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Checkerboard artifacts free convolutional
neural networks
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It is well-known that a number of convolutional neural networks (CNNs) generate checkerboard artifacts in both of two processes:
forward-propagation of upsampling layers and backpropagation of convolutional layers. A condition for avoiding the artifacts
is proposed in this paper. So far, these artifacts have been studied mainly for linear multirate systems, but the conventional
condition for avoiding them cannot be applied to CNNs due to the non-linearity of CNNs. We extend the avoidance condition
for CNNs and apply the proposed structure to typical CNNs to confirm whether the novel structure is effective. Experimental
results demonstrate that the proposed structure can perfectly avoid generating checkerboard artifacts while keeping the excellent
properties that CNNs have.
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I . I NTRODUCT ION

In this paper, we address the problem of checkerboard
artifacts in convolutional neural networks (CNNs) [1].
Recently, CNNs have been widely studied in a variety of
computer vision tasks such as image classification [2, 3],
semantic segmentation [4, 5], super-resolution (SR) imag-
ing [6, 7], and image generation [8], and they have achieved
superior performances. However, CNNs often generate
periodic artifacts, referred to as checkerboard artifacts, in
both of two processes: forward-propagation of upsampling
layers and backpropagation of convolutional layers [9].
In CNNs, it is well-known that checkerboard artifacts are

generated by the operations of deconvolution [10, 22, 23]
and sub-pixel convolution [11] layers. To overcome these
artifacts, smoothness constraints [12], post-processing [13],
initialization schemes [14], and different upsampling layer
designs [9, 15, 16] have been proposed. Most of them can-
not avoid checkerboard artifacts perfectly, although they
reduce the artifacts. Among them, Odena et al. [9] demon-
strated that checkerboard artifacts can be perfectly avoided
by using resize convolution layers instead of deconvolution
ones. However, resize convolution layers cannot be directly
applied to upsampling layers such as deconvolution and
sub-pixel convolution ones, so this method requires not
only a large amount of memory but it also has high com-
putational costs. In addition, it cannot be applied to the
backpropagation of convolutional layers.
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Checkerboard artifacts have been studied to design lin-
ear multirate systems including filter banks and wavelets
[17–20]. In addition, it is well-known that the artifacts are
caused by the time-variant property of interpolators inmul-
tirate systems, and a condition for avoiding these artifacts
has have been given [17–19]. However, this condition for
linear systems cannot be applied to CNNs due to the non-
linearity of CNNs.
In this paper, we extend the conventional avoidance con-

dition for CNNs and apply a proposed structure to typical
CNNs to confirm whether the novel structure is effective.
Experimental results demonstrate that the proposed struc-
ture can perfectly avoid generating checkerboard artifacts
caused by both processes, while keeping the excellent prop-
erties that CNNs have. As a result, it is confirmed that
the proposed structure allows us to offer CNNs without
any checkerboard artifacts. This paper is an extension of a
conference paper [21].

I I . PREPARAT ION

Checkerboard artifacts in CNNs and work related to
checkerboard artifacts are reviewed here.

A) Checkerboard artifacts in CNNs
In CNNs, it is well-known that checkerboard artifacts are
caused by two processes: forward-propagation of upsam-
pling layers and backpropagation of convolutional layers.
This paper focuses on these two issues in CNNs [9, 14, 21].
When CNNs include upsampling layers, there is a possi-

bility that they will generate checkerboard artifacts, which
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Fig. 1. Classification of SR methods using CNNs. There is a possibility that SR
methods will generate checkerboard artifacts, when CNNs include upsampling
layers.

is the first issue, referred to as issue A. Deconvolution [22,
23], sub-pixel convolution [11], and resize convolution [9]
layers are well-known to include upsampling layers, respec-
tively. Deconvolution layers have many names, includ-
ing fractionally-strided convolutional layer and transposed
convolutional layer, as described in [23]. In this paper, the
term “Deconvolution” has the same meaning as others.
Checkerboard artifacts are also generated by the back-

ward pass of convolutional layers, which is the second issue,
referred to as issue B. We will mainly consider issue A in
the following discussion, since issue B is reduced to issue A
under some conditions.

