, T.; Moreno, A.: On combining statistical methods
and frequency warping for high-quality voice conversion. ICASSE
IEEE Int. Conf. on Acoustics, Speech and Signal Processing - Proceed-
ings, 2008, 4665-4668.

Nakashika, T.; Takashima, R.; Takiguchi, T.; Ariki, Y.: Voice conver-
sion in high-order eigen space using deep belief nets, in Interspeech,
2013, 369-372.

Nguyen, H.Q.; Lee, S.W.; Tian, X.; Dong, M.; Chng, E.S.: High qual-
ity voice conversion using prosodic and high-resolution spectral
features. Multimed. Tools. Appl., 75 (9) (2016), 5265-5285.

Erro, D.; Moreno, A.: Weighted frequency warping for voice conver-
sion. Proc. of the Annual Conf. of the International Speech Communi-
cation Association, INTERSPEECH, 2 (2007), 1465-1468.

Toda, T.; Muramatsu, T.; Banno, H.: Implementation of computation-
ally efficient real-time voice conversion, in Thirteenth Annual Conf. of
the Int. Speech Communication Association, 2012.

Wang, H.: A mobile world made of functions. APSIPA Trans. Signal
Inf. Process., 6 (2017), e2.

Erro, D.; Moreno, A.; Bonafonte, A.: Flexible harmonic/stochastic
speech synthesis, in SSW, 2007, 194-199.

Depalle, P; Helie, T.: Extraction of spectral peak parameters using
a short-time fourier transform modeling and no sidelobe windows,
in Applications of Signal Processing to Audio and Acoustics, 1997. 1997
IEEE ASSP Workshop on. IEEE, 1997, 4-pp.

Erro, D.; Moreno, A.: A pitch-asynchronous simple method for
speech synthesis by diphone concatenation using the deterministic
plus stochastic model, in Proc. SPECOM, 2005.

[42]

[43

(44]

[45]

(46]

[49]

[s0

Paliwal, K.K.: Interpolation properties of linear prediction parametric
representations, in Fourth European Conf. on Speech Communication
and Technology, 1995.

El-Jaroudi, A.; Makhoul, J.: Discrete all-pole modeling. IEEE Trans.
Signal Process., 39 (2) (1991), 411-423.

Kalva, H.; Colic, A; Garcia, A.; Furht, B.: Parallel programming
for multimedia applications. Multimedia Tools Appl., 51 (2) (2011),
801-818.

Asanovic, K. et al.: The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Tech. Rep., 2006.

Corrales-Garcia, A.; Martinez, J.L.; Fernandez-Escribano, G.; Quiles,
EJ.: Energy efficient low-cost video communications. IEEE Trans.
Consum. Electron., 58 (2) (2012), 513-521.

Kwedlo, W.: A parallel em algorithm for Gaussian mixture models
implemented on a numa system using openmp, in Parallel, Dis-
tributed and Network-Based Processing (PDP), 2014 22nd Euromicro
Int. Conf. on IEEE, 2014, 292-298.

Mitra, G.; Johnston, B.; Rendell, A.P; McCreath, E.; Zhou, J.: Use of
simd vector operations to accelerate application code performance on
low-powered arm and intel platforms, in Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th Int. IEEE, 2013, 1107-1116.

Ha, S.-W,; Park, H.-C.; Han, T.-D.: Mobile digital image stabilisation
using simd data path. Electron. Lett., 48 (15) (2012), 922-924.

Dagum, L.; Menon, R.: Openmp: an industry standard api for shared-
memory programming. IEEE Comput. Sci. Eng., 5 (1) (1998), 46-55.

Williams, A.: C++ Concurrency in Action. Manning Publications,
Shelter Island, New York, USA, 2017.

Guennebaud, G. et al.: Eigen v3. http://eigen.tuxfamily.org, 2010.

Berndt, D.J; Clifford, J.: Using dynamic time warping to find patterns
in time series, in KDD workshop, vol. 10, no. 16. Seattle, WA, 1994,
359-370.

Hill, M.D.; Marty, M.R.: Amdahl’s Law in the Multicore Era. Com-
puter, 41(7) (2008), 33-38.

Yang, S.; Xie, L.; Chen, X.; Lou, X.; Huang, D.; Li, H.: Statistical para-
metric speech synthesis using generative adversarial networks under
a multi-task learning framework. arXiv preprint arXiv:1707.01670,
2017.

Toda, T.; Ohtani, Y.; Shikano, K.: One-to-many and many-to-one
voice conversion based on eigenvoices. 2007.

Saito, D.; Yamamoto, K.; Minematsu, N.; Hirose, K.: One-to-many
voice conversion based on tensor representation of speaker space, in
Twelfth Annual Conf. of the Int. Speech Communication Association,
2011

Muramatsu, T.; Ohtani, Y.; Toda, T.; Saruwatari, H.; Shikano, K.:
Lowdelay voice conversion based on maximum likelihood estima-
tion of spectral parameter trajectory, in Proc. 2008 Autumn Meeting
of Acoustic Society of Japan, 2008, 3—4.

Shuhua Gao received a Bachelor degree from Shanghai Jiao
Tong University in 2012 and a Master degree from Beihang
University in 2015, both majoring in automation. He is cur-
rently pursuing the Ph.D. degree in National University of
Singapore. His main research interests include the develop-
ment and application of machine learning and evolutionary
computation.

19

20

SHUHUA GAO, et al.

Xiaoling Wu received a Bachelor degree from National Univer-
sity of Singapore in 2017. She is currently a software engineer.

Cheng Xiang received the B.S. degree in mechanical engi-
neering from Fudan University, China in 1991; M.S. degree in
mechanical engineering from the Institute of Mechanics, Chi-
nese Academy of Sciences in 1994; and M.S. and Ph.D. degrees
in electrical engineering from Yale University in 1995 and 2000,
respectively. He is an Associate Professor in the Department of
Electrical and Computer Engineering at the National Univer-
sity of Singapore. His research interests include computational
intelligence, adaptive systems and pattern recognition.

Dongyan Huang received her B.S. degree and M.S. degree
from Xi’an Jiaotong University in electrical engineering. She
has a Ph.D. degree in communication & electronics from
Conservatoire National des Arts et Metiers. She is currently
a senior research scientist & principal investigator at Insti-
tute for Infocomm Research (IR), A*STAR in Singapore. Her
research interests include speech synthesis, voice conversion
and transformation, emotional conversation generation and
Human-Machine interaction.

	I Introduction
	II Voice ConversionFramework
	A Overview of the voice conversion system
	B Deterministic plus stochastic model
	C Line spectral frequencies feature construction
	D Voice conversion via weighted frequency warping

	III Efficient Implementationof core algorithms
	A Multi-core parallel computing
	B Vectorization via SIMD
	C C++ implementation

	IV iOS applicationdevelopment
	A Overview of the functional modules
	B Specific design issues
	1 MVC design pattern for the user interface
	2 Data-driven presentation in collection views

	V Experiments and Results
	A Core algorithm speedup test results
	1 Overall performance
	2 Profiling of each stage
	3 Effect of number of cores

	B Demonstration of the application
	C Experimental evaluations of the voice conversion system
	1 Parameter tuning and time efficiency
	2 Objective evaluation of voice conversion
	3 Subjective evaluation of voice conversion

	VI Discussion
	VII Conclusion