B) SR methods using CNNs
SR methods using CNNs are classified into two classes as
shown in Fig. 1. Interpolation-based methods [6, 24–27],
referred to as “class A,” do not generate any checkerboard
artifacts in CNNs, due to the use of an interpolated image
as an input to a network. In other words, CNNs in this class
do not have any upsampling layers.
When CNNs include upsampling layers, there is a possi-

bility that CNNs will generate checkerboard artifacts. This
class, called “class B” in this paper, has provided numer-
ous excellent SR methods [7, 11, 28–33] that can be executed
faster than those in class A. Class B is also classified into a
number of sub-classes according to the type of upsampling
layer. This paper focuses on class B.
CNNs are illustrated in Fig. 2 for an SRproblem, as in [11],

where the CNNs consist of two convolutional layers and one
upsampling layer. ILR and f (l)

c (ILR) are a low-resolution (LR)
image and c-th channel feature map at layer l, and f (ILR)
is an output of the network. The two layers have learnable
weights, biases, and ReLU as an activation function, where
the weight at layer l has Kl × Kl as a spatial size and Nl as
the number of feature maps.
There are numerous algorithms for computing upsam-

pling layers, such as deconvolution [22, 23], sub-pixel con-
volution [11], and resize convolution [9] ones, which are
widely used in typical CNNs. In addition, recently, some
excellent SR methods have been proposed [31, 34].

C) Works related to checkerboard artifacts
Checkerboard artifacts have been discussed by researchers
for designing multirate systems including filter banks and

Fig. 2. CNNs with an upsampling Layer.

Fig. 3. Linear interpolators with upscaling factor U. (a) General structure,
(b) polyphase structure.

wavelets [17–20]. However, most research has been limited
to cases of using linear systems, so it cannot be directly
applied to CNNs due to the non-linearity of CNNs. Some
pieces of works related to checkerboard artifacts for linear
systems are summarized, here.
It is known that linear interpolators, which consist of up-

samplers and linear time-invariant systems, cause checker-
board artifacts due to their periodic time-variant property
[17–19]. Figure 3 illustrates a linear interpolator with an up-
sampler↑ U and a linear time-invariant systemH(z), where
positive integer U is an upscaling factor and H(z) is the
z transformation of an impulse response. The interpolator
in Fig. 3(a) can be equivalently represented as a polyphase
structure as shown in Fig. 3(b). The relationship between
H(z) and Ri(z) is given by

H(z) =
U∑

i=1
Ri(zU)z−(U−i), (1)

where Ri(z) is often referred to as a polyphase filter of the
filter H(z).
The necessary and sufficient condition for avoiding

checkerboard artifacts in the system is shown as

R1(1) = R2(1) = · · · = RU(1) = G. (2)
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Table 1. Correspondence relation of technical terms in signal
processing and computer vision

Signal processing Computer vision

Filter, linear system Filter, kernel
Impulse response, Weight
Filter coefficient
DC value of filter Summation of weights
z−1 One pixel shift
Factor U Stride U (in deconvolution layer)
Zero-order hold Nearest neighbor

This condition means that all polyphase filters have the
same DC value, i.e. a constantG [17–19]. Note that each DC
value Ri(1) corresponds to the steady-state value of the unit
step response in each polyphase filter Ri(z). In addition, the
condition of equation (2) can be also expressed as

H(z) = P(z)H0(z), (3)

where,

H0(z) =
U−1∑

i=0
z−i, (4)

and H0(z) and P(z) are an interpolation kernel of the zero-
order hold with factor U and a time-invariant filter, respec-
tively. Therefore, a linear interpolatorwith factorU does not
generate any checkerboard artifacts, when H(z) includes
H0(z). In the case without checkerboard artifacts, the step
response of the linear system has a steady-state value G as
shown in Fig. 3(a). Meanwhile, the step response of the lin-
ear system has a periodic steady-state signal with the period
ofU, such as R1(1), . . ., RU(1), if equation (3) is not satisfied.
To intermediate between signal processing field and

computer vision one, the correspondence relation of some
technical terms is summarized in Table 1.

I I I . PROPOSED METHOD

CNNs are non-linear systems, so conventional work related
to checkerboard artifacts cannot be directly applied to
CNNs. A condition for avoiding checkerboard artifacts in
CNNs is proposed here.

A) CNNs with upsampling layers
We focus on upsampling layers in CNNs, for which there
are numerous algorithms such as deconvolution [22, 23],
sub-pixel convolution [11], and resize convolution [9]. For
simplicity, one-dimensional CNNs will be considered in the
following discussion.
It is well-known that deconvolution layers with non-unit

strides cause checkerboard artifacts [9]. Figure 4 illustrates
a system representation of deconvolution layers [22, 23] that
consist of interpolators, where Hc and b are a weight and a
bias in which c is a channel index, respectively. The decon-
volution layer in Fig. 4(a) can be equivalently represented as
a polyphase structure in Fig. 4(b), where Rc,n is a polyphase

Fig. 4. Deconvolution layer [22, 23]. (a) General structure, (b) Polyphase struc-
ture.

Fig. 5. Sub-pixel convolution layer [11].

filter of the filter Hc in which n is a filter index. This is a
non-linear system due to the bias b.
Figure 5 illustrates sub-pixel convolution layers [11],

where Rc,n and bn are a weight and a bias, and f ′
n(ILR) is an

intermediate featuremap in channel n. Comparing Fig. 4(b)
with Fig. 5, we can see that the polyphase structure in
Fig. 4(b) is a special case of the sub-pixel convolution layers
in Fig. 5. In other words, Fig. 5 is reduced to Fig. 4(b), when
satisfying b1 = b2 = · · · = bU . Therefore, we will focus on
sub-pixel convolution layers as a general case of upsampling
layers to discuss checkerboard artifacts in CNNs.

B) Checkerboard artifacts in upsampling
layers
Let us consider the unit step response in CNNs. In Fig. 2,
when the input ILR is the unit step signal Istep, the steady-
state value of the c-th channel feature map in layer 2 is given
as

f̂ (2)
c (Istep) = Ac, (5)

where Ac is a positive constant value that is decided by
filters, biases, and ReLU. Therefore, from Fig. 5, the steady-
state value of the n-th channel intermediate feature map is
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given by, for sub-pixel convolution layers,

f̂ ′
n(Istep) =

N2∑

c=1
AcRc,n + bn, (6)

where Rc,n is the DC value of the filter Rc,n.
Generally, the condition, which corresponds to equation

(2) for linear multirate systems,

f̂ ′
1 (Istep) = f̂ ′

2(Istep) = · · · = f̂ ′
U(Istep) (7)

is not satisfied, so the unit step response f (Istep) has a peri-
odic steady-state signal with the period of U. To avoid
checkerboard artifacts, equation (7) has to be satisfied, as
well as for linear multirate systems.

C) Upsampling layers without checkerboard
artifacts
To avoid checkerboard artifacts, CNNs must have the non-
periodic steady-state value in the unit step response. From
equations (6), equation (7) is satisfied if

Rc,1 = Rc,2 = · · · = Rc,U , c = 1, 2, . . . ,N2 (8)

b1 = b2 = · · · = bU . (9)

Note that, in this case,

f̂ ′
1 (K · Istep) = f̂ ′

2(K · Istep) = · · · = f̂ ′
U(K · Istep) (10)

is also satisfied,whereK is an arbitrary constant value.How-
ever, even when each filterHc in Fig. 5 satisfies equation (2)
or equation (3), equation (9) is not met, but equation (8)
is met. Both equations, i.e., equations (8 and 9) have to be
met to avoid checkerboard artifacts in CNNs. Therefore, we
have to find a novel way of avoiding checkerboard artifacts
in CNNs. Note that equations (5) and (7) correspond to val-
ues in case that the input ILR is the unit step Istep. Therefore,
other general inputs, the output feature map would not be
the same even when equations (5) and (7) are met.
In this paper, we propose adding the kernel of the zero-

order hold with factor U, i.e., H0 in equation (4), after
upsampling layers, as shown in Fig. 6. In this structure, the
unit-step response outputted from H0 have constant value
as the steady state values, even when an arbitrary periodic
signal with a period ofU is inputted toH0. As a result, Fig. 6
can satisfy equation (7). In other words, the steady-state
values of the step response are not periodic in this case.
The difference between the conventional upsampling

layers and the proposed structure is whether the structure
has H0 forcibly inserted for avoiding checkerboard arti-
facts or not. The operation of sub-pixel convolution and
deconvolution layers can be interpreted as a combination
of upsampling and convolution, where upsampling cor-
responds to the operation that is to insert (U − 1) zeros
between sample values. The conventional upsampling lay-
ers do not includeH0 generally unless forcibly insertingH0
into convolution, so checkerboard artifacts are generated.

Fig. 6. Proposed upsampling layer structure without checkerboard artifacts.
Kernel of zero-order hold with factor U is added after upsampling layers.

There are three approaches to using H0 in CNNs that
differ in terms of how CNNs are trained as follows.

1) Training CNNs without H0
The first approach for avoiding checkerboard artifacts,
called “approach 1,” is to add H0 to CNNs after training the
CNNs. This approach allows us to perfectly avoid checker-
board artifacts generated by a pre-trained model.

2) Training CNNs with H0
In approach 2, H0 is added as a convolution layer after the
upsampling layer shown in Fig. 6, and then, the CNNs with
H0 are trained. This approach also allows us to perfectly
avoid checkerboard artifacts as well as approach 1. More-
over, this approach generally provides higher quality images
than those of approach 1.

3) Training CNNs with H0 inside upsampling
layers
Approach 3 is applicable only to deconvolution layers, but
approaches 1 and 2 can be used for both deconvolution and
sub-pixel convolution layers. Deconvolution layers always
satisfy equation (9), so equation (8) only has to be consid-
ered. Therefore, CNNs do not generate any checkerboard
artifacts when each filter Hc in Fig. 5 satisfies equation (3).
In approach 3, checkerboard artifacts are avoided by con-
volving each filterHc with the kernelH0 inside upsampling
layers.

D) Checkerboard artifacts in gradients
It is well-known that checkerboard artifacts are also gen-
erated in gradients of convolutional layers [9] since the
operations of deconvolution layers are carried out on the
backward pass to compute the gradients. Therefore, both
approaches 2 and 3 can avoid checkerboard artifacts as
well as for deconvolution layers. Note that, for approach
2, we have to add the kernel of the zero-order hold before
convolutional layers to avoid checkerboard artifacts on the
backward pass.
It is also well-known thatmax-pooling layers cause high-

frequency artifacts in gradients [9]. However, these artifacts
are generally different from checkerboard artifacts, so this
paper does not consider these high-frequency artifacts.
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Table 2. CNNs used for super-resolution tasks

Network name Upsampling layer K3 × K3

Deconv Deconvolution [22, 23] 9× 9
Sub-pixel Sub-pixel convolution [11] 3× 3
ResizeConv Resize convolution [9] 9× 9
Deconv +H0 Deconvolution with H0

(Approach 1 or 2)
9× 9

Deconv +H0 (Ap. 3) Deconvolution with H0
(Approach 3)

9× 9

Sub-pixel+H0 Sub-pixel convolution with
H0 (Approach 1 or 2)

3× 3

I V . EXPER IMENTS AND RESULTS

The proposed structure without checkerboard artifacts was
applied to typical CNNs to demonstrate its effectiveness. In
the experiments, two tasks, SR imaging and image classifi-
cation, were carried out.

A) Super-resolution
The proposed structure without checkerboard artifacts was
applied to the SR methods using deconvolution and sub-
pixel convolution layers. The experiments with CNNs were
carried out under two loss functions: mean squared error
(MSE) and perceptual loss.

1) Datasets for training and testing
We employed 91-image set from Yang et al. [35] as our
training dataset. In addition, the same data augmentation
(rotation and downscaling) as in [28] was used. As a result,
a training dataset consisting of 1820 images was created for
our experiments. In addition,we used twodatasets, Set5 [36]
and Set14 [37], which are often used for benchmarking, as
test datasets.
To prepare a training set, we first downscaled ground

truth images IHR with a bicubic kernel to create LR images
ILR, where the factor U = 4 was used. The ground truth
images IHR were cropped into 72× 72 pixel patches, and the
LR images were also cropped 18× 18 pixel ones, where the
total number of extracted patches was 8, 000. In the exper-
iments, the luminance channel (Y) of images was used for

MSE loss, and three channels (RGB) of images were used for
perceptual loss.

2) Training details
Table 2 illustrates the CNNs used in the experiments, which
were carried out on the basis of the CNNs in Fig. 2. For
the other two layers in Fig. 2, we set (K1, N1) = (5, 64),
(K2, N2) = (3, 32) as in [11]. In addition, all networks were
trained to minimize the MSE 1/2‖IHR − f (ILR)‖2 and the
perceptual loss 1/2‖φ(IHR) − φ(f (ILR))‖2 averaged over the
training set, where φ calculates feature maps at the fourth
layer of a pre-trained VGG-16 model as in [13]. Note that
Deconv+H0, Deconv+H0 (Ap. 3), and Sub-pixel+H0 in
Table 2 use the proposed structure.
For training, Adam [38] with β1 = 0.9, β2 = 0.999 was

employed as an optimizer. In addition, we set the batch size
to 4 and the learning rate to 0.0001. The weights were ini-
tialized with the method described in He et al. [39]. We
trained all models for 200K iterations. All models were
implemented by using the TensorFlow framework [40].

3) Experimental results
Figure 7 shows examples of SR images generated under per-
ceptual loss, where mean PSNR values for each dataset are
also illustrated. In this figure, (b) and (f) include checker-
board artifacts, and (c)–(e), (g)–(i) do not. Moreover, it
is shown that the quality of SR images was significantly
improved by avoiding the artifacts. Approaches 2 and 3 also
provided better quality images than approach 1. Note that
ResizeConv did not generate any artifacts, because it uses a
pre-defined interpolation like in [6]. In Fig. 8, the usefulness
of the proposed avoidance condition is demonstrated. It
was confirmed that CNNs generated checkerboard artifacts
under the conventional condition unless CNNs satisfied the
proposed condition. Figure 9 shows other examples of SR
images. In Fig. 9, the trend is almost the same as that in
Fig. 7.
Table 3 illustrates the average execution time when each

CNNs were run 10 times for some images in Set14. Resize-
Conv has the highest computational cost in this table,
although it did not generate any checkerboard artifacts.
From this table, the proposed approaches have much lower
computational costs than with resize convolution layers.

(a)

(b) (c) (d) (e)

(i)(h)(g)(f)

Fig. 7. Experimental results of super-resolution imaging under perceptual loss [PSNR(dB)]. (b) and (f) include checkerboard artifacts, and (c), (d), (e), (g), (h), and
(i) do not.
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Fig. 8. Super-resolution imaging using perceptual loss under various avoidance
conditions [PSNR(dB)] (sub-pixel convolution).

Note that the results were obtained on a PCwith a 3.30-GHz
CPU and a main memory size of 16GB.

4) Loss functions
It is well-known that perceptual loss results in sharper SR
images despite lower PSNR values [13, 30], and it generates

Table 3. Execution time of super-resolution (sec)

Resolution Deconv+H0 Deconv+H0
of input image Deconv (Ap. 1 or 2) (Ap. 3)

69× 69 0.00871 0.0115 0.0100
125× 90 0.0185 0.0270 0.0227
128× 128 0.0244 0.0348 0.0295
132× 164 0.0291 0.0393 0.0377
180× 144 0.0343 0.0476 0.0421

Resolution Sub-pixel+H0
of input image Sub-pixel (Ap. 1 or 2) ResizeConv

69× 69 0.0159 0.0242 0.107
125× 90 0.0398 0.0558 0.224
128× 128 0.0437 0.0619 0.299
132× 164 0.0696 0.0806 0.383
180× 144 0.0647 0.102 0.450

checkerboard artifacts more frequently than under MSE
loss as described in [9, 13, 14, 41]. In Fig. 10, which demon-
strates artifacts under MSE loss, (b) and (f) also include
checkerboard artifacts as well as in Fig. 7, although the
distortion is not that large, compared with under percep-
tual loss. There is a possibility that any loss function causes

(a) (b) (c) (d) (e)

(j)(i)(h)(f)

(k) (l) (m) (n) (o)

(t)(s)(r)(q)(p)

Fig. 9. Super-resolution examples of “Baboon” and “Monarch” under perceptual loss. PSNR values are illustrated under each sub-figure. (b), (g), (l), and (q) include
checkerboard artifacts, and other examples do not.
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(a) (f) (g) (h) (i)

(e)(d)(c)(b)

Fig. 10. Experimental results of super-resolution under MSE loss [PSNR(dB)]. (b) and (f) also include checkerboard artifacts as well as in Fig. 7, although the
distortion was not that large, compared with under perceptual loss.

Table 4. CNNs used for image classification tasks

Network name Downsampling layer Stride

StridedConv Convolution 2
StridedConv+H0 (Ap. 2) Convolution with H0

(Approach 2)
2

StridedConv+H0 (Ap. 3) Convolution with H0
(Approach 3)

2

checkerboard artifacts, but the magnitude of checkerboard
artifacts depends on a class of loss functions used for train-
ing networks. The proposed avoidance condition is useful
under any loss function.

B) Image classification
Next, the proposed structurewithout checkerboard artifacts
was applied to CNNs-based image classification models.

1) Datasets for training and testing
We employed two datasets, CIFAR10 and CIFAR100, which
contain 32× 32 pixel color images and consist of 50 000
training images and 10 000 test images [42]. In addition,
standard data augmentation (mirroring and shifting) was

used. For preprocessing, the images were normalized by
using the channel means and standard deviations.

2) Training details
Table 4 illustrates the CNNs used in the experiments, which
were run on the basis of ResNet-110 [2]. Note that the pro-
jection shortcut [2] was used only for increasing the number
of dimensions, and all convolutional layers with a stride of
2 in ResNet-110 were replaced by downsampling layers in
Table 4.
All of the networks were trained by using stochastic gra-

dient descent withmomentum for 300 epochs. The learning
rate was initially set to 0.1, and decreased by a factor of
10 at 150 and 225 epochs. The weights were initialized by
the method introduced in [39]. We used a weight decay of
0.0001, a momentum of 0.9, and a batch size of 64.

3) Experimental results
Figure 11 shows examples of gradients, which were com-
puted on the backward pass of the first downsampling layer,
for each CNN. In this figure, (a) includes checkerboard
artifacts, and (b) and (c) do not.
The results for CIFAR10 and CIFAR100 are illustrated in

Table 5, where “+ " indicates the use of the standard data
augmentation. It is shown that approach 3 performed the

(a) (b) (c)

Fig. 11. Gradients computed in first downsampling layer. (a) includes checkerboard artifacts, and (b) and (c) do not.
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Table 5. Error rates on CIFAR10, CIFAR100 datasets ()

Network CIFAR10 CIFAR10+ CIFAR100+

StridedConv 12.75 6.13 32.72
StridedConv+H0 (Ap. 2) 16.44 10.08 34.91
StridedConv+H0 (Ap. 3) 11.21 5.85 29.34

best in this table. This trend was almost the same for the SR
tasks.

V . CONCLUS ION

We addressed a condition for avoiding checkerboard arti-
facts in CNNs. A novel structure without any checker-
board artifacts was proposed by extending the conventional
condition for linear systems to CNNs with non-linearity.
The experimental results demonstrated that the proposed
structure can perfectly avoid generating checkerboard arti-
facts caused by both of two processes, forward-propagation
of upsampling layers and backpropagation of convolu-
tional layers, whilemaintaining the excellent properties that
CNNs have. As a result, the proposed structure allows us to
offer CNNs without any checkerboard artifacts.
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